
IADIS International Journal on WWW/Internet

Vol. 20, No. 2, pp. 99-116

ISSN: 1645-7641

99

AR IN VR: OMNISTEREOSCOPIC

TELEPRESENCE WITH HOLOGRAMS

FOR REMOTE MAINTENANCE

AND COLLABORATION

Furkan Kaynar1, Markus Hofbauer1, Asa MacWilliams2, Joseph Newman2,

Andreas Hutter2 and Eckehard Steinbach1

1Technical University of Munich, School of Computation, Information and Technology, Department of

Computer Engineering, Chair of Media Technology, Munich Institute of Robotics and Machine

Intelligence (MIRMI), Germany
2Siemens Technology, Munich, Germany

ABSTRACT

With the development of mixed reality technologies, remote maintenance and collaboration applications

receive increasing interest in the industry. The combination of 360-degree telepresence and augmented

reality (AR) cues have been shown to be an effective way of remote collaboration. However, most existing

methods do not provide depth perception, which can improve the remote inspection. Also, many methods

that use holograms for live collaboration are limited with only pointing functionality. In this paper, we

present a 360-degree telepresence system interacting with an AR backend to create an immersive mixed

reality interface for remote collaboration. The proposed camera system does not need to be carried by any

on-site person, but can be controlled by the remote operator intuitively. We deploy network delay

compensation methods and propose novel projection strategies for a correct and efficient rendering.

A comparative analysis shows advantages of the proposed system over previous work, and that it is a

promising approach for improving remote collaboration and maintenance. Our experiments indicate that

our system has a glass-to-glass delay of roughly 106 ms, and a data rate to the client varying between

10-15 Mbps, which can be further optimized for specific applications. Exploratory tests with

VR-experienced users showed that the motion-to-photon latency of the system is in acceptable ranges. The

system can be deployed in various industrial applications for a live or asynchronous collaboration between

an on-site user (with AR) and an off-site user (with AR in VR).

KEYWORDS

Remote Collaboration, Remote Maintenance, Augmented Reality, Virtual Reality, 360-Degree

Telepresence

IADIS International Journal on WWW/Internet

100

Figure 1. Overview of the proposed telepresence system with Augmented Reality (AR) cues. The camera

unit on the left mimics the head motion of the user. The user is provided with stereo views in all

directions (360°) augmented with the AR cues (on the right). Some of the holograms are highlighted with

orange circles for better visibility

1. INTRODUCTION

With the increasing availability of Augmented Reality (AR) and Virtual Reality (VR) systems,

different remote inspection and collaboration systems have been developed based on AR and

telepresence (Lee et al., 2018; Speicher et al., 2018).

The design of the telepresence system defines the capabilities and limitations of the remote

session and hence determines what the operator perceives. Among different systems, 360°

stereoscopic vision systems provide a remote presence experience with a high level of

immersion and 3D perception, which improves the task performance for indoor applications

(Aykut et al., 2019). On the other hand, capturing a live stereoscopic 360° view of the

environment is challenging due to problems like computational complexity, limited stereoscopic

budget (the level of flexibility of changing the inter-pupillary distance), and constrained 3D

impression due to unequal depth perception in different orientations (Aykut et al., 2019).

AR can be used for augmenting the scene with important technical details or auxiliary

information, increasing the effectiveness of a remote inspection or collaboration session. The

vast majority of the AR-based live collaboration systems either use a 2D view or a monoscopic

panorama of the remote environment. A 2D view often leads to a limited field-of-view (FoV)

and situational awareness, while a monoscopic panorama lacks the depth information.

In this paper, we present a remote AR system combined with a 360° stereoscopic

telepresence system to improve real-time remote inspection and collaboration applications. The

operator can freely observe the remote environment without depending on any other person, and

with depth perception, due to omnistereoscopic vision. In addition, we deploy a state-of-the-art

network delay compensation method (Aykut et al., 2019), to allow a natural and smooth Mixed

Reality (MR) experience.

The proposed system uses an AR backend that provides hologram poses with respect to the

anchor points initially defined for indoor localization (Lehrbaum et al., 2022). Any client device

can add or modify the AR components, consisting of images, text information, web-content, or

the live sensory data of an industrial environment. The holograms reappear at the saved 6-DOF

poses once a client device revisits the same environment. This allows for an effective live

collaboration as well as the generation of an information database improving the remote

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

101

inspection in the long-term. We propose a novel system to efficiently map the hologram imagery

onto the spherical VR scene created with fisheye lenses.

The rest of the paper is structured as follows. In Section 2, we summarize the related work

in the field of mixed-reality telepresence systems. In Section 3, we introduce the architecture of

the proposed 360° telepresence system interacting with an AR backend. We present a

comparative analysis against similar systems in Section 4. In Section 5, we provide an

experimental evaluation with measurements. Section 6 gives an outlook on future work and

possible industrial applications. Section 7 concludes the paper.

2. RELATED WORK

In this section, we summarize existing systems proposed for 360° telepresence with AR

overlays. Druta et al. (2021) provide a general overview on remote collaboration. Pretlove

(1998) presented a mobile robotic platform equipped with an actuated stereo system

synchronized with the operator's head-mounted display (HMD). The scene is overlayed with

computer graphics to help the operator while navigating the remote robot in low visibility cases.

While this system only focuses on navigation by teleoperation, it does not allow live

manipulation of holograms for collaboration.

Wang et al. (2012) proposed a pan-tilt stereo camera unit and AR overlays of objects. They

estimate the user's head orientation from the camera view attached to the head using visual

processing. To avoid the slow response of the actuated system, the authors warp the video shown

to the user to mitigate the inconsistency between the user's and the remote camera's orientations.

However, this can lead to incomplete visualization of the remote environment and visual

discomfort.

Speicher et al. (2018) proposed a system with a static 360° monoscopic camera and a

projector for creating AR cues in a room for remote collaboration. The application scenarios are

limited to putting markers on a straight wall and visualizing them with a projector.

Lee et al. (2018) proposed a live panorama system where the remote user views the

panoramic video stream captured by the head-mounted 360° monoscopic camera carried by the

local host. AR cues and hand gestures are used for non-verbal collaboration. The users reported

motion sickness triggered in the dependent mode where they observe the viewport of the local

host. Furthermore, the users reported arising discomfort due to the jittery motion introduced by

the head-mounted device during the independent mode. Since this system only provides a

monoscopic view, no 3D perception of the remote environment is available.

Teo et al. (2019) proposed a system with two modes. The first mode is 360° monoscopic

view obtained by a head-mounted camera carried by the local host. The second mode provides

a 3D model of the room for an independent viewing experience. While the second method

addresses the problem of dependency to the host, it requires a 3D reconstruction of the room in

advance.

Kasahara et al. (2016) proposed a head-mounted multi-camera arrangement that creates the

360° view of the environment and stabilizes the view to allow independent remote inspection

by the second user. This system does not only bring high computational cost for combining

multi-camera frames, but also results in severe stitching errors as viewed in the demonstration

videos.

IADIS International Journal on WWW/Internet

102

Most of the methods discussed in this section create and transmit a full 360° monoscopic

video, which typically requires a high bandwidth. This is problematic for cases where the

network throughput is limited or time-varying. The bandwidth limitations are an even more

severe problem for transmitting a 360° stereoscopic video.

The head-mounted perception systems do not only cause viewing discomfort and motion

sickness by the remote viewer, but they also add the burden to the local host to carry the system

on the head in addition to the maintenance task. For an efficient video transmission and

processing, head-mounted camera systems are typically connected to the workstations via

cables, which further limits the freedom of movement. Many works use AR cues for pointing at

different objects, but they do not build a long-term information base that can be used in further

telemaintenance sessions.

Our proposed system addresses all of the problems mentioned above. Our actuated camera

system has a steady basis, eliminating the need for carrying the setup. The fisheye-based delay

compensation is deployed to avoid motion sickness. We do not transmit the entire FoV per eye,

but only the 180° FoV around the desired viewport, leading to less bandwidth usage. Finally,

our AR backend brings a lot of flexibility for short term and also long term development of a

remote AR system. This approach has been first described in (Kaynar et al., 2022). In this paper

we add more technical information, experiments with glass-to-glass delay and data rate

measurements, and a detailed outlook that includes possible improvements, extensions and

industrial use cases.

3. 360° TELEPRESENCE SYSTEM WITH AR BACKEND

In this section, we introduce the 360° telepresence system interacting with an AR backend.

Figure 2 summarizes the architecture of the proposed framework.

Figure 2. Overview of the proposed stereoscopic 360° AR/VR system

The server side includes an actuated camera unit, video streaming server, and modules for

sending and receiving orientation data. To create a modular and scalable system, we designed

each module on the server side as a separate ROS node. The client side uses Unity for the

interaction with the HMD and rendering of the remote scene. The Unity system includes a video

streaming client, an AR module communicating with the AR backend, as well as orientation

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

103

sender and receiver modules. The user observes the remote scene enriched with holograms

intuitively through VR glasses.

In the following sections, we discuss the individual modules of the proposed framework in

detail.

3.1 Telepresence Server

The telepresence server provides the functionality of acquiring and streaming the desired

viewport of the remote environment. We use a stereo fisheye camera system with network delay

compensation, to avoid visual discomfort and motion sickness. We introduce each module in

detail in the following sections.

3.1.1 Actuated Vision System

Acquiring live omnistereoscopic views of the environment is challenging. Many vision systems

with multiple cameras and mirrors suffer from stitching errors, being not real-time capable,

having a limited stereoscopic budget, and constrained depth perception (Aykut et al., 2019). To

overcome these challenges, we use an actuated stereo vision system that allows the remote

operator to control the stereo camera system with their head movement. Using an actuated

system inevitably introduces a network delay. Since humans are very sensitive to delays in

visual response of the system, we deploy a state-of-the-art network delay compensation method

using fisheye lenses (Aykut et al., 2019).

For the hardware system, we deploy three fast servo motors for pan-tilt-roll rotation of the

camera system. The resulting pan-tilt-roll unit (PTRU) is depicted in Fig. 1 and Fig. 2 on the

left. The servo motors communicate with the server workstation via a serializer, which allows

communication over USB. The motors follow the target pan-tilt-roll angles as received from the

head-motion data of the user. Further, the motors provide their current orientation as sensed by

their encoders to be used by the client for rendering the FoV of the fisheye view. The

stereoscopic camera publishes the stereo images as a single frame that is obtained through a

USB interface. Since we use USB communication for both the servo motors and cameras, the

system is plug and play.

The fisheye lens-based network delay compensation has been shown to be effective in the

literature (Aykut et al., 2019). Our stereoscopic camera has fisheye lenses to acquire a 180° FoV

of the remote environment for each eye. We do not acquire and transmit the entire 360° FoV for

each eye, but only a 180° FoV around the desired viewport for each eye. This yields a

sufficiently larger image than the viewport rendered for the user wearing HMD. We leverage

the extra image region around the user's viewport in each eye for network delay compensation.

This image buffer region allows for providing an immediate rendering of the environment when

the user rotates the head before the PTRU moves to the new orientation and the new image is

captured and transmitted back to the viewer. For usual head rotation speeds, this scheme can

compensate network delays up to few seconds. This delay compensation mitigates the visual

discomfort due to rendering delays during remote collaboration or maintenance tasks.

IADIS International Journal on WWW/Internet

104

3.1.2 Video Streaming

The video stream captured by the cameras are encoded by the x264 software video encoder

(VideoLAN) and transmitted to the client using the Real Time Streaming Protocol (RTSP). The

stereo camera outputs a single frame with the two frames coming from the two cameras

combined. We configure the encoder for ultrafast and low-delay encoding. As an alternative

streaming server, we integrated the video streaming system of TELECARLA (Hofbauer et al.,

2020) to enable a dynamic video stream adaptation based on the available network transmission

rate. The TELECARLA streaming system together with a multi-dimensional adaptation scheme

such as deployed in the work of Hofbauer et al. (2022) enables an optimized spatio-temporal

video stream adaptation.

3.1.3 Orientation Communication

For orientation data transmission, we use the ROS# package of Bischoff (2019), providing a

WebSocket communication between ROS and Unity implemented in C#. The server subscribes

to the ROS topics showing the HMD orientation published by the client. The PTRU follows the

target angles to mimic the HMD motion. We use the HMD's motion tracking system and do not

require any additional hardware.

We also transmit the current PTRU orientation back to the client side via ROS#. This

information is used to place the remote scene in the correct 3D orientation for rendering in the

HMD.

3.2. Telepresence Client with AR

The telepresence client consists of the client workstation and the HMD worn by the user
inspecting the remote environment. We do not use any additional hardware other than the
HMD's own trackers to capture the orientation. No training for the user is necessary, because of
the intuitive usage of HMD. We use Unity as our main rendering framework, due to its
compatibility with a wide range of devices. The modules of the proposed client system are
explained in the following.

3.2.1 Scene Rendering

In this section, we detail how we created our rendering pipeline for a smooth and efficient
visualization. Our aim is to visualize the remote scene in an immersive way and overlaying the
holograms, which were created in world coordinates, at the correct image locations.

By designing our pipeline, we must consider the following points: The stereo camera outputs
two images with fisheye projection. The viewport of the camera and the user can be at different
orientations at a given time. The obtained scene must be placed to the exact orientation of the
PTRU to depict the correct part of the remote environment. The hologram poses are saved in
cartesian space and they must be transformed properly to the fisheye projected scene.

We start our pipeline with the video acquisition. The client application connects to the RTSP
server on the server side, and starts to receive the video stream using UDP. The video stream is
then decoded and rendered into the Unity scene. Since the camera system provides a single
image that contains both camera views, we cannot directly render the image to each eye of the
user. We first render the decoded stereo frame on a Quad object in Unity, as shown in Figure 3
on the left. To render the remote scene correctly, we must project the spherical images properly,
and place them at the correct 3D orientation. In addition, we want to benefit from the image
buffer-based delay compensation with the fisheye cameras.

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

105

Figure 3. Projection from the stereo frame to hemispheres. Our custom render texture defines the

mapping. The render texture is assigned to the Unity material used for rendering the hemispheres

The stereo images contain the fisheye projected view of the remote environment, each eye

covering a horizontal FoV of 180°. We project each fisheye image onto a hemispherical shape,

covering the half of the entire FoV. Hence, the stereo frame yields two hemispheres with the

scene content after the mapping step as shown in Figure 3 in the right.

Figure 4. The hemisphere model for a single eye created in the software Blender (on the left). UV

mapping from the stereo frame (on the right)

For this mapping, we create 3D hemisphere models with a custom UV mapping from the

stereo frame, assuming an equidistant fisheye projection, by which the radial distance from the

center on the image plane is proportional to the angle of incidence (Hughes et al., 2010). Figure

4 shows the hemispherical model designed in Blender for a single eye, on the left. The

IADIS International Journal on WWW/Internet

106

hemisphere model is cut from top and bottom since those parts are not covered by the camera

sensor.

The custom UV mapping projects each pixel on the stereo frame onto a point on the

hemisphere. We define the UV mapping on the stereo frame differently for the left and right

hemispheres, as shown in Fig. 4 on the right, such that each hemisphere receives pixel values

from the respective part of the frame. This brings the advantage of being able to decode the

frame only once (on a single Quad object), but render it twice on two hemispheres. This

decreases the computational load, which is of importance for having a smoothly running Unity

application on a computer with decent graphical computation resources.

The hemisphere orientations in the scene must be the same as the fisheye lenses’ orientation

on the PTRU to show the correct portion of the remote environment. The two hemispheres are

placed in the scene to have the same distance between each other as the physical cameras have.

Note that we show the hemispheres distinctly in Fig. 3 (on the right) for better visibility.

Each hemisphere is observed by a Unity camera at its center that renders to the left or right

display of the HMD. Thereby, we create a spherical surrounding that the user can freely observe

by rotating the head. We keep the two hemispheres in separate rendering layers, and each Unity

camera observes only one layer. These Unity cameras follow the HMD orientation to let the

user look at any desired orientation, while the hemisphere orientations are following the current

orientation of the PTRU. Since the FoV of each eye is smaller than the available FoV, we can

compensate the delayed response of the PTRU and visual feedback due to network and system

delays. When the user rotates the head, we have an available image region to render, until the

PTRU receives the new head orientation and transmits the new frame at the new orientation.

3.2.2 AR Backend

The holograms show technical information about the scene, and are kept on our AR backend.

The AR backend holds the previously recorded holograms and their 6-DOF poses with respect

to the defined anchor points in the corresponding room. The holograms can be modified at any

time with a mobile device visiting the same place or via a web-based editor. This makes it

possible to communicate between an on-site worker and remote collaborator.

Rendering of holograms. Upon fetching the holograms from the AR backend, they are

loaded into the Unity scene at the locations that correspond to the real world locations in the

room. The holograms live in a separate Unity layer and are rendered on top of the hemisphere

layers. As a result, they are always visible to the Unity cameras rendering the scene on the HMD.

If the holograms are simply rendered on top of the hemispheres as seen by the Unity cameras,

the locations of them will be wrong on the spherical scene. This is because of the remote scene

being acquired through fisheye projection and mapped on a hemisphere. In contrast, the

holograms are just placed in the world coordinates and observed by a perspective camera in

Unity. Fig. 5 demonstrates the result of this coordinate mismatch. While the pan angle of the

HMD changes, the holograms do not stick to the correct locations but they move further away

from their initial locations in the scene. This is especially visible by the hologram in the back,

placed above the monitor on the wall, indicated with a red arrow on the scenes. The hologram

should stick to the monitor where the red arrow originates.

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

107

Figure 5. The Hologram coordinate mismatch shown at different pan angles

We solve this problem by adding a fisheye projection step in Unity. We only warp the

holograms with this fisheye projection, for them to be in accordance with the remote scene

projected on the hemispheres. The fisheye warping of holograms is shown in Fig. 6. We use a

shader performing fisheye projection and add a fisheye camera in Unity that only observes the

hologram layer. Then we render the view on a hemisphere model with transparent texture,

resulting in the warping of holograms as if they were observed by a fisheye camera. We then

place the transparent hemisphere in front of the other hemispheres, with its center at the middle

of two hemispheres. Thereby, we create a spherical view for both the remote scene, and the

holograms. The holograms are static in their positions, but the optical effect of AR-warping

changes when the hemispheres move, because of the fisheye projection.

Figure 6. Fisheye warping of holograms

IADIS International Journal on WWW/Internet

108

The resulting improvement is shown in Figure 7. It is observed that the holograms stick to

their intended locations with a much higher accuracy and do not move away while the HMD

orientation changes.

Figure 7. Corrected Hologram rendering after applying fisheye distortion

PTRU Modeling for Correct Pose of Hemispheres. The PTRU has separate joints for pan,
tilt, and roll. The two cameras are placed at a specific distance to each other. Ideally, the
hemispheres should follow the rotation of the cameras realistically, rather than rotating around
a single point using the pan-tilt-roll angles of the motors. For a realistic geometrical
representation of the PTRU, we measure the distances between the joints and model the physical
PTRU. We create three hinge (revolute) joints in Unity, combine these joints with links of
specific sizes, and center the hemispheres at the positions of the real cameras. This mimics the
real setup by size and motion and ensures that we are moving the hemispheres in the scene in
the same way as the physical cameras move on the PTRU.

Fig. 8 shows an exemplary scene with VR and AR components. The editor scene on the left
shows the AR components placed in the world coordinates and visible behind the hemispheres.
The projections of the AR components are rendered on the hemispheres with AR-warping. Note
that both hemispheres are shown in the scene, however they are hardly distinguished due to the
small distance between them. The viewport shown to the user for this scene is shown in Fig.8
on the right. In this example scene, holograms indicate important technical information on the
respective objects in the environment.

3.2.3 Orientation Communication

ROS# is used for receiving and transmitting the orientation data. We create a custom joint state

publisher in Unity, read the HMD orientation in Unity, and publish it to a ROS topic available

to the server. Secondly, the client subscribes to respective ROS topics showing the current

orientation of the pan-tilt-roll motors. We mimic this current orientation by the joints of the

PTRU model in Unity. These Unity joints move the hemispheres to the same pose as the real

cameras have at the moment.

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

109

Figure 8. A scene with VR and AR components. Editor view on the left, user’s viewport on the right

4. ANALYSIS AND DISCUSSION

In this section, we compare our method to previous works, by contrasting important system

properties. Table 1 shows a comparison of our system against alternative systems.

We tested our system at 2560 x 920 resolution for two eyes up to 60 Hz frame rate and

observed a smooth video transmission with a hardly noticeable motion-to-photon latency. As

opposed to many other remote collaboration works, our camera setup is independent of a person

on-site. This brings several advantages. Firstly, the remote user can observe the environment in

a completely free way, rather than having to be dependent on another person's viewport on-site.

Secondly, the person on-site does not have to carry a sensor setup which can be bulky and

limiting the motions, hence the work efficiency is increased.

Furthermore, we do not need to use image stabilization techniques to create an independent

view for the remote observer, and thereby decrease the computational complexity and avoid

possible visual defects.

As opposed to methods using multi-camera stitching approaches, we use an actuated stereo

camera with the vision-on-demand approach and thereby we eliminate the issues of stitching

and visual defects that can be uncomfortable or misleading for the remote collaborator.

We know where the camera setup is placed in the room and do not require any 3D

reconstruction or digital twin of the remote environment. Since our AR system is based on the

AR backend, the holograms can be created, modified and saved at any time from any client

device. This brings a lot of flexibility for remote collaboration with non-verbal cues. In addition,

holograms which stay in a given position and show important information can improve the

remote maintenance not only for the moment, but also in the long term.

The holograms are transmitted from the backend to the client, and the transmission is

unaffected by the network quality between the server and the client. Even though the quality of

the video content is decreased, the holograms can still be viewed in high quality by the client.

IADIS International Journal on WWW/Internet

110

Table 1. Comparison of 360° remote collaboration systems

Method
AR in VR

(Ours)

Pretlove,

1998

Wang

et al,

2018

Speicher et

al, 2018

Lee et al,

2018

Teo et al,

2019

Kasahara

et al,

2016

Camera type
Stereo

fisheye
Stereo Stereo 360° mono 360° mono 360° mono

6

cameras

Depth

perception ✔ ✔ ✔ ✘ ✘
(✔)

partial
✘

No need for

stitching ✔ ✔ ✔
(✔)

(stitching

in camera)

(✔)
(stitching

in camera)

(✔)
(stitching

in camera)
✘

Network delay

compensation ✔ ✘ ✘ ✘ ✘ ✘ ✘

No need to

transmit entire

FoV
✔ ✔ ✔ ✘ ✘ ✘ ✘

Types of AR

Cues

6 DOF

static &

modifiable

Static Static
Pointing

cues

Pointing

cues

Pointing

cues

Pointing

cues

No need for 3D

reconstruction ✔ ✔ ✔ ✔ ✔ ✘ ✔

Camera

independent

from on-site

person

✔ ✔ ✔ ✔ ✘ ✘ ✘

No need for

image

stabilization
✔ ✔ ✔ ✔ ✘ ✔ ✘

3 DOF

orientation

capability
✔ ✔ ✘ ✔ ✔ ✔ ✔

5. EXPERIMENTAL MEASAUREMENTS

In this section, we provide the results of the measurement experiments addressing the

glass-to-glass delay and the transmitted data rates.

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

111

5.1 Measurement of Glass-to-Glass Delay

The glass-to-glass delay describes the time that passes from when the photons of an event pass

through the lens of the camera, until they are displayed on the screen of the viewer (Bachhuber

and Steinbach, 2016). It is an important measure to evaluate the overall time required for video

acquisition, encoding, transmission, decoding, and rendering. Hence, the glass-to-glass delay

tells us how quickly a change on-site (e.g. a machine part moving, or an on-site collaborator

moving) gets propagated to the VR user. A value near 100 ms is fine for many applications.

There are different methods to measure the glass-to-glass delay. We follow a similar

approach as Bachhuber and Steinbach proposed (Bachhuber and Steinbach, 2016) and measure

the glass-to-glass delay with a light source visible to the camera. In this approach, the

glass-to-glass delay is computed via a light source visible to the camera, and a light sink

(phototransistor) that detects the time the light change is displayed in the target display. The

time difference between the light turning on and getting displayed after video acquisition,

encoding, transmission, decoding and rendering gives the glass-to-glass delay estimation.

Differently from the stated approach, we use a high-speed camera that views both the light

source at the server side and the target displays at the client side in the same frame. As a light

source at the server side, we use a monitor that turns black and white repeatedly, effectively

serving as a blinking light source. This is shown in the Fig.9 on the left, while the light source

monitor is displaying white. We choose this approach to cover the most of the FoV of the fisheye

cameras with the light source, because this makes it easier to determine the light change

happening on the client displays, especially at the HMD’s viewport. An example frame captured

by our high-speed camera that views the light source at the server side, the HMD lenses and the

Unity editor screen at the client side is given in Fig. 9 on the right.

Figure 9. Glass-to-glass delay measurement setup. The light source monitor is placed in front of the

PTRU (on the left). The measurement camera’s image (on the right) frames the light source monitor, the

HMD lenses and the Unity editor screen to detect the time difference between the changes at each

display

We determine the frames that show light changes, which happen at different times for the light

source monitor, the HMD display and the Unity editor display. The time difference between

these frames is used to estimate the glass-to-glass delay. The glass-to-glass delay is closely

related to the refresh rates of the HMD display (90 Hz) and the display of the Unity editor

(60 Hz). An example glass-to-glass delay observation is shown in Figure 10.

IADIS International Journal on WWW/Internet

112

 1. Light source displays a black screen. 2. Light source starts turning white.

 (t = 27.289 s)

3. HMD display starts turning white. 4. Unity editor screen starts turning white.

 (t = 27.394 s) (t=27.427 s)

Figure 10. An example glass-to-glass delay measurement

Challenges: The measurement accuracy is limited by the frame-rate of the high-speed

camera. We observe that the high-speed camera has non-regular intervals, with a time difference

of 4 ms or 12 ms between the frames, leading to varying accuracy for different measurements.

Another challenge is detecting a single time instance for the light changes, since the displays

are updated line by line and the light change is mostly shared among multiple frames.

Results: We do 43 readings and calculate the mean value. We determine the mean

glass-to-glass delay from the server camera to the HMD display as 106.326 ms, with a standard

deviation of 11.730 ms. The mean glass-to-glass delay from the server camera to the Unity

editor screen of the client PC is found as 132.233 ms, with a standard deviation of 9.616 ms.

Note that in an immersive telepresence scenario, the HMD is the display device, hence its

glass-to-glass delay should be considered primarily. The difference in the delays observed at the

screen and the HMD is expected, since the HMD has a higher refresh rate, and will display the

changes earlier on average. The glass-to-glass delay values indicate the overall temporal delay

including the time required for video acquisition, encoding, decoding, projection onto the

hemispherical surfaces, rendering to the display, and the acquisition of the rendered pixels by

the measurement camera. The video transmission delay can be neglected in the given results,

since the server and client of our setup communicate in the same local network and the packet

transmission latency is under 1 ms.

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

113

Another relevant measure of delay is the motion-to-photon delay. This is the delay between

the time the VR user rotate their head, and the time the HMD displays a frame with the correctly

updated perspective. A value above 20 ms will often lead to VR motion sickness. We have not

yet experimentally measured the motion-to-photon delay in our system, but first explorative

tests by VR-experienced users indicate that it is within an acceptable range. In our system, the

motion-to-photon delay is independent of the glass-to-glass delay by design, as long as the user’s

head rotations are below a certain speed. Therefore, the measured glass-to-glass delay near 106

ms does not induce VR motion sickness.

5.2 Measurement of the Transmitted Data

We measure the transmitted data for the video and orientation communication for an example

telepresence case. The incoming data rate to the client is fluctuating between 10Mbps for a

steady camera and 15 Mbps at the moment of orientation change. This data includes both the

video stream and the orientation data of the camera at the server side. The data volume increases

during orientation changes, which is expected due to the differential information coding by the

video encoder.

In order to discriminate the data required for the video and orientation data, we deactivate

the camera and measure the incoming and outgoing data rate at the client. We observe

approximately 2.2 Mbps incoming data rate from the server to the client and 320 kbps outgoing

data rate from the client to the server, which are mostly constant during the telepresence session.

The difference between the incoming and outgoing orientation data volumes is expected, due to

the differences in the sampling rates of the orientation readings. The HMD orientation is

refreshed at a rate of 50 Hz, while the actuator orientations are read at a much higher rate, around

600 Hz. Note that the sampling rate of the actuator readings can be decreased further to save

bandwidth.

Computing the difference, the data rate for the video stream is found as 7.8-12.8 Mbps, for

the resolution of 2560 x 920 and 60 Hz refresh rate. Note that the RTSP server is configurable

for a desired target bitrate and video quality, hence the data volume for the video is highly

adjustable.

6. FUTURE WORK AND INDUSTRIAL USE CASES

6.1 System Improvements

Improvement of glass-to-glass delay. In our experiments the average glass-to-glass delay is

found as approximately 106 ms, which can be improved further by optimizing individual parts

of the system. The stereoscopic camera currently used has a frame rate of 60 fps. The refresh

rate of the HMD is at 90 Hz. Using a camera and a display with higher frame rates would

improve the glass-to-glass delay of the system. We are using a software video encoder for video

streaming. Using a hardware encoder would also decrease the respective delay. The rendering

pipeline in Unity can also be optimized further with a specific focus on the rendering delay.

Video and orientation data synchronization. In the current design, the video stream and the

orientation data are transmitted separately from each other. The client renders the video frame

on the hemispherical objects once the video data is received and decoded. The hemispheres are

IADIS International Journal on WWW/Internet

114

oriented based on the orientation data of the PTRU, once this data is received at the client. Under

stable network conditions, the both data arrive almost at the same time and the system runs

smoothly. To increase the robustness of the system against network fluctuations, the video frame

data and the PTRU orientation data can be multiplexed accordingly.

Motion-to-photon delay synchronization of VR and AR-in-VR content. We see a potential for

the improvement of the stability of the AR-in-VR holograms with relation to the stereoscopic

video while the user is moving their head. Explorative tests have shown that there is a small, but

noticeable “swimming” effect of the holograms upon head motion. This indicates that there are

two different motion-to-photon delays in our system: one for the VR content (the 360° video)

and one for the AR-in-VR content (the holograms). We believe that this is due to different delays

introduced in the rendering pipeline (e.g. the VR and AR contents are rendered separately, the

fisheye shader for AR warping introduces additional delay), and to lacking synchronization of

the video and motion data over the network. Hence, one additional area of future work is to

measure these two different motion-to-photon delays in our system and then optimize both of

them, assuming that they are both basically limited only by current VR system constraints. We

can also optimize the difference between the two motion-to-photon delays, which should be

zero in order to avoid an AR-in-VR “swimming” effect.

6.2 Possible Extensions

In the current design, we provide 360° view on a static location where the PTRU is placed

manually which provides the omnidirectional view on the given location. Extending the system

with translation capabilities in addition to orientation can be an interesting future work direction.

One straightforward way for this extension is adding more actuation units for translating the

camera system or placing the system on a mobile platform. Another interesting direction is

combining the system with virtual rendering techniques to generate new viewpoints in the

vicinity of the initial location where the first viewpoint is obtained. Alternatively, a 3D

reconstruction of the environment can be generated from the stereo vision, and can be combined

with VR rendering solutions.

6.3 Subjective Analysis

Running user studies with subjective evaluations is important while developing systems for the

human usage. For this, the future work should cover user experiments to test the visual comfort

and the benefits brought by our system. Some aspects to test could be the effects of stereo vision,

network delay compensation, and holograms for a given industrial teleassistance task.

6.4 Industrial Use Cases

We can see industrial use cases for our proposed system in two main areas.

Firstly, situations where there is a live collaboration between an on-site user (with AR) and

an off-site user (with VR). These include remote factory acceptance tests, remotely assisted

commissioning of equipment, and MRO (maintenance-repair-overhaul) tasks. Here, both users

are interested in seeing the real equipment from various angles, and creating and exchanging

annotations in AR. This becomes particularly interesting when some of the AR annotations

AR IN VR: OMNISTEREOSCOPIC TELEPRESENCE WITH HOLOGRAMS FOR REMOTE

MAINTENANCE AND COLLABORATION

115

come from live connections to IoT systems, e.g. to show current measurement states in a process

plant.

Secondly, situations where there is asynchronous collaboration between on-site users (with

AR) and off-site users (with VR). One example of this is regular inspection rounds at an

industrial site. For this, we assume the site is equipped with a fixed installation of

omnidirectional robot camera setups, as we describe in this paper, in different parts of the site.

Then, in a regular inspection round, an on-site quality inspector uses an AR device to note

potential quality issues, storing photos, sounds, and personal impressions with the appropriate

3D coordinates. Later, a remote quality inspector, using VR, can review these, together with

live video from the site, in order to rate the severity of the problem. Of course, the order of

collaboration can be reversed: A remote quality inspector performs a virtual inspection round in

VR, highlighting potential problems, and determines which issues warrant sending an on-site

quality inspection to find out more details using AR.

We are exploring the use of both AR and telepresence in such industrial scenarios (e.g. see

Labisch, 2021) and see a great potential in combining the two.

7. CONCLUSION

In this paper, we presented a system realizing "AR in VR" in real time. The proposed system

can be used for remote collaboration and maintenance tasks. An actuated stereoscopic camera

unit following the head-motion of the viewer captures the remote view. We use fisheye lenses

for network delay compensation. Additionally, we present a novel scene rendering with UV

mapping from a stereo frame for efficient video rendering. Holograms are fetched from a

backend and warped with fisheye projection to be placed at the correct positions in the frame.

Experimental evaluation showed that the resulting system has a mean glass-to-glass delay

of roughly 106 ms. The motion-to-photon delay is independent of the glass-to-glass delay by

design. Explorative tests with VR-experienced users showed that the glass-to-glass and

motion-to-photon delays are in acceptable ranges.

Our camera captures images with a resolution of 2560 x 920 at 60 frames per second. The

low computational complexity of the system allows such high resolution and high frame rates.

The data rate from the server to the client fluctuates between 10 Mbps and 15 Mbps, while the

data rate from the client to the server mostly stays around 320 kbps.

Our system does not face any stitching problems as some similar methods suffer from. The

depth perception quality is unaffected by the viewing orientation, since the stereo acquisition is

the same in all directions.

The proposed system can be used in many remote collaboration scenarios. Both the on-site

person and the remote collaborator can add or modify the holograms, sharing and saving

important technical information. The remote person can discover the scene independently of an

on-site person and collaborate with the on-site person efficiently.

Future work can focus on improving and extending the system for better synchronization

and less noticeable visual delays. Subjective evaluation is also an important future work for the

deployment of the system in real life applications.

IADIS International Journal on WWW/Internet

116

REFERENCES

Aykut, T. et al., 2019, Realtime 3D 360-degree telepresence with deep-learning-based head-motion

prediction. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1), pp. 231-244.

Bachhuber, C. and Steinbach, E., 2016, A system for high precision glass-to-glass delay measurements in

video communication. 2016 IEEE International Conference on Image Processing (ICIP),

pp. 2132-2136.

Bischoff, M., 2019, Ros#.

Druta, R. et al., 2021, A Review on Methods and Systems for Remote Collaboration. Applied Sciences:

10035.

Hofbauer, M. et al., 2022, Traffic-Aware Multi-View Video Stream Adaptation for Teleoperated Driving.

2022 IEEE 95th Vehicular Technology Conference: VTC2022-Spring.

Hofbauer, M. et al., 2020, Telecarla: An open-source extension of the carla simulator for teleoperated

driving research using off-the-shelf components. In 2020 IEEE Intelligent Vehicles Symposium (IV),

pp. 335-340.

Hughes, C. et al., 2010, Accuracy of fish-eye lens models. Applied optics, 49(17), pp. 3338-3347.

Kasahara, S. et al., 2016, Jackin head: Immersive visual telepresence system with omnidirectional

wearable camera. IEEE transactions on visualization and computer graphics, 23(3), pp. 1222-1234.

Kaynar, F., et al., 2022, "AR in VR: Augmented Reality Cues in 360-Degree Stereoscopic Telepresence

for Remote Collaboration and Maintenance." 16th International Conference on Computer Graphics,

Visualization, Computer Vision and Image Processing 2022 (CGVCVIP 2022).

Labisch D.: Augmented Reality in Process Plants. Presentation at Achema Pulse, 2021.

Lee, G. A. et al., 2018, A user study on mr remote collaboration using live 360 video. In 2018 IEEE

International Symposium on Mixed and Augmented Reality (ISMAR), pp. 153-164.

Lehrbaum V., MacWilliams A., Newman J., Sudharsan N., Bien S., Karas K., Eghtebas C., Weber S.,

Klinker G., 2022, Enabling Customizable Workflows for Industrial AR Applications. To appear in

2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), October 2022,

Singapore.

Pretlove, J., 1998, Augmenting reality for telerobotics: unifying real and virtual worlds. Industrial Robot:

An International Journal.

Speicher, M. et al., 2018, 360anywhere: Mobile ad-hoc collaboration in any environment using 360 video

and augmented reality. Proceedings of the ACM on Human-Computer Interaction, 2(EICS), pp. 1-20.

Teo, T. et al., 2019, Mixed reality remote collaboration combining 360 video and 3d reconstruction.

In Proceedings of the 2019 CHI conference on human factors in computing systems, pp. 1-14.

Wang, Y. et al., 2012, Tele-ar system based on real-time camera tracking. In 2012 International

Conference on Virtual Reality and Visualization, pp. 19-26.

