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ABSTRACT 

With the development of mixed reality technologies, remote maintenance and collaboration applications 

receive increasing interest in the industry. The combination of 360-degree telepresence and augmented 

reality (AR) cues have been shown to be an effective way of remote collaboration. However, most existing 

methods do not provide depth perception, which can improve the remote inspection. Also, many methods 

that use holograms for live collaboration are limited with only pointing functionality. In this paper, we 

present a 360-degree telepresence system interacting with an AR backend to create an immersive mixed 

reality interface for remote collaboration. The proposed camera system does not need to be carried by any 

on-site person, but can be controlled by the remote operator intuitively. We deploy network delay 

compensation methods and propose novel projection strategies for a correct and efficient rendering.  

A comparative analysis shows advantages of the proposed system over previous work, and that it is a 

promising approach for improving remote collaboration and maintenance. Our experiments indicate that 

our system has a glass-to-glass delay of roughly 106 ms, and a data rate to the client varying between  

10-15 Mbps, which can be further optimized for specific applications. Exploratory tests with  

VR-experienced users showed that the motion-to-photon latency of the system is in acceptable ranges. The 

system can be deployed in various industrial applications for a live or asynchronous collaboration between 

an on-site user (with AR) and an off-site user (with AR in VR). 
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Figure 1. Overview of the proposed telepresence system with Augmented Reality (AR) cues. The camera 

unit on the left mimics the head motion of the user. The user is provided with stereo views in all 

directions (360°) augmented with the AR cues (on the right). Some of the holograms are highlighted with 

orange circles for better visibility 

1. INTRODUCTION 

With the increasing availability of Augmented Reality (AR) and Virtual Reality (VR) systems, 

different remote inspection and collaboration systems have been developed based on AR and 

telepresence (Lee et al., 2018; Speicher et al., 2018). 

The design of the telepresence system defines the capabilities and limitations of the remote 

session and hence determines what the operator perceives. Among different systems, 360° 

stereoscopic vision systems provide a remote presence experience with a high level of 

immersion and 3D perception, which improves the task performance for indoor applications 

(Aykut et al., 2019). On the other hand, capturing a live stereoscopic 360° view of the 

environment is challenging due to problems like computational complexity, limited stereoscopic 

budget (the level of flexibility of changing the inter-pupillary distance), and constrained 3D 

impression due to unequal depth perception in different orientations (Aykut et al., 2019). 

AR can be used for augmenting the scene with important technical details or auxiliary 

information, increasing the effectiveness of a remote inspection or collaboration session. The 

vast majority of the AR-based live collaboration systems either use a 2D view or a monoscopic 

panorama of the remote environment. A 2D view often leads to a limited field-of-view (FoV) 

and situational awareness, while a monoscopic panorama lacks the depth information. 

In this paper, we present a remote AR system combined with a 360° stereoscopic 

telepresence system to improve real-time remote inspection and collaboration applications. The 

operator can freely observe the remote environment without depending on any other person, and 

with depth perception, due to omnistereoscopic vision. In addition, we deploy a state-of-the-art 

network delay compensation method (Aykut et al., 2019), to allow a natural and smooth Mixed 

Reality (MR) experience. 

The proposed system uses an AR backend that provides hologram poses with respect to the 

anchor points initially defined for indoor localization (Lehrbaum et al., 2022). Any client device 

can add or modify the AR components, consisting of images, text information, web-content, or 

the live sensory data of an industrial environment. The holograms reappear at the saved 6-DOF 

poses once a client device revisits the same environment. This allows for an effective live 

collaboration as well as the generation of an information database improving the remote 
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inspection in the long-term. We propose a novel system to efficiently map the hologram imagery 

onto the spherical VR scene created with fisheye lenses. 

The rest of the paper is structured as follows. In Section 2, we summarize the related work 

in the field of mixed-reality telepresence systems. In Section 3, we introduce the architecture of 

the proposed 360° telepresence system interacting with an AR backend. We present a 

comparative analysis against similar systems in Section 4. In Section 5, we provide an 

experimental evaluation with measurements. Section 6 gives an outlook on future work and 

possible industrial applications. Section 7 concludes the paper. 

2. RELATED WORK 

In this section, we summarize existing systems proposed for 360° telepresence with AR 

overlays. Druta et al. (2021) provide a general overview on remote collaboration. Pretlove 

(1998) presented a mobile robotic platform equipped with an actuated stereo system 

synchronized with the operator's head-mounted display (HMD). The scene is overlayed with 

computer graphics to help the operator while navigating the remote robot in low visibility cases. 

While this system only focuses on navigation by teleoperation, it does not allow live 

manipulation of holograms for collaboration. 

Wang et al. (2012) proposed a pan-tilt stereo camera unit and AR overlays of objects. They 

estimate the user's head orientation from the camera view attached to the head using visual 

processing. To avoid the slow response of the actuated system, the authors warp the video shown 

to the user to mitigate the inconsistency between the user's and the remote camera's orientations. 

However, this can lead to incomplete visualization of the remote environment and visual 

discomfort. 

Speicher et al. (2018) proposed a system with a static 360° monoscopic camera and a 

projector for creating AR cues in a room for remote collaboration. The application scenarios are 

limited to putting markers on a straight wall and visualizing them with a projector. 

Lee et al. (2018) proposed a live panorama system where the remote user views the 

panoramic video stream captured by the head-mounted 360° monoscopic camera carried by the 

local host. AR cues and hand gestures are used for non-verbal collaboration. The users reported 

motion sickness triggered in the dependent mode where they observe the viewport of the local 

host. Furthermore, the users reported arising discomfort due to the jittery motion introduced by 

the head-mounted device during the independent mode. Since this system only provides a 

monoscopic view, no 3D perception of the remote environment is available. 

Teo et al. (2019) proposed a system with two modes. The first mode is 360° monoscopic 

view obtained by a head-mounted camera carried by the local host. The second mode provides 

a 3D model of the room for an independent viewing experience. While the second method 

addresses the problem of dependency to the host, it requires a 3D reconstruction of the room in 

advance. 

Kasahara et al. (2016) proposed a head-mounted multi-camera arrangement that creates the 

360° view of the environment and stabilizes the view to allow independent remote inspection 

by the second user. This system does not only bring high computational cost for combining 

multi-camera frames, but also results in severe stitching errors as viewed in the demonstration 

videos. 
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Most of the methods discussed in this section create and transmit a full 360° monoscopic 

video, which typically requires a high bandwidth. This is problematic for cases where the 

network throughput is limited or time-varying. The bandwidth limitations are an even more 

severe problem for transmitting a 360° stereoscopic video.  

The head-mounted perception systems do not only cause viewing discomfort and motion 

sickness by the remote viewer, but they also add the burden to the local host to carry the system 

on the head in addition to the maintenance task. For an efficient video transmission and 

processing, head-mounted camera systems are typically connected to the workstations via 

cables, which further limits the freedom of movement. Many works use AR cues for pointing at 

different objects, but they do not build a long-term information base that can be used in further 

telemaintenance sessions. 

Our proposed system addresses all of the problems mentioned above. Our actuated camera 

system has a steady basis, eliminating the need for carrying the setup. The fisheye-based delay 

compensation is deployed to avoid motion sickness. We do not transmit the entire FoV per eye, 

but only the 180° FoV around the desired viewport, leading to less bandwidth usage. Finally, 

our AR backend brings a lot of flexibility for short term and also long term development of a 

remote AR system. This approach has been first described in (Kaynar et al., 2022). In this paper 

we add more technical information, experiments with glass-to-glass delay and data rate 

measurements, and a detailed outlook that includes possible improvements, extensions and 

industrial use cases. 

3. 360° TELEPRESENCE SYSTEM WITH AR BACKEND 

In this section, we introduce the 360° telepresence system interacting with an AR backend.  

Figure 2 summarizes the architecture of the proposed framework. 

 

 

Figure 2. Overview of the proposed stereoscopic 360° AR/VR system 

The server side includes an actuated camera unit, video streaming server, and modules for 

sending and receiving orientation data. To create a modular and scalable system, we designed 

each module on the server side as a separate ROS node. The client side uses Unity for the 

interaction with the HMD and rendering of the remote scene. The Unity system includes a video 

streaming client, an AR module communicating with the AR backend, as well as orientation 
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sender and receiver modules. The user observes the remote scene enriched with holograms 

intuitively through VR glasses.  

In the following sections, we discuss the individual modules of the proposed framework in 

detail. 

3.1 Telepresence Server 

The telepresence server provides the functionality of acquiring and streaming the desired 

viewport of the remote environment. We use a stereo fisheye camera system with network delay 

compensation, to avoid visual discomfort and motion sickness. We introduce each module in 

detail in the following sections. 

3.1.1 Actuated Vision System 

Acquiring live omnistereoscopic views of the environment is challenging. Many vision systems 

with multiple cameras and mirrors suffer from stitching errors, being not real-time capable, 

having a limited stereoscopic budget, and constrained depth perception (Aykut et al., 2019). To 

overcome these challenges, we use an actuated stereo vision system that allows the remote 

operator to control the stereo camera system with their head movement. Using an actuated 

system inevitably introduces a network delay. Since humans are very sensitive to delays in 

visual response of the system, we deploy a state-of-the-art network delay compensation method 

using fisheye lenses (Aykut et al., 2019). 

For the hardware system, we deploy three fast servo motors for pan-tilt-roll rotation of the 

camera system. The resulting pan-tilt-roll unit (PTRU) is depicted in Fig. 1 and Fig. 2 on the 

left. The servo motors communicate with the server workstation via a serializer, which allows 

communication over USB. The motors follow the target pan-tilt-roll angles as received from the 

head-motion data of the user. Further, the motors provide their current orientation as sensed by 

their encoders to be used by the client for rendering the FoV of the fisheye view. The 

stereoscopic camera publishes the stereo images as a single frame that is obtained through a 

USB interface. Since we use USB communication for both the servo motors and cameras, the 

system is plug and play. 

The fisheye lens-based network delay compensation has been shown to be effective in the 

literature (Aykut et al., 2019). Our stereoscopic camera has fisheye lenses to acquire a 180° FoV 

of the remote environment for each eye. We do not acquire and transmit the entire 360° FoV for 

each eye, but only a 180° FoV around the desired viewport for each eye. This yields a 

sufficiently larger image than the viewport rendered for the user wearing HMD. We leverage 

the extra image region around the user's viewport in each eye for network delay compensation. 

This image buffer region allows for providing an immediate rendering of the environment when 

the user rotates the head before the PTRU moves to the new orientation and the new image is 

captured and transmitted back to the viewer. For usual head rotation speeds, this scheme can 

compensate network delays up to few seconds. This delay compensation mitigates the visual 

discomfort due to rendering delays during remote collaboration or maintenance tasks. 
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3.1.2 Video Streaming 

The video stream captured by the cameras are encoded by the x264 software video encoder 

(VideoLAN) and transmitted to the client using the Real Time Streaming Protocol (RTSP). The 

stereo camera outputs a single frame with the two frames coming from the two cameras 

combined. We configure the encoder for ultrafast and low-delay encoding. As an alternative 

streaming server, we integrated the video streaming system of TELECARLA (Hofbauer et al., 

2020) to enable a dynamic video stream adaptation based on the available network transmission 

rate. The TELECARLA streaming system together with a multi-dimensional adaptation scheme 

such as deployed in the work of Hofbauer et al. (2022) enables an optimized spatio-temporal 

video stream adaptation. 

3.1.3 Orientation Communication 

For orientation data transmission, we use the ROS# package of Bischoff (2019), providing a 

WebSocket communication between ROS and Unity implemented in C#. The server subscribes 

to the ROS topics showing the HMD orientation published by the client. The PTRU follows the 

target angles to mimic the HMD motion. We use the HMD's motion tracking system and do not 

require any additional hardware. 

We also transmit the current PTRU orientation back to the client side via ROS#. This 

information is used to place the remote scene in the correct 3D orientation for rendering in the 

HMD. 

3.2. Telepresence Client with AR 

The telepresence client consists of the client workstation and the HMD worn by the user 
inspecting the remote environment. We do not use any additional hardware other than the 
HMD's own trackers to capture the orientation. No training for the user is necessary, because of 
the intuitive usage of HMD. We use Unity as our main rendering framework, due to its 
compatibility with a wide range of devices. The modules of the proposed client system are 
explained in the following. 

3.2.1 Scene Rendering 

In this section, we detail how we created our rendering pipeline for a smooth and efficient 
visualization. Our aim is to visualize the remote scene in an immersive way and overlaying the 
holograms, which were created in world coordinates, at the correct image locations.  

By designing our pipeline, we must consider the following points: The stereo camera outputs 
two images with fisheye projection. The viewport of the camera and the user can be at different 
orientations at a given time. The obtained scene must be placed to the exact orientation of the 
PTRU to depict the correct part of the remote environment. The hologram poses are saved in 
cartesian space and they must be transformed properly to the fisheye projected scene. 

We start our pipeline with the video acquisition. The client application connects to the RTSP 
server on the server side, and starts to receive the video stream using UDP. The video stream is 
then decoded and rendered into the Unity scene. Since the camera system provides a single 
image that contains both camera views, we cannot directly render the image to each eye of the 
user. We first render the decoded stereo frame on a Quad object in Unity, as shown in Figure 3 
on the left. To render the remote scene correctly, we must project the spherical images properly, 
and place them at the correct 3D orientation. In addition, we want to benefit from the image 
buffer-based delay compensation with the fisheye cameras. 
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Figure 3. Projection from the stereo frame to hemispheres. Our custom render texture defines the 

mapping. The render texture is assigned to the Unity material used for rendering the hemispheres 

The stereo images contain the fisheye projected view of the remote environment, each eye 

covering a horizontal FoV of 180°. We project each fisheye image onto a hemispherical shape, 

covering the half of the entire FoV. Hence, the stereo frame yields two hemispheres with the 

scene content after the mapping step as shown in Figure 3 in the right. 

 
Figure 4. The hemisphere model for a single eye created in the software Blender (on the left). UV 

mapping from the stereo frame (on the right) 

For this mapping, we create 3D hemisphere models with a custom UV mapping from the 

stereo frame, assuming an equidistant fisheye projection, by which the radial distance from the 

center on the image plane is proportional to the angle of incidence (Hughes et al., 2010). Figure 

4 shows the hemispherical model designed in Blender for a single eye, on the left. The 
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hemisphere model is cut from top and bottom since those parts are not covered by the camera 

sensor.  

The custom UV mapping projects each pixel on the stereo frame onto a point on the 

hemisphere. We define the UV mapping on the stereo frame differently for the left and right 

hemispheres, as shown in Fig. 4 on the right, such that each hemisphere receives pixel values 

from the respective part of the frame. This brings the advantage of being able to decode the 

frame only once (on a single Quad object), but render it twice on two hemispheres. This 

decreases the computational load, which is of importance for having a smoothly running Unity 

application on a computer with decent graphical computation resources. 

The hemisphere orientations in the scene must be the same as the fisheye lenses’ orientation 

on the PTRU to show the correct portion of the remote environment. The two hemispheres are 

placed in the scene to have the same distance between each other as the physical cameras have. 

Note that we show the hemispheres distinctly in Fig. 3 (on the right) for better visibility. 

Each hemisphere is observed by a Unity camera at its center that renders to the left or right 

display of the HMD. Thereby, we create a spherical surrounding that the user can freely observe 

by rotating the head. We keep the two hemispheres in separate rendering layers, and each Unity 

camera observes only one layer. These Unity cameras follow the HMD orientation to let the 

user look at any desired orientation, while the hemisphere orientations are following the current 

orientation of the PTRU. Since the FoV of each eye is smaller than the available FoV, we can 

compensate the delayed response of the PTRU and visual feedback due to network and system 

delays. When the user rotates the head, we have an available image region to render, until the 

PTRU receives the new head orientation and transmits the new frame at the new orientation. 

3.2.2 AR Backend 

The holograms show technical information about the scene, and are kept on our AR backend. 

The AR backend holds the previously recorded holograms and their 6-DOF poses with respect 

to the defined anchor points in the corresponding room. The holograms can be modified at any 

time with a mobile device visiting the same place or via a web-based editor. This makes it 

possible to communicate between an on-site worker and remote collaborator. 

Rendering of holograms. Upon fetching the holograms from the AR backend, they are 

loaded into the Unity scene at the locations that correspond to the real world locations in the 

room. The holograms live in a separate Unity layer and are rendered on top of the hemisphere 

layers. As a result, they are always visible to the Unity cameras rendering the scene on the HMD.  

If the holograms are simply rendered on top of the hemispheres as seen by the Unity cameras, 

the locations of them will be wrong on the spherical scene. This is because of the remote scene 

being acquired through fisheye projection and mapped on a hemisphere. In contrast, the 

holograms are just placed in the world coordinates and observed by a perspective camera in 

Unity. Fig. 5 demonstrates the result of this coordinate mismatch. While the pan angle of the 

HMD changes, the holograms do not stick to the correct locations but they move further away 

from their initial locations in the scene. This is especially visible by the hologram in the back, 

placed above the monitor on the wall, indicated with a red arrow on the scenes. The hologram 

should stick to the monitor where the red arrow originates. 
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Figure 5. The Hologram coordinate mismatch shown at different pan angles 

 

We solve this problem by adding a fisheye projection step in Unity. We only warp the 

holograms with this fisheye projection, for them to be in accordance with the remote scene 

projected on the hemispheres. The fisheye warping of holograms is shown in Fig. 6. We use a 

shader performing fisheye projection and add a fisheye camera in Unity that only observes the 

hologram layer. Then we render the view on a hemisphere model with transparent texture, 

resulting in the warping of holograms as if they were observed by a fisheye camera. We then 

place the transparent hemisphere in front of the other hemispheres, with its center at the middle 

of two hemispheres. Thereby, we create a spherical view for both the remote scene, and the 

holograms. The holograms are static in their positions, but the optical effect of AR-warping 

changes when the hemispheres move, because of the fisheye projection. 

 

 

Figure 6. Fisheye warping of holograms  
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The resulting improvement is shown in Figure 7. It is observed that the holograms stick to 

their intended locations with a much higher accuracy and do not move away while the HMD 

orientation changes. 
 

 

Figure 7. Corrected Hologram rendering after applying fisheye distortion 

PTRU Modeling for Correct Pose of Hemispheres. The PTRU has separate joints for pan, 
tilt, and roll. The two cameras are placed at a specific distance to each other. Ideally, the 
hemispheres should follow the rotation of the cameras realistically, rather than rotating around 
a single point using the pan-tilt-roll angles of the motors. For a realistic geometrical 
representation of the PTRU, we measure the distances between the joints and model the physical 
PTRU. We create three hinge (revolute) joints in Unity, combine these joints with links of 
specific sizes, and center the hemispheres at the positions of the real cameras. This mimics the 
real setup by size and motion and ensures that we are moving the hemispheres in the scene in 
the same way as the physical cameras move on the PTRU.  

Fig. 8 shows an exemplary scene with VR and AR components. The editor scene on the left 
shows the AR components placed in the world coordinates and visible behind the hemispheres. 
The projections of the AR components are rendered on the hemispheres with AR-warping. Note 
that both hemispheres are shown in the scene, however they are hardly distinguished due to the 
small distance between them. The viewport shown to the user for this scene is shown in Fig.8 
on the right. In this example scene, holograms indicate important technical information on the 
respective objects in the environment. 

3.2.3 Orientation Communication 

ROS# is used for receiving and transmitting the orientation data. We create a custom joint state 

publisher in Unity, read the HMD orientation in Unity, and publish it to a ROS topic available 

to the server. Secondly, the client subscribes to respective ROS topics showing the current 

orientation of the pan-tilt-roll motors. We mimic this current orientation by the joints of the 

PTRU model in Unity. These Unity joints move the hemispheres to the same pose as the real 

cameras have at the moment. 
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Figure 8. A scene with VR and AR components. Editor view on the left, user’s viewport on the right 

4. ANALYSIS AND DISCUSSION 

In this section, we compare our method to previous works, by contrasting important system 

properties. Table 1 shows a comparison of our system against alternative systems. 

We tested our system at 2560 x 920 resolution for two eyes up to 60 Hz frame rate and 

observed a smooth video transmission with a hardly noticeable motion-to-photon latency. As 

opposed to many other remote collaboration works, our camera setup is independent of a person 

on-site. This brings several advantages. Firstly, the remote user can observe the environment in 

a completely free way, rather than having to be dependent on another person's viewport on-site. 

Secondly, the person on-site does not have to carry a sensor setup which can be bulky and 

limiting the motions, hence the work efficiency is increased.  

Furthermore, we do not need to use image stabilization techniques to create an independent 

view for the remote observer, and thereby decrease the computational complexity and avoid 

possible visual defects.  

As opposed to methods using multi-camera stitching approaches, we use an actuated stereo 

camera with the vision-on-demand approach and thereby we eliminate the issues of stitching 

and visual defects that can be uncomfortable or misleading for the remote collaborator.  

We know where the camera setup is placed in the room and do not require any 3D 

reconstruction or digital twin of the remote environment. Since our AR system is based on the 

AR backend, the holograms can be created, modified and saved at any time from any client 

device. This brings a lot of flexibility for remote collaboration with non-verbal cues. In addition, 

holograms which stay in a given position and show important information can improve the 

remote maintenance not only for the moment, but also in the long term.  

The holograms are transmitted from the backend to the client, and the transmission is 

unaffected by the network quality between the server and the client. Even though the quality of 

the video content is decreased, the holograms can still be viewed in high quality by the client. 
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Table 1. Comparison of 360° remote collaboration systems 

Method 
AR in VR 

(Ours) 

Pretlove, 

1998 

Wang 

et al, 

2018 

Speicher et 

al, 2018 

Lee et al, 

2018 

Teo et al, 

2019 

Kasahara 

et al, 

2016 

Camera type 
Stereo 

fisheye 
Stereo Stereo 360° mono 360° mono 360° mono 

6 

cameras 

Depth 

perception ✔ ✔ ✔ ✘ ✘ 
(✔) 

partial 
✘ 

No need for 

stitching ✔ ✔ ✔ 
(✔)  

(stitching  

in camera) 

(✔)  
(stitching 

in camera) 

(✔)  
(stitching 

in camera) 
✘ 

Network delay 

compensation ✔ ✘ ✘ ✘ ✘ ✘ ✘ 

No need to 

transmit entire 

FoV  
✔ ✔ ✔ ✘ ✘ ✘ ✘ 

Types of AR 

Cues 

6 DOF 

static & 

modifiable 

Static Static 
Pointing 

cues 

Pointing 

cues 

Pointing 

cues 

Pointing 

cues 

No need for 3D 

reconstruction ✔ ✔ ✔ ✔ ✔ ✘ ✔ 

Camera 

independent 

from on-site 

person 

✔ ✔ ✔ ✔ ✘ ✘ ✘ 

No need for 

image 

stabilization 
✔ ✔ ✔ ✔ ✘ ✔ ✘ 

3 DOF 

orientation 

capability 
✔ ✔ ✘ ✔ ✔ ✔ ✔ 

5. EXPERIMENTAL MEASAUREMENTS 

In this section, we provide the results of the measurement experiments addressing the  

glass-to-glass delay and the transmitted data rates. 
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5.1 Measurement of Glass-to-Glass Delay 

The glass-to-glass delay describes the time that passes from when the photons of an event pass 

through the lens of the camera, until they are displayed on the screen of the viewer (Bachhuber 

and Steinbach, 2016). It is an important measure to evaluate the overall time required for video 

acquisition, encoding, transmission, decoding, and rendering. Hence, the glass-to-glass delay 

tells us how quickly a change on-site (e.g. a machine part moving, or an on-site collaborator 

moving) gets propagated to the VR user. A value near 100 ms is fine for many applications. 

There are different methods to measure the glass-to-glass delay. We follow a similar 

approach as Bachhuber and Steinbach proposed (Bachhuber and Steinbach, 2016) and measure 

the glass-to-glass delay with a light source visible to the camera. In this approach, the  

glass-to-glass delay is computed via a light source visible to the camera, and a light sink 

(phototransistor) that detects the time the light change is displayed in the target display. The 

time difference between the light turning on and getting displayed after video acquisition, 

encoding, transmission, decoding and rendering gives the glass-to-glass delay estimation. 

Differently from the stated approach, we use a high-speed camera that views both the light 

source at the server side and the target displays at the client side in the same frame. As a light 

source at the server side, we use a monitor that turns black and white repeatedly, effectively 

serving as a blinking light source. This is shown in the Fig.9 on the left, while the light source 

monitor is displaying white. We choose this approach to cover the most of the FoV of the fisheye 

cameras with the light source, because this makes it easier to determine the light change 

happening on the client displays, especially at the HMD’s viewport. An example frame captured 

by our high-speed camera that views the light source at the server side, the HMD lenses and the 

Unity editor screen at the client side is given in Fig. 9 on the right. 

 
Figure 9. Glass-to-glass delay measurement setup. The light source monitor is placed in front of the 

PTRU (on the left). The measurement camera’s image (on the right) frames the light source monitor, the 

HMD lenses and the Unity editor screen to detect the time difference between the changes at each 

display 

We determine the frames that show light changes, which happen at different times for the light 

source monitor, the HMD display and the Unity editor display. The time difference between 

these frames is used to estimate the glass-to-glass delay. The glass-to-glass delay is closely 

related to the refresh rates of the HMD display (90 Hz) and the display of the Unity editor  

(60 Hz). An example glass-to-glass delay observation is shown in Figure 10.  
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        1. Light source displays a black screen.                          2. Light source starts turning white.  

                                                                                                                    (t = 27.289 s) 

 

  
3. HMD display starts turning white.     4. Unity editor screen starts turning white. 

                              (t = 27.394 s)           (t=27.427 s) 

 
Figure 10. An example glass-to-glass delay measurement 

Challenges: The measurement accuracy is limited by the frame-rate of the high-speed 

camera. We observe that the high-speed camera has non-regular intervals, with a time difference 

of 4 ms or 12 ms between the frames, leading to varying accuracy for different measurements. 

Another challenge is detecting a single time instance for the light changes, since the displays 

are updated line by line and the light change is mostly shared among multiple frames.  

Results: We do 43 readings and calculate the mean value. We determine the mean  

glass-to-glass delay from the server camera to the HMD display as 106.326 ms, with a standard 

deviation of 11.730 ms. The mean glass-to-glass delay from the server camera to the Unity 

editor screen of the client PC is found as 132.233 ms, with a standard deviation of 9.616 ms. 

Note that in an immersive telepresence scenario, the HMD is the display device, hence its  

glass-to-glass delay should be considered primarily. The difference in the delays observed at the 

screen and the HMD is expected, since the HMD has a higher refresh rate, and will display the 

changes earlier on average. The glass-to-glass delay values indicate the overall temporal delay 

including the time required for video acquisition, encoding, decoding, projection onto the 

hemispherical surfaces, rendering to the display, and the acquisition of the rendered pixels by 

the measurement camera. The video transmission delay can be neglected in the given results, 

since the server and client of our setup communicate in the same local network and the packet 

transmission latency is under 1 ms.  
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Another relevant measure of delay is the motion-to-photon delay. This is the delay between 

the time the VR user rotate their head, and the time the HMD displays a frame with the correctly 

updated perspective. A value above 20 ms will often lead to VR motion sickness. We have not 

yet experimentally measured the motion-to-photon delay in our system, but first explorative 

tests by VR-experienced users indicate that it is within an acceptable range. In our system, the 

motion-to-photon delay is independent of the glass-to-glass delay by design, as long as the user’s 

head rotations are below a certain speed. Therefore, the measured glass-to-glass delay near 106 

ms does not induce VR motion sickness. 

5.2 Measurement of the Transmitted Data 

We measure the transmitted data for the video and orientation communication for an example 

telepresence case. The incoming data rate to the client is fluctuating between 10Mbps for a 

steady camera and 15 Mbps at the moment of orientation change. This data includes both the 

video stream and the orientation data of the camera at the server side. The data volume increases 

during orientation changes, which is expected due to the differential information coding by the 

video encoder.  

In order to discriminate the data required for the video and orientation data, we deactivate 

the camera and measure the incoming and outgoing data rate at the client. We observe 

approximately 2.2 Mbps incoming data rate from the server to the client and 320 kbps outgoing 

data rate from the client to the server, which are mostly constant during the telepresence session. 

The difference between the incoming and outgoing orientation data volumes is expected, due to 

the differences in the sampling rates of the orientation readings. The HMD orientation is 

refreshed at a rate of 50 Hz, while the actuator orientations are read at a much higher rate, around 

600 Hz. Note that the sampling rate of the actuator readings can be decreased further to save 

bandwidth.  

Computing the difference, the data rate for the video stream is found as 7.8-12.8 Mbps, for 

the resolution of 2560 x 920 and 60 Hz refresh rate. Note that the RTSP server is configurable 

for a desired target bitrate and video quality, hence the data volume for the video is highly 

adjustable. 

6. FUTURE WORK AND INDUSTRIAL USE CASES 

6.1 System Improvements 

Improvement of glass-to-glass delay. In our experiments the average glass-to-glass delay is 

found as approximately 106 ms, which can be improved further by optimizing individual parts 

of the system. The stereoscopic camera currently used has a frame rate of 60 fps. The refresh 

rate of the HMD is at 90 Hz. Using a camera and a display with higher frame rates would 

improve the glass-to-glass delay of the system. We are using a software video encoder for video 

streaming. Using a hardware encoder would also decrease the respective delay. The rendering 

pipeline in Unity can also be optimized further with a specific focus on the rendering delay. 

Video and orientation data synchronization. In the current design, the video stream and the 

orientation data are transmitted separately from each other. The client renders the video frame 

on the hemispherical objects once the video data is received and decoded. The hemispheres are 
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oriented based on the orientation data of the PTRU, once this data is received at the client. Under 

stable network conditions, the both data arrive almost at the same time and the system runs 

smoothly. To increase the robustness of the system against network fluctuations, the video frame 

data and the PTRU orientation data can be multiplexed accordingly.  

Motion-to-photon delay synchronization of VR and AR-in-VR content. We see a potential for 

the improvement of the stability of the AR-in-VR holograms with relation to the stereoscopic 

video while the user is moving their head. Explorative tests have shown that there is a small, but 

noticeable “swimming” effect of the holograms upon head motion. This indicates that there are 

two different motion-to-photon delays in our system: one for the VR content (the 360° video) 

and one for the AR-in-VR content (the holograms). We believe that this is due to different delays 

introduced in the rendering pipeline (e.g. the VR and AR contents are rendered separately, the 

fisheye shader for AR warping introduces additional delay), and to lacking synchronization of 

the video and motion data over the network.  Hence, one additional area of future work is to 

measure these two different motion-to-photon delays in our system and then optimize both of 

them, assuming that they are both basically limited only by current VR system constraints. We 

can also optimize the difference between the two motion-to-photon delays, which should be 

zero in order to avoid an AR-in-VR “swimming” effect.  

6.2 Possible Extensions 

In the current design, we provide 360° view on a static location where the PTRU is placed 

manually which provides the omnidirectional view on the given location. Extending the system 

with translation capabilities in addition to orientation can be an interesting future work direction. 

One straightforward way for this extension is adding more actuation units for translating the 

camera system or placing the system on a mobile platform. Another interesting direction is 

combining the system with virtual rendering techniques to generate new viewpoints in the 

vicinity of the initial location where the first viewpoint is obtained. Alternatively, a 3D 

reconstruction of the environment can be generated from the stereo vision, and can be combined 

with VR rendering solutions. 

6.3 Subjective Analysis 

Running user studies with subjective evaluations is important while developing systems for the 

human usage. For this, the future work should cover user experiments to test the visual comfort 

and the benefits brought by our system. Some aspects to test could be the effects of stereo vision, 

network delay compensation, and holograms for a given industrial teleassistance task.  

6.4 Industrial Use Cases  

We can see industrial use cases for our proposed system in two main areas. 

Firstly, situations where there is a live collaboration between an on-site user (with AR) and 

an off-site user (with VR). These include remote factory acceptance tests, remotely assisted 

commissioning of equipment, and MRO (maintenance-repair-overhaul) tasks. Here, both users 

are interested in seeing the real equipment from various angles, and creating and exchanging 

annotations in AR. This becomes particularly interesting when some of the AR annotations 
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come from live connections to IoT systems, e.g. to show current measurement states in a process 

plant. 

Secondly, situations where there is asynchronous collaboration between on-site users (with 

AR) and off-site users (with VR). One example of this is regular inspection rounds at an 

industrial site. For this, we assume the site is equipped with a fixed installation of 

omnidirectional robot camera setups, as we describe in this paper, in different parts of the site. 

Then, in a regular inspection round, an on-site quality inspector uses an AR device to note 

potential quality issues, storing photos, sounds, and personal impressions with the appropriate 

3D coordinates. Later, a remote quality inspector, using VR, can review these, together with 

live video from the site, in order to rate the severity of the problem. Of course, the order of 

collaboration can be reversed: A remote quality inspector performs a virtual inspection round in 

VR, highlighting potential problems, and determines which issues warrant sending an on-site 

quality inspection to find out more details using AR. 

We are exploring the use of both AR and telepresence in such industrial scenarios (e.g. see 

Labisch, 2021) and see a great potential in combining the two. 

7. CONCLUSION 

In this paper, we presented a system realizing "AR in VR" in real time. The proposed system 

can be used for remote collaboration and maintenance tasks. An actuated stereoscopic camera 

unit following the head-motion of the viewer captures the remote view. We use fisheye lenses 

for network delay compensation. Additionally, we present a novel scene rendering with UV 

mapping from a stereo frame for efficient video rendering. Holograms are fetched from a 

backend and warped with fisheye projection to be placed at the correct positions in the frame. 

Experimental evaluation showed that the resulting system has a mean glass-to-glass delay 

of roughly 106 ms. The motion-to-photon delay is independent of the glass-to-glass delay by 

design. Explorative tests with VR-experienced users showed that the glass-to-glass and  

motion-to-photon delays are in acceptable ranges. 

Our camera captures images with a resolution of 2560 x 920 at 60 frames per second. The 

low computational complexity of the system allows such high resolution and high frame rates. 

The data rate from the server to the client fluctuates between 10 Mbps and 15 Mbps, while the 

data rate from the client to the server mostly stays around 320 kbps.  

Our system does not face any stitching problems as some similar methods suffer from. The 

depth perception quality is unaffected by the viewing orientation, since the stereo acquisition is 

the same in all directions.  

The proposed system can be used in many remote collaboration scenarios. Both the on-site 

person and the remote collaborator can add or modify the holograms, sharing and saving 

important technical information. The remote person can discover the scene independently of an 

on-site person and collaborate with the on-site person efficiently. 

Future work can focus on improving and extending the system for better synchronization 

and less noticeable visual delays. Subjective evaluation is also an important future work for the 

deployment of the system in real life applications. 
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