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ABSTRACT 

Voting systems have been around for hundreds of years and despite different views on their integrity, 

have always been deemed secure with some fundamental security and anonymity principles. Numerous 

electronic systems have been proposed and implemented but some suspicion has been raised regarding 

the integrity of elections due to detected security vulnerabilities within these systems. Electronic voting, 

to be successful, requires a more transparent and secure approach, than is offered by current protocols. 

The approach presented in this paper involves a protocol developed on blockchain technology. The 

underlying technology used in the voting system is a payment scheme, which offers anonymity of 

transactions, a trait not seen in blockchain protocols to date. The proposed protocol offers anonymity of 

voter transactions, while keeping the transactions private, and the election transparent and secure. The 

underlying payment protocol has not been modified in any way, the voting protocol merely offers an 

alternative use case. 
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1. INTRODUCTION 

With blockchain technology steadily striving towards becoming the new system for 

decentralized payment schemes, amongst other implementations, it is easy to imagine why this 

technology can be considered an ethical liberator with regards to different application 

domains. Blockchain, although a relatively new concept, has gained enough popularity for 

applications to emerge, such as simplified methods for identification and authentication, the 

widely known decentralized payment scheme, Bitcoin, and domain systems which reside 

outside the control of the government or non-governmental organizations (NGOs) and many 

more (Swan, 2015). The number of blockchain systems is steadily increasing, however the 

electronic voting domain is very slow to adapt to changes in technology with a relatively low 

number of systems devised so far, which introduce a fresh look on the electronic voting scene, 

based on our observation of the state of the art. 
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Electronic voting has been a topic of active debate, with significant number of people 

believing that electronic voting cannot be trusted enough to be used for significant elections 

due to uncertainty in the authenticity and integrity of the machines, and the votes that have 

been cast using them. On the other hand, people acknowledge that paper solutions are 

significantly outdated and can be subject to serious manipulation from a coercer. The 

emergence of blockchains has introduced a new way to construct secure systems which have 

less inherent security issues present within the systems. It is a belief that a successful voting 

system can be implemented using blockchains, or with a blockchain being one of the main 

elements present in a hybrid electronic voting scheme (Bradbury, 2014). With many 

applications switching to or created on the blockchain platform, why does voting have to stay 

behind and not evolve with technology? 

In our work, we investigate a new decentralized, anonymous payment scheme called Zcash 

(Hopwood et al, 2016) and create a voting system without altering the inner working of Zcash 

protocol with one of the targets being the creation of a cheaper voting alternative which is 

simple in use to appeal to the younger population. 

2. STATE OF THE ART 

Electronic voting is a topic of much research and several viable schemes have been created to 

attempt and solve the problem. Here, we present some influential voting protocols and other 

viable voting schemes as well as the techniques they implement at the core of vote processing, 

their security issues and analysis that have been done on some of the protocols in this domain. 

Blockchain voting technologies that have emerged recently are also discussed here, with 

attention to Ethereum (Wood, 2014).  

2.1 Influential Electronic Voting Protocols 

Electronic voting protocols have been implemented in different elections, ranging from 

university to government based elections. Many viable protocols have been created since 

Chaum (Chaum, 2004) first proposed Votegrity, one of the first end-to-end (E2E) verifiable 

voting schemes. E2E verifiability means that the voter can verify that their own vote has been 

cast as intended. The voter would be the assured that their vote has been counted correctly and 

included in the final tally and that the public members can verify an election externally 

without being involved in an election. These voting protocols, also provide a way to audit the 

voter’s votes and the ballots prior to picking the candidate and casting the ballot.  

Some of the most prominent examples that have stemmed from Chaum’s Votegrity, which 

also provide E2E verifiability, are Neff’s Markpledge (Neff, 2004), Prêt à Voter (Ryan et al, 

2009), Helios (Adida, 2008), Scantegrity (Carback et al, 2010) and STAR-Vote (Bell et al, 

2013). Markpledge was one of the first E2E voting protocols which has been proposed 

alongside Votegrity, influencing the development of the other schemes mentioned above and 

more. Helios, a university voting scheme, has undergone security analysis, which uncovered 

security vulnerabilities with a potential to affect the outcome of the elections. This led to the 

development of Helios 2.0 (Adida et al, 2009) and Helios 3.0 versions, attempting to fix the 

vulnerabilities posted by Estehghari and Desmedt (Estehghari and Desdedt, 2010). This is a 

good example of a security vulnerabilities in a voting protocol. A possible attack on Helios 2.0 
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included cross-site scripting (XSS) through the usage of a browser rootkit, a script capable of 

monitoring user traffic, capturing passwords entered by the user and get access to the DOM 

tree of the web page.  

Some E2E protocols use public web bulletin board (WBB) for posting all the cast ballots 

for the public to see. Web bulletin boards are used as an authenticated public broadcast 

channels which, display the cast ballots to the public in an encrypted form, and serve as an 

important stage for any E2E protocol. Typically, after the voter has cast their vote and 

received a receipt encrypting their choice in a way that is dependent of what voting protocol 

used, the encrypted vote is propagated to the WBB (Parsovs, 2015; Heather, 2007, Culcane et 

al, 2015).  

The receipt is an important part of the voting protocol, as it allows the user to prove their 

vote to an authority in case the voter wishes to dispute their vote or prove that they have voted 

contrary to what the system has recorded. The receipt also allows the user to find their vote 

and view how the system recorded their vote. These receipts vary from system to system, but 

typically these receipts are the summary of how the voter voted, which can be presented to the 

voter in an encrypted or obfuscated manner. As an example, Votegrity summarizes the vote in 

a print out which prompts the voter to pick the top or the bottom layer of the receipt. The 

receipt is a laminated piece of paper, which is separated into two layers, which are only 

readable when these layers are combined and never on their own. The mutual relationship of 

the pixels on the translucent layers is how the vote becomes readable (Chaum, 2004). 

Some electronic voting protocols implement a challenge system, which helps a voter to 

establish trust in the system. Apollo (Gaweł et al, 2016) is an extension of the Helios protocol, 

however, it avoids some security issues that are inherent in Helios by having voter assistants 

to verify, lock and audit the vote. The assistants are external to the voting protocol devices that 

can interact with the election and can be laptops, tablets, or any other external devices. These 

interact with the session by fetching the personalized string, input by the voter during the start 

of the session, to fetch the session. The voter that wishes to audit their vote sends the audit 

code through the voting booth, which in turn opens the encryption of the ballot by posting the 

randomness encrypted with the session key. Each voting assistant checks the bulletin board 

and displays the plaintext value of the vote. This procedure may be repeated as many times as 

the voter wants (Gaweł et al, 2016).  

Mixing is one of the two predominant techniques that are used in electronic voting 

protocols and utilizes mix networks (mixnet), a protocol that takes in multiple input messages 

from the users and shuffles these messages in random order before passing them to the next 

destination (Chau, 1981). Mixnets, in the context of voting, are used to provide a degree of 

anonymity to the user by obfuscating where the message came from. For example, Zeus 

(Tsoukalas et al, 2013) implements mixing after the election has been closed to break the 

linkability between the encrypted ballots and the voters who cast them. This is a multi-round 

procedure which depends solely on the number of mixing proxies available to the system. 

Each stage of the mixing provides a proof of correct mixing, which can be used to verify that 

the mixing server is not corrupt.  

The second widely used technique is homomorphic tally. Cohen and Fischer (Cohen and 

Fischer, 1985) describe how this can be applied to a voting protocol. Homomorphic tally 

involves modifications, usually additions and multiplications, to the ciphertext which are 

preserved upon decryption to reveal the operations that have been done on the ciphertext while 

recovering the modified decrypted value. Protocols such as Helios 2.0 (Adida et al, 2009), 

STAR-Vote (Bell et al, 2013) and several others implement this technique for tallying the 
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votes due to its simplicity both in application and for verification by the public, though the 

efficiency of these protocols, over mixnets, have been different through the papers where these 

methods are used.  

Protocols such as Zeus (Tsoukalas et al, 2013) and Apollo (Gawel et al, 2016) use the 

basis of Helios to build their own voting protocols on, while attempting to tackle some of the 

security issues that are inherent to Helios. For instance, Apollo tackles the issues of XSS, 

cross-site forgery, clickjacking and clash attacks with the help of the voting assistants. For 

example, XSS was possible due to the unchecked URL parameters that meant to obtain the 

election URL, but if compromised could have pointed to a proxy with malicious script forced 

to execute on the target machine by the attacker. Ultimately, the attacker could encrypt each 

choice of the voter correctly, but submit their own ballot instead of the voters when the voter 

continued to submit their vote. This attack is impossible to detect server-side, but can be 

detected by the voter if the voter checks the WBB later to find their vote. XSS is in the third 

place of the top vulnerabilities of web applications as found by OWASP in 2013 (Wichers, 

2013) and remains in the same position in OWASPs “Top 10 Application Security Risks” of 

2017. 

2.2 Blockchain for Voting 

The conclusion can be made that an electronic voting system must be secure, while allowing 

for as much transparency as possible to be a working E2E verifiable. Blockchains (Nakamoto, 

2008) help to achieve this level of security and transparency, while maintaining privacy and 

non-malleability of the transactions (Deloitte Nederland Website, 2016; Glass, 2016). 

Although different, some elements from the above-mentioned protocols may apply to the 

concept of blockchain voting. The notion of WBB, where the encrypted votes can be seen by 

the public members, can persist in blockchain in the form like (Blockchain Website, 2017). 

Here the blocks of transactions can be observed as well as the height of the blockchain with 

any other relevant information. Although blockchain is a promising technology, we have not 

found any relevant papers to date that present a protocol for online voting with blockchains. 

Examples such as Follow My Vote (Follow My Vote Website, 2017) or TIVI (TIVI Website, 

2017) present a seemingly sound voting protocol, however they are presented without any  

in-depth specification to verify the security of the protocol.  

One other noteworthy blockchain technology that could revolutionize electronic voting is 

Ethereum (Wood, 2014). Ethereum differs from Bitcoin (Nakamoto, 2008) as it serves as a 

generic platform for creation of custom functionality in the form of smart contracts. The 

currency used by Ethereum is ether and gas. However, the main difference is the fact that the 

contracts allow for different functionality using the Ethereum Virtual Machine (EVM), while 

being enforced by the peer-to-peer, decentralized way, inherent to the core structure of 

blockchain. Ethereum possesses two types of accounts, which is another way of specifying 

types of users. Human entities use accounts, whereas contracts are accounts which are 

operated by code on the EVM. Contracts are the agents that bring about the generic 

functionality of Ethereum and allow one to create custom behavior for one’s blockchain 

application. These applications include, and are not limited to, automatic payments or creation 

of custom currency, which is worthless outside of the context of the contract application 

(Wood, 2014; Devcon2 Video, 2016).  
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3. ZCASH OVERVIEW 

Zcash is a decentralized blockchain payment scheme, which aims to provide anonymity and 

privacy of transactions. One of the biggest differences between Zcash and Bitcoin is the proof-

of-work system, where Zcash relies on zero-knowledge proofs (Hopwood et al, 2016). Zcash 

is an implementation of a concept called Zerocash (Ben-Sasson et al, 2014) which describes 

similar concepts to Zcash but the architecture behind Zcash is different. We present a brief 

overview of the important concepts of Zcash prior to describing the details of our proposed 

voting protocol.  

3.1 Addresses and Transactions 

Zcash supports both anonymous and transparent transactions as it has two types of addresses, 

which differs from the Bitcoins single address. These addresses are, namely, z- address and  

t-address, where z-address is the address which preserves anonymity in transactions, and  

t-address resembles the Bitcoins addresses in structure and allows for transparent transactions. 

The transactions between different addresses ensures the conversion of transparent value into a 

shielded value and vice versa. The details of shielded values cannot be observed by the public. 

The transactions between addresses is illustrated by Figure 1. 

 

 

Figure 1. Types of Transactions in Zcash (Peterson, 2016) 

Private transactions occur when both, the sender and receiver use z-addresses, which 

ensures that no entity, outside the entities involved, can view the details and the value of Zcash 

(ZEC) that are exchanged in the transaction.  

The private, z-addresses are generated with the combination of the keys, of which there are 

a total of 4 keys, which allow for spending, viewing, paying and transmission of secret values 

between the parties. These keys are namely: 

 Paying key (   ): Used as a part to generate payment address. 

 Transmission key (     ): Used to encrypt and decrypt secret values to be passed 

between the parties involved in a transaction. 

 Spending key (   ): Allows spending of ZEC. 

 Viewing key (     ): Establishing keys for viewing the private transaction between 

involved parties. 
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The combination of paying key (   ) and transmission key (     ) is what makes up a  

z-address.  

Part of spending a ZEC involves revealing a nullifier for a ZEC which has a commitment in 

a Merkle tree (Nakamoto, 2008). The commitment is placed on such tree in Zcash, whenever a 

new ZEC is generated. A nullifier can be considered as a serial number for each ZEC which 

prevents double-spending of the same ZEC. The spending procedure involves locating a 

commitment on the Merkle tree and ensuring that the nullifier has not yet been revealed, as 

once the nullifier is revealed, the ZEC is considered spent. The nullifier set is maintained at 

every full node and newly revealed nullifiers are inserted into the set with each transaction. A 

full node is simply a device which has the entire Zcash blockchain stored on it and therefore 

contains the full nullifier set. 

A secret pair of keys is established and known as the ephemeral keys. The ephemeral keys 

are established for the transmission of the secret values in private transactions to ensure that 

only the sender and the recipient can view the transaction. The possession of the private 

ephemeral key (   ) and the recipient’s address is what allows the sender to view the 

transaction. At the same time, the receiver uses their viewing key (     ) and the ephemeral 

public key (   ) to view the transaction from their end. The ephemeral public key is sent with 

the transaction, which is the way that the receiver obtains it. Even if a third party obtained this 

key, they do not have the other keys to view the transaction or derive a key to decrypt the 

secret values in the transaction.  

Part of the transaction, named JoinSplit Transfer in Zcash (Hopwood et al, 2016), is for the 

sender to spend their ZEC, which reveals the nullifier for the input ZEC, and generation of the 

commitments for the new ZEC which will be passed to the receiver as part of the transaction. 

The values used to generate the ZEC are passed to the receiver after being encrypted with a 

key established via transmission key (     ). These values in a transaction are accompanied, 

by a zero-knowledge proof to ensure that the transaction is legitimate and follows the rules for 

a transaction. 

Another important aspect of the JoinSplit Transfer, is the transmission of the secret values 

used to generate each ZEC and contain information about it. These secret values must be 

passed to the recipient, otherwise the recipient, will not be able to spend the coin in their next 

transaction. These values are encrypted using the ephemeral keys, transmission key and secret 

keys established as part of the encryption setup. The recipient is then able to decrypt these 

values due to the nature of the keys used to encrypt them, being setup in agreement between 

the sender and the recipient.   

Finally, the JoinSplit Transfer supports both shielded and transparent values in the same 

transaction as the transparent value pool in each transaction is dedicated for transparent 

transactions as well as to hold the miners reward for processing the transaction. 

3.2 Zero-Knowledge Proving System 

The key to the private transactions is the zero-knowledge proving system. This is because 

there is a need to transfer the secret values between the involved parties without disclosing 

these values to each other. To facilitate this transfer, Zcash implements zk-SNARKs  

(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) devised into libsnark 

library from the designs of Ben-Sasson (Ben-Sasson, et al, 2014; Ben-Sasson et al, 2013). 



IADIS International Journal on Computer Science and Information Systems 

154 

This construct allows for generation of zero-knowledge proofs given an arbitrary program. 

The proofs are generated using several steps which are shown in Figure 2.  

For this paper, we will not be discussing these steps in details, rather we provide an 

overview of the zk-SNARK functionality for better understanding of its application in Zcash. 

The purpose of supplying a proof is to verify the legitimacy of secret values, which are used to 

generate a ZEC, exchanged during a transaction. Libsnark allows the conversion of programs 

into proofs of knowledge. The program utilizes a port for a GCC compiler to create a circuit 

based on monitoring the execution of a program. The compiler creates a circuit from a 

program, which is a mathematical model for a logical circuit. The purpose behind the circuit is 

to accept a specific value that satisfies its logic, and reject any other input. These circuits are 

supplied into the generator function with some secret values, known as toxic waste. The toxic 

waste is made up of several values, which if disclosed to the public, may result in people 

generating fake proofs for their transactions. These values are therefore deleted after the setup 

has been complete and the generator function has generated the keys and other values, which 

are used in the transaction verification. 

The purpose of the generator function is to generate 2 keys, namely proving key and 

verifying key. The proving key is used by the prover to create a proof. The proving function 

takes the proving key, the secret value, which the prover is trying to prove the knowledge of, 

and the public function for which the secret value is for as parameters. The result is a proof 

which is passed to the verifier. 

The verifier uses the verifying key, the public function and the proof to determine the 

validity of the proof and returns a binary answer of true or false, depending on whether the 

verifier is satisfied by the supplied proof (Lundkyist, 2017). 

 

 
 

Figure 2. Overview of zk-SNARK Proof Creation (Buterin, 2016) 

The generator function is part of a setup procedure and uses toxic waste values as part of 

the setup stage. The setup phase for Zcash is done once to establish the proving and 

verification keys. If the toxic waste is not deleted and a party was able to obtain these keys, 

then the said party would be able to generate fake proofs.  

The JoinSplit Transfer also provides some proofs as part of the transfer is to generate new 

ZECs. Some of the things that the proof is used to prove are: 

 The total values of input ZECs and output ZECs matches. 

 The commitments exist and are valid for the input ZECs. 

 The nullifier and the commitment have been calculated correctly.  
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The proofs are not limited to these three items and the total size of the resulting proof is 

296-bytes (Hopwood et al, 2016). 

4. SYSTEM OVERVIEW 

Prior to describing our voting protocol, it is worth mentioning that the underlying Zcash 

protocol (Hopwood et al, 2016) has not been changed in any way. The protocol utilizes basic 

functions offered by Zcash and creates a platform with the ability to cast votes using Zcash 

tokens. The work assumes the following things: assumption of confirmed identity, where the 

protocol assumes that the identity of a potential voter can be verified, such as employing 

X.509 certificates (Hazlewood, 2011) and Certificate Authorities (CA) to verify those 

identities. This is to facilitate legal authorisation of the vote transaction on behalf of the voter.  

Our approach to the creation of the voting protocol revolves around certain principles, 

which we believe are the minimum number of key things needed in order to impement a 

successful voting protocol. We call these principles the cornerstones of voting and they are: 

Anonymity, Privacy and Transparency. Anonymity ensures that the voter’s vote cannot be 

traced back to the them. Privacy ensures that the transaction of the vote can be completely 

private if a voter wishes to do so and transparency opens up the critical steps of the underlying 

voting mechanism to the public in order to demonstrate that the votes are not tampered with. 

These principles can be seen in Figure 3. We separate out voting protocol into four distinct 

steps: registration, notification, voting, and tally/audit. 

 

 
 

Figure 3. The Cornerstones of Voting 

4.1 Registration 

Registration is the first step of the protocol and is required as part of the identity verification 

step and for audit purposes, to keep track of which voters have cast a ballot, and is a control 

mechanism to disallow unregistered people to participate in the vote. A potential voter who 

wishes to participate in an election or a poll is required to visit the registration page, where 
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communication with the server is established transparently. The system needs to authenticate a 

potential voter and can do so by following the Challange-Handshake Authentication Protocol 

(CHAP) (Simpsom, 1994) and exchange challenge information and solution. The 

authentication mechanism can vary, however in this case X.509 certificate was used as an 

example. 

After successful registration, the voter’s email address or an X.509 certificate containing 

their email address is stored in the database used by the voting system. After the voter has 

registered, they are redirected to a page where one could obtain a Zcash wallet required for 

voting. The overall registration step can be seen in Figure 4.  

Figure 4. Voter Registration Process 

4.2 Invitation 

Invitation step is a small step which initialises the voting process. In this step a poll 

administrator inputs poll relevant data, such as the name of the poll, the candidate list and the 

duration of the poll. When the administrator finishes, the system traverses the database of 

stored email addresses, or X.509 certificates to obtain relevant contact details, to send a  

one-time unique link to each of the voters’ email addresses, which redirects the voters to a 

unique ballot assigned to them. The server cannot issue invitatioin prior to comencement of 

any poll. This is similar to the Zeus protocol (Tsoukalas et al, 2013) where the administrator 

too, inputs the details of the poll as well as the list of the registered users.  

The issued links time to live (TTL) is only as long as the duration of the poll/election set 

by the administrator and expire as soon as the timer runs out. The voter visits the link and is 

required to authenitcate themselves in the same way as they have during the registration. This 

authentication can run against the database to ensure that the voter has registered prior to 

clicking the link. Once the information has been verified, the voter is presented with the 

unique ballot on which they can cast their vote. The invitation step can be seen in Figure 5. 
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Figure 5. Invitation to Participate in Ballot 

4.3 Voting 

Once the voter has followed the ballot link, they are redirected to the ballot page. The ballot is 

a simple interface which contains candidates’ names and a checkbox next to the names. The 

top of the ballot contains a field which requires the voter to input their receiving t-address. The 

voter generates these addresses to send and receive the tokens provided by the system. To 

maintain anonymity, but at the same time adhere to the transparency of the vote, the voter is 

required to provide a receiving t-address and is required to send the vote with a z-address. If 

the voter does not use z-address for sending their vote, their vote will not be anonymous. 

The receiving t-address is provided by the voter on the top of the ballot and can be 

changed as many times as required by the voter. This address ensures that the voter receives 

the vote token, which is redirected to the candidate wallet in the subsequent step. The voter 

uses the z-address to ensure that their vote is anonymous. 
When the voter is ready to cast their vote, they must agree to the terms and conditions of 

the voting system. That is that the voter authorizes the subsequent transaction to take place 
from their account, to return the token granted to them by the system. The terms and 
conditions can also include any other relevant data to the election procedures, such as any 
legal liabilities in stealing tokens. 

Once the authorisation takes place, the vote tokens can be generated by the system faucet 
to send to a ZEC pool, or if there are enough ZECs available, issue them straight from the 
ZEC pool. The ZEC pool is a system wallet which issues ZECs to the voters once the voter 
has authorised the vote. Once the voter has authorised the vote, the system changes the voter’s 
status in the database, as well as incrementing the system count of the total votes for the 
current election. The number of voters whose status has changed to “voted” can also be 
tracked by similar system counters if further integrity checks are required for the system. At 
the same time, a token is sent to the receiving address specified by the voter. The number of 
issued tokens is tracked by the system and is compared to the total number of votes to ensure 
that no extra votes have been added into the tally. Figure 6 outlines the steps taken when the 
voter casts their vote. 
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Figure 6. Overview of the Voting Process 

4.4 System Variants 

The transaction between the candidate and the voter becomes private if the candidate uses  

z-address. Inherent to the Zcash protocol, z-addresses break the linkability between the ZECs 

and previous transaction. This means that when the candidate empties their wallet into the 

ZEC pool, the voter may no longer trace their vote to the ZEC pool. This scheme requires 

more trust in the system, however it guarantees the privacy of the system i.e. no one can see 

the details and amounts of the transaction sent to the candidate.  

Since private transactions require more complicated setup, there are more internal steps 

involved in making these transactions. One of the most important pieces of information is the 

establishment and sharing of ephemeral keys. These keys allow the voter and the candidate 

both to view the transaction, which is exclusive to the two parties. These keys are established 

as per key agreement function of Zcash. Internally, the transaction remains the same. This 

variant may require the voter to revisit their cast vote to ensure that the vote has not been 

tampered with along the way i.e. that it is sent to the candidate of their choice and only 1 ZEC 

vote token has been sent. 

The second variant of the system involves the candidate’s receiving with their t-addresses. 

This is an example of a deshielding transaction and would mean that the candidate’s token 

balance can be observed by the public close to real-time depending on how fast the blocks are 

pushed to the chain. The linkability of the tokens would also be preserved. Linkability in this 

case means that a token can be traced back to the sender to the ZEC pool, where the tally 

occurs after an election timer has expired. This can help users determine if their vote has been 

counted in the tally. 

Regardless of the variant used, the JoinSplit Transfers of vote tokens from voters to 

candidates are stored on the blockchain as transactions with the appropriate data for each 

JoinSplit Transfer. 
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4.5 The Tally/Audit 

The final stage of the voting protocol is the vote count and the audit which takes place after 

the count to review the election process and ensure that the integrity of the election has not 

been compromised. The candidate wallets send all the ZEC vote tokens to the ZEC pool which 

has ZEC balance of 0 ZEC vote tokens. This requires some trust in the system, however the 

assumption is that the candidate wallets and a ZEC pool have 0 ZEC vote tokens in the 

beginning and that candidate wallets send all the collected ZEC vote tokens into the coin pool. 

The transactions may be more difficult to verify as these are private, and the details are only 

available to the voters and the candidates only. However, if the same party who starts an 

election holds the ownership of the candidate wallets and may implement verification systems 

to check each transaction destined for each candidate.  

The candidate wallets send all their acquired ZEC vote tokens to the ZEC pool using 

sending t-address on the candidate’s side and a receiving t-address on the side of the ZEC 

pool. The system declares the end of the election or a poll as soon as the expiry time has been 

met. After that, no votes are accepted into the count and the system, the unique vote links 

expire, and the ballot forms do not allow to proceed with the submission of the votes.  

At this point the number of total votes cast becomes public as well as the number of tokens 

issued for the voters. The total number of transactions may also be displayed with the total 

number of voters who participated in the election. It is not in the interest of the candidates to 

not empty their wallets upon conclusion of the election, or to send an incorrect number of ZEC 

vote tokens as the system equations will not balance and the election will be considered 

forfeit. Figure 7 provides an example election with 100 total votes being cast between 

candidate X and candidate Y. 

 

 

Figure 7. Example of Tally and Audit 
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5. SECURITY CONSIDERATIONS 

A significant issue with internet voting protocols are compromised voting machines. Since the 

target platform of the protocol would be user’s end devices, such as computers and mobile 

devices, it is possible for a coercer to influence the outcome of the vote by compromising the 

voter’s device as it would be much easier to achieve than compromising the entire electronic 

voting scheme. The coercer could infect the voter’s machine and influence the voting software 

installed. The voting software will then be influenced by the coercer’s candidate choice. One 

of the possible ways that a concerned voter can defend against such an attack is to obtain a 

checksum of the voting application. A checksum can simply be a hashing of the voting 

software of a specific version which the voter has installed on their device. If the voter’s 

device is compromised, then the hash versions will not be the same and the voter can obtain a 

new copy of the software.  

Since our proposed voting protocol does not make any changes to the underlying Zcash 

protocol, some problems, like double voting i.e. using the same granted vote token to vote for 

multiple candidates, is inherently absent in the voting protocol. However, since the unique 

ballot link is sent to a voter’s email address, the issue of compromised machine can persist 

once again. A potential coercer could get access to the voter’s email first and attempt to cast a 

vote on their behalf. Notification systems can be in place to send email confirmation when a 

vote has been issued by the voter and visually notify the voter of the number of times they 

have attempted to vote so far. 

A major consideration in dealing with Zcash and the automated script assumption is that 

all the operations deal with ZECs, which have a non-negligible value on the market 

(CoinGecko Website, 2017). This gives a potential incentive for corrupt voters to attempt to 

hijack the vote token upon brief arrival to their wallet. The assumption is that the script can 

detect the specific transaction arriving into the wallet and redirecting it to a candidate 

immediately. There are several mitigations to avoid ZEC hijacking. First is to deal with the 

smallest denominations of ZEC (1 zatoshi) to reduce the incentive to steal a whole ZEC as 1 

ZEC is     zatoshis (Hopwood et al, 2016). Though the audit calculations for the end of the 

election may not fail, a rogue transaction to a wallet, not belonging to a candidate may be 

noticed by the public. 

The use of 1 zatoshi is an additional factor which helps to reduce the cost of running 

elections. Since the administrative authority oversees creating the polls/elections, they need to 

provide the ZEC vote tokens to grant to the users. With the current pricing of a ZEC token 

being approximately $235 (CoinGecko Website, 2017) and providing 1 zatoshi to each voter, 

it is possible to facilitate 300 million voters, at a cost of 3 ZECs. Reinforcing the above point 

of hijacking tokens, it will provide even less incentive as each zatoshi will have a price of 

0.00000235 of a dollar given the above pricing. 

Having mentioned the required balance of values at the end of an election to verify its 

integrity, a possible attack could be carried out on the system, where a losing candidate does 

not submit all the received votes. This would cause the election to be forfeit as the total 

number of ZEC vote tokens does not balance with the total number of votes and ZEC vote 

tokens issued. This attack could be detected if the candidates were using t-addresses as all the 

receiving transactions would be visible, however it would pose a problem if the candidate used 

z-address as no public party, except the administrators of the voting system would know if a 

candidate is misbehaving. A possible mitigation for this attack can disregard the total number 
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of ZEC vote tokens returned to the counting pool, only if this number is less than or exactly 

equal to the number of total votes. In case of this occurrence, the voters and the administrators 

can be notified by the system that the votes returned did not match the total number of votes 

issued.  

One potential way to make the system more trustworthy is with the help of more trackers, 

like the trackers used to count the total issued tokens and total votes. Similarly, these can be 

used to track the number of tokens that each candidate had in their wallet before an election 

and the number of tokens which were in the ZEC token pool to further ensure that no 

discrepancies occurred during the voting process. 

An alternative solution can implement internal system trackers, which count the number of 

votes cast for each candidate, and serve the purpose of controlling the amount of ZEC vote 

tokens returned by the candidates. A tracker for each candidate increments each time a vote 

has been cast for a candidate and the system expects to withdraw this amount of ZEC vote 

tokens from the candidate wallet, which would not let a malicious candidate trick the system. 

These trackers would function even if the candidates used z-addresses. It is also possible to 

make this tracker public, during the tally period, to notify the public what the expected vote 

count is.  

A question may arise, of what would happen if the system counters have been modified by 

an attacker? According to the rules of the system, the integrity of the election will be 

considered compromised and the result will be forfeit. The reality of a decentralized system is 

that there may be more than one instance of the tracker initialized at a given time, and it may 

be required that they all need to agree at the end of an election.  

One significant attack on the entire blockchain is called 51% attack (Learn Cryptography 

Website, 2013). This is one of the biggest flaws in blockchain technology. This attack allows 

an entity with the biggest contribution to block mining to be able to change the contents of the 

past blocks on the blockchain due to the sheer computer power available to the entity. Other 

activities would include prevention of some transactions from obtaining a required number of 

confirmations and preventing people from sending ZEC vote tokens to the candidate 

addresses. This attack would be difficult to prevent. On one hand, it is possible to pick out 

several trusted verifiers out of the public volunteers and allow them to confirm the transactions 

to be included in the blocks. On the other hand, there may be trust issues raised by the 

participating voters. One other option is to allow any willing public member to participate in a 

verification pool. This would mean that the voter adds their computing power to the pool of 

other voter’s machines to verify the transactions, however this pool would need to be 

organized by a trusted party whose actions can be verified in case the party is considered 

rogue. 

6. FUTURE WORK 

Having outlined the voting protocol and the basis for its operations, it is important to outline 

the direction this protocol can take. The Ethereum protocol (Wood, 2014), has been 

established early in the work as a potential candidate to become the platform for our voting 

protocol. One of the reasons for this is that Ethereum supports creation of contracts, which are 

accounts which are operated by the EVM. These contracts can be used to implement a voting 
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scheme. However, voters’ anonymity and privacy are important pieces of any voting protocol 

and are not yet handled by EVM transactions. 

Steady advancements in development of the Ethereum platform bring the possibility of 

creation of this protocol closer. The future Ethereum aims to make use of zk-SNARKs to add 

privacy and anonymity of transactions. The zk-SNARKs are complex to implement efficiently 

due to the time taken to generate proofs, which is one of the issues in implementing these 

today. However, steps towards adoption of zk-SNARKs have already been taken by Ethereum 

(Hudson, 2017).  

Our initial idea focused on developing a voting protocol for Irish Electoral System. The 

Irish system uses proportional representation – single transferable vote (PR-STV) system. In 

PR-STV the votes of the candidates who got the least number of votes, get transferred to the 

second candidate of the voter’s choice and so forth until all representatives are selected 

(Eustace, 2017). This means that there will be more complex transactions involved and the 

system may need to include data in the transactions which is only comprehended by the nodes 

which are running the voting system since integrating extra data into the transactions is not 

supported by the Zcash protocol or blockchain. Logic is required to be in place to transfer 

correct number of votes to other candidates and therefore some state is required to be kept, 

which potentially ties this to the Ethereum project.  

Alternatively, it is possible to store or combine all ballots together to obtain candidate 

ranking. Storing ballots means that if a candidate is out of the election, their votes will be 

transferred to the next candidate according to the stored ballot. This process continues until 

either the ballot has no more candidate transfer information or, the candidate has been 

selected. The combination of ballots leads to the concept of potential transfers. This creates a 

vote state for each of the votes on the ballot. Suppose a voter has casted their vote for 

candidate A, followed by their second choice of candidate C, followed by candidate B. 

Another voter may have cast their vote for candidate B, then A, then C. In this case, the votes 

from all the ballots would get summed together initially giving candidate A a vote and 

candidate B a vote with potential votes for candidate A totaling to 1, which comes from the 

second choice of the second voter. This is the case for candidate C also. In the case that the 

candidate B is out of the election, the A candidate would get transferred the potential votes 

stored. This system can run these transactions in stages after a candidate either won an election 

with excess votes or is out of the election completely. 

Finally, steps have been made to integrate Zcash and Ethereum together in projects such as 

Zcash over Ethereum (ZoE), however these are still at very early stages.  ZoE project attempts 

to run Zcash on pre-compiled contracts to prove that a sender knows a commitment on a 

Merkle tree, which is part of Zcash proofs in every transaction. The reason that this work is 

still in its early stages is that zk-SNARKs take a significant time to generate and equate to 

approximately 40-60 seconds for proof generation in each Zcash transaction, therefore a  

pre-compiled contract is used. Once this project is more efficient at these calculations it may 

be possible for a better integration of zk-SNARKs in other blockchain systems (Bowe, 2016; 

Reitwiessner, 2017). 
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7. CONCLUSION 

A standardized electronic voting solution which would be widely adopted has not yet 

emerged, and although there are some good candidates, there are inherent security issues 

which make these protocols unsuitable for elections. The literature identifies a distinct gap in 

the domain which could be filled by a protocol, using a different technology then the previous 

protocols. Blockchain offers an inherently more secure platform, and with development of the 

recent anonymous transaction scheme, namely Zcash, it is finally possible to tackle the 

anonymity issues of blockchain transactions, which would open a possibility for blockchain 

voting. Ethereum has offered the smart contract functionality since it first came to pass, 

however the much-needed anonymity factor has not been present in the protocol so far. The 

rapid growth of the Ethereum protocol, and its integration with Zcash will most likely come 

up with the protocol, suitable for wide-spread, cheap voting system. As indicated by the future 

work on these protocols, voting on blockchain has received the much-needed push in the right 

direction.  

The applications for the proposed protocol are not limited to government elections only. 

These can be stretched to opinion polls or corporate elections providing a unified platform for 

voting regardless of the cost or circumstance. The drive behind a cheaper, unified, electronic 

voting system was the basis for the above protocol, which has potential to grow into a real 

wide-spread implementation, dealing with assumptions and concerns which limit the current 

system.  

The standardization or adoption of such protocol would be a step towards public approval 

of electronic voting schemes, provided that the said protocol is secure and has been tested and 

tried. The release of new protocols, with security issues does not take steps to progress in 

public approval and, ultimately, replacement of the paper elections.  

A major effort has gone into development of a sound voting system and with the rapid 

developments of blockchain technology and its implementations in various fields, one final 

push is required to bring a sound electronic solution to one of the humanities basic rights - to 

vote. 
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