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ABSTRACT 

In this paper a practical algorithm for finding the maximum clique is proposed. The maximum clique 
problem is well known to be NP-hard and is a core problem for a lot of applications in artificial 
intelligence systems, data mining and many others. The presented algorithm contains some additions to 
its earlier publications, which makes it much faster. It is based on colour classes and the backtracking 
technique. This paper includes a description of the algorithm, an example of its work and some analytical 
discussion topics. The algorithm is tested on DIMACS graphs to compare it with other well-known 
algorithms. It has shown very good performance and is more than 1000 times faster than others best 
known algorithms on some graph types. Moreover certain modifications of the heuristic colouring 
strategies described in the article produce even better algorithms for some graph types introducing a need 
for an artificial intelligence approach in the maximum clique finding algorithms’ implementations. The 
described algorithm is fast and easy to implement, which makes it very practical to apply in a plenty of 
areas. 
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1. INTRODUCTION 

Let G=(V, E) be an undirected graph, where V is the set of vertices and E is the set of vertices. 
A clique is a complete subgraph of G, i.e. one whose vertices are pairwise adjacent. The 
maximum clique problem is a problem of finding maximum complete subgraph of G, i.e. a set 
of vertices from G that are pairwise adjacent. An independent set is a set of vertices that are 
pairwise nonadjacent. A graph colouring problem is defined to be an assignment of colours to 
its vertices so that no pair of adjacent vertices shares an identical colour. All those problems 
are computationally equivalent, in other words, each one of them can be transformed to any 
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other. For example, any clique of a graph G is an independent set for the graph’s complement 
graph. Those problems are NP-hard on general graphs and no polynomial time algorithms are 
expected to be found. 

The described problem has important economic implications in a variety of applications. In 
particular, the maximum-weight clique problem has applications in combinatorial auctions, 
coding theory [MacWilliam and Sloane 1979], geometric tiling [Corradi and Szabo 1990], 
fault diagnosis [Berman and Pelc 1990], pattern recognition [Horaud and Skordas 1989], 
molecular biology [Mitchell et al 1989], and scheduling [Jansen et al 1997]. Additional 
applications arise in more comprehensive problems that involve graph problems with side 
constraints. This problem is surveyed in [Bomze et al 1999].  

The basic ideas of using colour classes for the maximum clique finding has been presented 
previously by us in several papers [Kumlander 2003, Kumlander 2004, Kumlander 2005]. We 
started from an algorithm that was quickest only on dense graphs [Kumlander 2005] and then 
proposed a general type algorithm [Kumlander 2004]. The algorithm has shown that it is the 
best one at the moment [Kumlander 2004] on random graphs. Here we are going to present an 
adjusted version of the algorithm, which contains some speeding techniques and therefore is 
slightly better than previous its versions. Besides this paper is the first one where we conduct a 
comparison test on DIMACS graphs with other algorithms to find out how this new algorithm 
works on different special graph types. 

2. NEW ALGORITHM 

In this subchapter we introduce an algorithm based on the idea of using independent sets or 
colour classes. It also uses a backtracking search [Östergård 2002]. The new algorithm is 
based on the branch and bound idea and is further development of the Carraghan and Pardalos 
algorithm [Carraghan and Pardalos 1990], which have shown its efficiency in many tests 
[Johnson and Trick 1996, Bomze et al 1999]. 

2.1 Description 

2.1.1 Initial idea of using colour classes 
The algorithm is based on an elementary property of a clique: vertices that are unadjacent 
cannot be included into the same clique. The following will explain how this property can be 
used for finding the maximum clique to speed up this search.  

Before starting the algorithm we find a vertex-colouring by using any heuristic algorithm, 
for example in a greedy manner. We determine colour classes one by one as long as 
uncoloured vertices exist. The vertices are resorted in the order they are added into colour 
classes. This order affects the algorithm’s performance in finding the maximum clique and 
therefore is very important. 
 
Definition 1: A colour class is a set of vertices, which were coloured by the same colour 
during applying a vertex-colouring algorithm.  
Note: A similar definition has been proposed by West in 2001, who defined the colour class as 
the following: vertices receiving a particular label (colour) for a colour class. 
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Definition 2: A colour class is called existing on a subgraph Gp if any vertex from this colour 
class belongs to this subgraph Gp. 
 
Definition 3: Degree of a subgraph Gp equals to the number of colour classes existing on that 
subgraph. 
 

Crucial to the understanding of the algorithm is a notation of the depth and pruning 
formula. Basely, at the depth 1 we have all vertices, i.e. G1≡G. We are going to expand all 
vertices of a subgraph so that vertex is deleted from the subgraph after it is expanded. Another 
way is to have a cursor pointing to the vertex under analyses, so vertices in the front of that are 
excluded from the analyses / a subgraph of the current depth. Suppose we expand vertex v1. At 
the depth 2, we consider all vertices adjacent to v1 from the previous depth vertices, i.e. 
belonging to G1. Those vertices form a subgraph G2. At the depth 3, we consider all vertices 
(that are at the depth 2) adjacent to the vertex expanded in depth 2 etc. Let vd1 be the vertex we 
are currently expanding at the depth d. That is: 
 

Let’s say that Gd is a subgraph of G on a depth d that contains the following vertices: 
Vd=(vd1, vd2, …, vdm). The vd1 is the vertex to be expanded. 

Then a subgraph on the depth d+1 is Gd+1 = (Vd+1,E), where Vd+1=(vd+1 1, …, vd+1 k): ∀i vd+1 

i ∈ Vd  and (vd+1 i , vd1)∈ E. 
 

As soon as a vertex is expanded and a subgraph, which is formed by this expansion, is 
analysed, this vertex is deleted from the depth and the next vertex of the depth becomes active, 
i.e. will be expanded. 

The pruning formula is the next: If d –1 + Degree(Gd) ≤ CBC, where CBC is a size of the 
current maximum clique then we prune, since the size of the largest possible clique (formed by 
expanding any vertex of Gd) would be less or equal to CBC. If we are at depth 1 and this 
inequality holds then we stop; we have found the maximum clique. 

We can prove, that this pruning formula can be applied, by the following theorem: 
 
Theorem 1: If a degree of a subgraph of G formed by vertices existing on a d-th depth and 
induced by E is smaller or equal to the size of the current maximum clique minus (d – 1) then 
this subgraph cannot form a clique, which is larger than the already found. 
Prove: It is clear to see that (d - 1) equals to the number of vertices formed the d-th depth 
subgraph, i.e which where expanded on previous depths. Those d - 1 vertices are connected 
pairways and to each vertex of the subgraph of the d-th depth by the logic of the branch and 
bound algorithm. It will be possible to find a larger clique than the already found one if and 
only if this subgraph can contain a clique, which is larger than a size of the current maximum 
clique minus (d-1). If such clique exists then the maximal clique of the graph G will be the 
clique of the subgraph plus d-1 vertices selected on previous depths, which are connected to 
all vertices of the subgraphs by the branch and bound algorithms logic and this maximal clique 
will be larger than an already found, so it will be a new maximum one. So, the only statement 
we need to prove is: the Degree function’s value of the subgraph is never smaller than the 
maximum clique size that can be found on the subgraph, because then we can use in the 
pruning formula the degree function to estimate the size of the clique instead of finding it. The 
degree function gives a number of colours (colour classes) by definitions above and each 
colour class is an independent set of vertices existing on the depth. No more than one vertex of 
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each colour class can participate in the maximum clique by the independent set’s definition. 
Therefore the number of colours classes existing on the subgraph always equals or is bigger 
than a size of the maximum clique that can exist on the subgraph. ■ 

2.1.2 Colour classes and backtracking 
Here we are going to demonstrate a backtracking technique, which is proposed by Östergård 
[Östergård 2002], and how previously described colour classes can dramatically increase 
performance.  The initial backtracking idea of Östergård [Östergård 2002] is also based on the 
Carraghan and Pardalos algorithm [Carraghan and Pardalos 1990].  

The original Carraghan and Pardalos algorithm considers, first of all, all cliques that 
contain the first vertex v1 and could contain other graph vertices. Then it considers all cliques 
that contain v2 and could contain all other vertices except v1. Generally saying, it considers at 
the i-th step all cliques that contain vi and could contain vertices {vi+1, vi+2, ... ,vn}. This 
technique is nothing else than a standard branch and bound way of drilling a graph for finding 
the solution.  

The backtracking technique does the graph research in the opposite order, although the list 
of vertices on the i-th step is the same. First of all it considers all cliques that could be built 
using only vn. Then it considers all cliques that contain vn-1 and could contain vn, and so forth. 
The general rule – it considers at the i-th step all cliques that contain vi and could contain 
vertices {vi+1, vi+2, ... ,vn}. So we move from the n-th step to the first step decreasing the step 
number. Initially it looks like a slower technique in compare to the original Carraghan and 
Pardalos algorithm [Carraghan and Pardalos 1990], but it makes possible to introduce a new 
backtracking pruning technique speeding up the algorithm’s work. First of all, note that the 
backtracking vertices selection is used only on the “general” level – as soon as vertices are 
selected for the i-th backtracking step the same branch and bound technique is used. The 
branch and bound algorithm uses the same Carraghan and Pardalos pruning technique and the 
new backtracking pruning technique described below. The algorithm uses to remember the 
maximum clique found for each vertex at the highest level into a special array b. So b[i] is the 
maximum clique for the i-th vertex while searching backward. This numbers are used later by 
the following rule: if we search for a clique of size greater than s, then we can prune the search 
if we consider vi to become the (j + 1)-the vertex and j+ b[i] ≤ s [Östergård 2002]. Besides we 
can stop the backtracking iteration and go to the next one if a new maximum clique is found 
since the maximum clique size of a subgraph formed by {vi+1, vi+2, ... ,vn} is either equal to the 
maximum clique size of a subgraph formed by {vi+2, vi+3, ... ,vn} (the previous step) or is larger 
on 1. Please refer to the original Östergård article [Östergård 2002] for proves that this 
technique always gives the exact solution. 

Now we are going to introduce the “independent sets (or colour classes) backtracking 
technique. We do the same as described above, except we operate on the “independent sets” 
level of considering a graph. Initially we sort vertices by colour classes obtained by a heuristic 
vertex colouring algorithm, i.e. V = {Cn, Cn-1, ..., C1}, where Ci is the i-th colour (or we call it 
the i-th colour class). During the algorithm work we consider first of all all cliques that could 
be built using only vertices of the C1, i.e. of the first colour class. Then we consider all cliques 
that could be built using vertices of C1 and C2, i.e. of the first and second colour classes, and so 
forth. The general rule – we consider at the i-th step all cliques can that contain vertices of {Ci, 
Ci-1, ..., C1}. Note that here we again move from the first step to the n-th since colour classes 
are in the backward order. 
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Besides the algorithm uses to remember the maximum clique found for each step on the 
high level into a special array b. So b[i] is the maximum clique for a subgraph formed by {Ci, 
Ci-1, ..., C1} vertices while searching backward. This numbers are used later by the following 
rule: if we search for a clique of size greater than s, then we can prune the search if we 
consider vi to become the (j + 1)-th vertex and it belongs to the k-th colour class and j+ b[k] ≤ 
s. The stopping condition of the backtrack search iteration is also remains since the maximum 
clique size of a subgraph formed by {Ci, Ci-1, ..., C1} is either equal to the maximum clique 
size of a subgraph formed by {Ci-1, ..., C1} or is larger on 1. It is so because each time we just 
add a colour class, i.e. an independent set into addition to the analysed set of vertices. The new 
maximum clique cannot differ more than on 1 vertex from the maximum clique on the 
previous iteration since all added vertices are pairways nonadjacent and therefore there are no 
two or more vertices which are adjacent and can be used / added to a new maximum clique. 

Note, that it is important to sort vertices as we have shown it at the start of the description: 
V = {Cn, Cn-1, ..., C1}, i.e. first of all in the new sorted order vertices of the n-th colour class 
should appear, then vertices of the (n-1)-th colour class and so forth. This will speed-up the 
Degree function calculation - instead of calculating the degree of a subgraph each time on a 
depth we will calculate it only once, when the depth is formed and later only adjust this value 
by the following rule: if the next vertex on the depth to be expanded is from the same colour 
class as the previous one then the degree remains the same otherwise the degree should be 
decreased by 1 (there are no more vertices from the previous vertex’ colour class and it is 
eliminated). 
 
Algorithm for the maximum clique problem – “VColor-BT-u” 
CBC - current best (maximum) clique 
d – depth 
i – index of the currently processed colour class in the backtracking 
b – array of the backtrack search results 
C(vi) – a function that return a colour class to which the vertex vi belongs 
Gd – subgraph of G formed by vertices existing on the depth d 
 
Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so that first 
vertices belong to the last found colour class then vertices of the previous to last colour class 
and so forth – vertices at the end should belong to the first colour class. Note: It is advisable to 
use a special array to solve order of vertices to avoid a work by changing the adjacency 
matrix during reordering vertices. 
Step 1. Backtracking: For each colour class starting from the first one up to the last, i.e. i = 
i+1: 

Step 1.1. Subgraph building. Form the first depth by selecting all vertices of the current 
colour class under the analysis and other colour classes, whose index is smaller than the 
index of the current colour class. 
i = to the index of the current colour class. 
Step 1.2. Run the subgraph research: Go to step 2 

Step 2. Initialization: d = 1. 
Step 3. Control: If the current depth can contain a larger clique than already found: 

Step 3.1. If d –1 + Degree(Gd) ≤ |CBC| then go to the step 6. 
Step 3.2. if C(vd,1)>i then If d –1 + b[C(vd,1)] ≤ |CBC| then go to the step 6. 
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Step 4. Expand vertex: Get the next vertex to expand. If all vertices have been 
expanded or there are no vertices then control if the current clique is the largest one. 
If yes then save it as the maximum clique and go to the step 1.3. 
Step 5. The next depth: Form the new depth by selecting all remaining vertices that 
are connected to the expanding vertex from the current depth;  

d = d + 1; 
Go to the step 3. 

Step 6. Step back:  
d = d – 1;  
Delete the expanded vertex from the analyse on this depth;  
if d = 0, then go to the step 1.3, otherwise go to the step 3. 

Step 1.3. Completing iteration: b[i] =CBC, go to the step 1. 
End: Return the maximum clique. 
Steps from 2 to 6 can be considered as a subprocedure that the backtracking runs iteratively in 
a cycle for each colour class. 

2.1.3 Examples 
In this chapter we are going to demonstrate some examples of the described algorithm work. 
The same graphs will be used as for the previous algorithm. 

 

Figure 1. A graph for the example number 1 

Description of the example graph 

Consider graph shown in Figure 1. It is a graph that is built using the Moon-Moser type 
subgraph containing vertices 1, 2 and 5 for the first class and vertices 6, 4 and 7 for the second 
class. Vertices 3, 9 and 8 are used to make the graph’s structure more complex and contain 
larger cliques that the Moon-Moser subgraph produces. 
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Algorithm’s steps 

We determine colour classes one by one as long as uncoloured vertices exist in a greedy 
manner. Vertices are also resorted in an order those are added into colour classes. So, vertex 
colouring gives the following result:  

Colour class 1={1, 2, 5, 9} 
Colour class 2={3, 4, 6,7} 
Colour class 3={8};  
The order of vertices is the following: {8, 7, 6, 4, 3, 9, 5, 2, 1} 
 

Let’s use the following notation in the example: CBC – the current best clique and |CBC| is its 
size. A grey vertex in the table below is a vertex under analysis and vertices in front of that are 
vertices that have been already analysed and cannot participate in the forming maximum 
clique any longer. So instead of deleting vertices we will just process them one by one in the 
example by moving a cursor, which always point to the grey vertex. A grey vertex in the table 
below is a vertex under analysis and vertices in front of that are vertices that have been already 
analysed and cannot participate in the forming maximum clique any longer. 
 

Steps of the main algorithm’s part (finding the maximum clique) are described in the next 
table. 

Table 1. “VColor-BT-u” - Example / Steps of finding the maximum clique 

Depth Subgraph Step’s description 
Depth 0: 8,7,6,4,3, 9,5,2,1 To do: Start a backtrack search from the first class by selecting vertices of it into 

the depth 1 and run main steps. 
i = 1 
 

Depth 1: 9,5,2,1 |CBC| is 0; Degree = 1, since only first colour class’ vertices exist.  
d-1+Degree=1-1+1=1. Since 1>|CBC| we can continue. 
 
C(v11)=1 since v11 belongs to the colour class number 1. The backtracking 
pruning is skipped since C(v11) = i. 
 
Go to the next depth: the grey vertex vdi (v11) to be expanded. 
 

Depth 2: ∅ The depth doesn’t contain any vertices ⇒ Check if the formed clique is the 
largest one: The formed clique is {9} and |CBC| =0, so CBC becomes {9}, 
size=1.  
b[1] =1. Go to the next iteration of the backtrack search. 
 

Depth 0: 8, 7,6,4,3,9,5,2,1 To do: Start the next step of the backtrack search by selecting into the depth 1 
vertices of colour classes 1 and 2, and run main steps. i = 2 
 

Depth 1: 7,6,4,3,9,5,2,1 |CBC| is 1; Degree = 2, since existing vertices belong to colour classes 1 and 2.  
d-1+Degree=1-1+2=2. Since 2>|CBC| we can continue. 
 
C(v11)=2 since v11 belongs to the colour class number 2. The backtracking 
pruning is skipped since C(v11) = i. 
Go to the next depth: the grey vertex vdi (v11) to be expanded. 
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Depth 2: 9,5,2,1 |CBC| is 1; Degree = 1, since all vertices belong to the colour class number 1.  
d-1+Degree=2-1+1=2. Since 2>|CBC| we can continue. 
 
C(v21)=1 since v21 belongs to the colour class number 1 => We can check the 
backtrack pruning condition: 
d –1 + b[C(v21)] = 2-1+1 = 2 >|CBC| we can continue. 
 
Go to the next depth: the grey vertex vdi (v21) to be expanded. 
 

Depth 3: ∅ The depth doesn’t contain any vertices ⇒ Check if the formed clique is the 
largest one: The formed clique is {7, 9} and |CBC| =1, so CBC becomes {7, 9}, 
size=2.  
b[2] =2. Go to the next iteration of the backtrack search.  
 

Depth 0: 8,7,6,4,3,9,5,2,1 To do: Start the next step of the backtrack search by selecting into the depth 1 
vertices of colour classes 1, 2 and 3, and run main steps. i = 3 
 

Depth 1: 8,7,6,4,3,9,5,2,1 |CBC| is 2; Degree = 3, since vertices belong to colour classes 1, 2 and 3.  
d-1+Degree=1-1+3=3. Since 3>|CBC| we can continue. 
 
C(v11)=3 since v11 belongs to the colour class number 3. The backtracking 
pruning is skipped since C(v11) = i. 
 
Go to the next depth: the grey vertex vdi (v11) to be expanded. 
 

Depth 2: 7,3,9,5,2 |CBC| is 2; Degree = 2, since all vertices belong to colour classes 1 and 2.  
d-1+Degree=2-1+2=3. Since 3>|CBC| we can continue. 
C(v21)=2 since v21 belongs to the colour class number 2 => We can check the 
backtrack pruning condition: 
d –1 + b[C(v21)] = 2-1+2 = 3 >|CBC| we can continue. 
 
Go to the next depth: the grey vertex vdi (v21) to be expanded. 
 

Depth 3: 9,5,2 |CBC| is 2; Degree = 1, since all vertices belong to the colour class number 1.  
d-1+Degree=3-1+1=3. Since 3>|CBC| we can continue. 
 
C(v31)=1 since v31 belongs to the colour class number 1 => We can check the 
backtrack pruning condition:  
d –1 + b[C(v31)] = 3-1+1 = 3 >|CBC| we can continue. 
 
Go to the next depth: the grey vertex vdi (v31) to be expanded. 
 

Depth 4: ∅ The depth doesn’t contain any vertices ⇒ Check if the formed clique is the 
largest one: The formed clique is {8, 7, 9} and |CBC| =2, so CBC becomes {8, 7, 
9}, size=3.  
b[3] =3. Go to the next iteration of the backtrack search. 
 

Depth 0: 8,7,6,4,3,9,5,2,1 Since all colour classes are analysed the algorithm stops. 
 

The maximum clique is {8, 7, 9}, size = 3. 
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Analysis of this example 

The algorithm needed just 17 steps to find the maximum clique from the graph of 8 vertices. 
This result is very good, since the maximum clique finding problem is NP-hard and a lot of 
algorithms just do an exhaustive search or need a sufficient number of steps to find a solution. 
This graph is not so “good” for applying with this type of algorithm – as you have probably 
marked the backtracking pruning formula never worked in this example. At the same time it is 
possible to learn a lot from this example as well. It demonstrated to us a power of using: 
 
o The backtracking with independent sets – using of backtracking with independent sets has 

a set of advantages. First of all we do less iterations since select all vertices of a class. At 
the same moment the number of steps inside each iteration do not increase since colour 
class’ vertices are “parallel”, i.e. cannot be included into the same maximum clique and 
have equal b[i] value, since are coloured into the same colour. 

o The stopping condition of the backtracking iteration – We have skipped a lot of steps 
using a rule that if we have found a new maximum clique then we can go directly into the 
next backtracking iteration, since the current iteration’s subgraph cannot produce any 
larger clique. This stop condition is a very important technique in addition to the 
backtracking pruning rule. 

2.2. Preliminary algorithm verification on DIMACS graphs 

In this section we are going to present results showing a general efficiency of the previously 
described algorithm to ensure that the algorithm is worth to implement, research and improve 
further. 

A very simple and effective algorithm for the maximum algorithm problem proposed by 
Carraghan and Pardalos [Carraghan and Pardalos 1990] was used as a benchmark in the 
Second DIMACS Implementation Challenge [Johnson and Trick 1996]. That’s why we are 
going to use it in the benchmarking. Besides, using of this algorithm as a benchmark in 
advised in one of the DIMACS annual reports. Therefore we used this algorithm to compare 
with the new algorithm. Besides we have chosen one more algorithm proposed by Östergård 
[Östergård 2002] to participate in the comparison test since this algorithm is reported to be the 
quickest at the moment and this algorithm is also another modification of Carraghan and 
Pardalos algorithm [Carraghan and Pardalos 1990]. Moreover our algorithm was also based on 
its ideas. 

Results are presented as a ratio of algorithms spent times on finding the maximum clique – 
so the same results can be reproduced on any platforms. Compared algorithms were 
programmed using the same programming language and the same programming technique (it 
was possible since the new algorithm and Östergård [Östergård 2002] algorithm are just 
modifications of Carraghan and Pardalos algorithm). The greedy algorithm was used to find a 
vertex-colouring. 

Preliminary tests were conducted on DIMACS graphs, which are a special package of 
graphs used in the Second DIMACS Implementation Challenge [Johnson and Trick 1996] to 
test different algorithms and find out what of them are the best one and on what types of 
graphs.  

The following notation is used in the table 2 below: 
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PO – time needed to find the maximum clique by Carraghan and Pardalos [Carraghan and 
Pardalos 1990] algorithm divided by time needed to find the maximum clique by Östergård 
[Östergård 2002] algorithm. 

VColor-BT-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990] algorithm divided by time needed to find the maximum clique 
by the invented algorithm. 

Table 2. Benchmark results at DIMACS graphs – ratios of time spent on the maximum clique finding / 
the base algorithm’s time divided by a corresponding algorithm’s time 

Graph name Edge 
density Vertices Maximum 

clique size PO VColor-BT-u 

brock200_1 75% 200 21 2.1 8.4 
brock200_2 50% 200 12 2.3 4.0 
brock200_3 61% 200 15 1.2 3.2 
brock200_4 66% 200 17 2.0 6.0 
c-fat200-5 43% 200 58 58.2 49.2 
c-fat500-1 4% 500 14 0.7 1.0 
c-fat500-2 7% 500 26 1.2 2.2 
c-fat500-5 19% 500 64 72.1 85.4 
hamming6-2 90%   64 32 493.0 493.0 
hamming8-4 64% 256 16 247.8 7848.3 
johnson8-4-4 77%   70 14 11.9 53.3 
johnson16-2-4 76% 120 8 4.4 20.9 
keller4 65% 171 11 2.8 11.8 
MANN_a9 93%   45 16 12.5 42 400.0 
p_hat300-1 24% 300 8 1.0 1.3 
p_hat300-2 49% 300 25 2.0 6.6 
p_hat500_1 25% 500 9 0.9 1.5 
p_hat700_1 25% 700 11 1.1 1.9 
sanr400_0.7 70% 400 21 1.7 5.6 
2dc.256* 47% 256 7 4.6 14.5 

* - An original task for those graphs is to find the maximum independent set, so the 
maximum clique is found from the complement graph. 

 
For example, 20.9 in the “VColor-BT-u” column means that the algorithm proposed in this 

paper is 20.9 times faster than the base algorithm, which is Carraghan and Pardalos one. 
 
The following table provides a brief description of the used graphs: 

Table 3. Description of DIMACS graphs 

Graph type Description 

Bro 
Instances from Mark Brockington and Joe Culberson’s generator that attempts to “hide” 
cliques in a graph where the expected clique size is much smaller. For more instances, see 
their generator in graph/contributed/brockington. From Mark Brockington. 

CFat Problems based on fault diagnosis problems [Berman and Pelc 1990]. For more instances, 
see the generator in graph/contributed/pardalos. From Panos Pardalos. 

Ham* Another coding theory problem. A Hamming graph with parameters n and d has a node 
for each binary vector of length n. Two nodes are adjacent if and only if the 
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corresponding bit vectors are hamming distance at least d apart. For more instances, see 
the generator in graph/contributed/pardalos. It has been noted by participants that n--2 
graphs have a maximum clique of size 2n-1. For a proof of this, see the note in 
graph/contributed/bourjolly/hamming. From Panos Pardalos. 

Joh* 

Problems based on problem in coding theory. A Johnson graph with parameters n, w, d 
has a node for every binary vector of length n with exactly w 1s. Two vertices are 
adjacent if and only if their hamming distance is at least d. A clique then represents a 
feasible set of vectors for a code. For more instances, see the generator in 
graph/contributed/Pardalos. From Panos Pardalos. 

Kel* 

Problems based on Keller’s conjecture on tilings using hypercubes [Lagarias and Shor 
1992]. For more instances (though they get very large very fast) see either the generator 
in graph/contributed/shor or the generator in graph/contributed/pardalos. From Peter 
Shor. 

MANN* 
(Stein) 

Clique formulation of the set covering formulation of the Steiner Triple Problem. Created 
using Mannino’s code to convert set covering problems to clique problems. From Carlo 
Mannino. 

PHat* 

Random problems generated with the p hat generator which is a generalization of the 
classical uniform random graph generator. Uses 3 parameters: n, the number of nodes, 
and a and b, two density parameters verifying 0 ≤ a ≤ b ≤ 1. Generates problem instances 
having wider node degree spread and larger clique sizes [Gendreau et al 1993]. From 
Patrick Soriano and Michel Gendreau. 

San* Instances based on Sanchis paper [Sanchis 1992] From Laura Sanchis 
laura@cs.colgate.edu 

SanR* These are random instances with sizes similar to those in San. From Laura Sanchis. 
2dc* Graphs From Two-Deletion-Correcting Codes. From N. J. A. Sloane. 

 
The first result to be highlighted in the previous results’ table is that on most instances the 

“VColor-BT-u” algorithm is the quickest one. The only instance, where Östergård [Östergård 
2002] algorithm is the best one, is the “c-fat200-5”. This occurs because the backtracking 
pruning technique is decreasing the performance of the applying colour classes on those 
instances, but the “VColor-BT-u” is still close. Another interesting result is an extremely good 
performance of new algorithms for “MANN” and “hamming” type graphs. Those graphs are 
again graphs of the high density. 

2.3 Algorithm’s analysis 

The previous section that contains preliminary tests for the invented algorithm has 
demonstrated its efficiency and enables further researches of the algorithm.  

2.3.1 Colour classes based estimation 
The first element to be analysed is a concept of using colour classes instead of vertices in the 
pruning formulas described so far. The theorem proved earlier ensures that this replacement is 
exactly correct and this allows estimating a potential size of the maximum clique of a graph’s 
branch under analyses much better than the number of remaining vertices. The question that 
will be asked below: is it enough and how close the algorithm could be in its estimations using 
the colour classes concept. An idea of using a chromatic graph number as an upper bound 
during the maximum clique search is widely known [Babel and Tinhofer 1990, Wood 1997] 
and looks to be a natural way for such estimations because the maximum clique by its 
definition requires a special colour for each vertex, i.e. the maximum clique size cannot be 
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larger than a chromatic number. There is a “sandwich” theorem [Knuth 1994] that is focused 
on a Lovasz number: θ(Ĝ), which is said to be a sandwich between the minimum number of 
colours required (the chromatic number - χ(G) ) and a size of the maximum clique - w(G): 

 
w(G) ≤ θ(Ĝ) ≤ χ(G), 

 
where Ĝ is the complement to G graph. The Lovasz number could be calculated in a 

polynomial time [Bomze et al. 1999]. First of all this theorem shows that the chromatic 
number is always larger that the maximum clique size as it was stated before. Besides it 
demonstrates that there could be some distance between those numbers. A size of this distance 
is a core element defining efficiency of the proposed algorithms. The smaller this distance the 
faster algorithms are. Fortunately, in compare with other (best) well-known algorithms, 
independently of this distance, the pruning formulas based on the vertex-colouring is able to 
produce a faster solution, especially on dense graphs, where it is practically the only pruning 
technique that keeps working. The smaller density of a graph the more depending on this 
distance becomes the algorithm in comparing with others. This dependency is explained by 
considering a question: if the maximum clique is already found then how fast the algorithm 
could prove in someway that it is the maximum one. So the main thing that makes our 
problem so hard in many cases is not the problem of finding of the maximum clique but the 
problem of proving that it is the maximum. The closer a size of the maximum clique to a 
chromatic number, the more efficiently the algorithms prune and the faster it is possible to 
prove that the found clique is the maximum one. 

 
Graphs “easy” to solve 
 
As it was shown before, the “best” graphs to be solved by the new algorithm are graphs where 
the chromatic number is close to the maximum clique size. There are a sufficient number of 
graphs’ classes where it is true. The most interesting example of such graphs, if we consider 
the hardness to solve it by other algorithms, is a graph with a lot of semi-parallel structures 
like Moon-Moser graphs. The more such structures are there the easier this graph is to solve 
by the introduced algorithm in compare with other algorithms since the complexity of such 
structures are eliminated by using the vertex-colouring strategy since the vertex-colouring 
degree function could produce a closer estimation for a potential clique size in such 
(sub)graphs than other techniques. 

 
Graphs “hard” to solve 
 
Unfortunately there are much more graphs / graph classes where the chromatic number 
sufficiently differs from the maximum clique size [West 2001]. It is even possible to construct 
a graph with the chromatic number as large as you would like while the maximum clique size 
remains the same. See for example the “Mycielski’s construction” [West 2001] that does it. 
Such graphs should be “hard” to solve since the invented pruning technique will not help to 
avoid producing the combinatorial branch and bound search although the situation should be 
still better than the pruning strategy invented by Carraghan and Pardalos [Carraghan and 
Pardalos 1990a]. Unfortunately this difference will not be enough for a sufficient change in a 
time needed to find the maximum clique. Another property of a graph “hard” to solve in 
addition to the previous one is to have as less parallel structure as possible. Otherwise vertices 
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producing a large chromatic number would be eliminated during first steps and a graph will 
degenerate to the “easy” to solve case. 

2.3.2 Overall algorithm’s structure and backtracking 
The second element to be analysed is the implemented transition of the backtracking search 
from the vertices level to the colour classes’ one regarding the colour classes ordering 
strategy. At first glance it looks like such transition moves the precision grain from a better 
estimated one to a much rougher. The vertices level estimation (the backtracking pruning rule) 
of course is not exact as the algorithm cuts branches basing on the measure showing how large 
clique can be produced using a vertex and including remaining upto the last vertex, but some 
vertices among remaining are filtered out on different depths by the forming maximum clique 
vertices (see the maximum clique definition). Therefore the actual maximum clique that can 
be formed using depth’s vertices is usually much smaller. Despite that the colour classes’ level 
backtracking estimation still looks to be weaker since more vertices are included to the 
measuring process and the probability that remaining classes’ vertices are connected (i.e. form 
a large clique) is lower. Fortunately it is not the case. Notice that the maximum clique size 
during the backtracking process is never decreased, but is monotonously increasing. The 
colour classes’ definition says that no more than one vertex of the same colour can be used to 
form a clique and therefore the size of the backtracking process’ clique cannot increase if 
those vertices are analysed one by one. At the same time the size of that backtracking 
maximum clique cannot decrease by the backtracking search definition. Therefore treating 
those colour class vertices at the same time (in one backtracking iteration) gives us the same 
estimation as treating those one by one, so using colour classes instead of individual vertices 
generates the same estimation grain. 

Notice also the colour classes sorting strategy. Those are sorted in the colour number 
decreasing order, i.e. guarantees that each previous colour class’ vertex is connected at least to 
one vertex of each following colour class, because the vertex wasn’t included into any of those 
following colour classes having a smaller number than the vertex colour class by the ordering 
strategy. It means that at the moment of colouring a vertex to be considered those following 
colour classes already contained some vertices preventing including this vertex into those. 
Therefore during the backtracking strategy the algorithm considers all following vertices (after 
the active one) at the first level, so the pruning estimation described so far holds at least on 
that level and is starting to loose actuality with moving to other depths. 

Another interesting fact to notice is the overall structure of the algorithm - the heuristic 
colouring is just reused during the algorithm work time, i.e. is formed only once and thereafter 
is concurrently used instead of re-colouring on each depth like some other algorithms do 
[Tomita and Seki 2003]. This strategy has pros and contras and the advantage element will be 
used in the following subchapter called “further improvements”. 

2.4 Further improvements for certain graph types 

A vertex colouring problem is a NP-hard problem therefore the maximum clique problem is 
using a heuristic algorithms that doesn’t guarantee producing an optimal solution (the 
minimum number of colours). Notice that there are different heuristic algorithms for solving 
the colouring problem. Generally saying the more time is spent on searching a solution the 
better result is found. So far the greedy colouring was used to obtain a heuristic solution in 
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most papers regarding the maximum clique finding problem [Kumlander 2005, Tomita and 
Seki 2003, Östergård 2002]. A complexity of this algorithm is approximately O(V2) depending 
on the algorithm’s structure (memory use). The primary reason of using this algorithm as one 
producing a good enough solution is minimising the time spent on finding the maximum 
clique (as the colouring subtask time is included into the overall timing) knowing that there 
could be a sufficient gap between a colours classes’ number and the maximum clique size as it 
was described in the previous subchapter. Moreover sometimes the vertex colouring subtask is 
rapidly re-run – see for example Tomita and Seki algorithm [Tomita and Seki 2003] re-
obtaining colours for each depth and that is why sometimes the complexity of the used 
heuristic colouring algorithm affects the overall complexity greatly. 

The algorithm proposed in this paper obtains colours only once and this fact opens a 
possibility to use more complex colouring algorithms if those will provide less colours, as the 
time spend on finding colouring will be included into the overall time only once, but the effect 
would be rapid in the combinatorial maximum clique search. Notice again that certain 
heuristic algorithms do produce a better solution only on certain types of graphs. Therefore an 
artificial intelligence principles similar to described in [Kumlander 2006] could be used to 
decide which colouring strategy suits best for a particular graph type. 

Returning to the algorithm modification to be proposed the following heuristic algorithm 
and its implementation are to be suggested: instead of using the greedy algorithm it can be a 
good idea to use DSatur colouring strategy [Brelaz 1979] that is known to produce less 
colours in compare to the greedy one. DSatur (degree of saturation largest first) is a 
sequential colouring algorithm where the saturation degree defined as a number of colours a 
vertex is adjusted to. The algorithm identifies a vertex with the maximum saturation degree 
among uncoloured at each step and colours it with the least possible colour for that vertex (in 
its coloured neighbourhood). If a saturation degree will be equal for several vertices then the 
number of uncoloured neighbours is advised to be the next measure to use for the choice. 

The saturation degree core idea is to try minimizing probability of setting an incorrect 
colour (i.e. a colour that will increase the number of colours required to colour a graph) by 
setting colours to a vertex with a maximum number of identified restrictions, which are 
colours of already coloured neighbours. The algorithm can be described in pseudo-code as the 
following: 

Let’s say that we have n vertices, W will be uncoloured vertices and Colour(v) is a 
function that returns a colour already assigned to a vertex v. 
 

While W ≠ Ø  (n steps) 
Find a vertex v ∈ W with a maximum saturation degree 
Find a minimum colour that is not used in neighbourhood of v: 

k := min (i | there is no s : Colour(s) = i , (s,v) ∈ E) 
Colour v with the k colour 
W = W \ v 
 

The algorithm is known to have O(V3) complexity, but one more improvement could be 
done knowing that DSatur is used together and before the maximum clique finding algorithm 
like the described so far one. “VColor-BT-u” algorithm uses intensively memory to select 
vertices to different depths. An array is usually allocated to be used as a data structure to 
handle depths. Its size is N x N, where N is a number of vertices and this is a structure 
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(memory) that can be used during the colouring process to decrease DSatur complexity from 
O(V3) to O(V2) in the following way: 

The main task is to make the “Find a vertex … with a maximum saturation degree” and the 
“Find a minimum colour” tasks to have O(V) complexity, i.e. to be just a simple cycle. It is 
possible if information on neighbour colours is saved and reused later for each vertex. A 
“neighbour colours for each vertex” can be defined as colours that are already used for 
vertices that are adjacent to this vertex. Let’s denote early described array as S. The modified 
DSatur algorithm is: 
 

W := V 
N := |V| 
While W ≠ Ø  (n steps) 

vmax := max( v | v ∈ W, ∀ t: t <> v, S (v , N) >= S(t, N) ) 
k := min (i | there is no j : j < i, S (vmax , j ) = 0) 
Colour vmax with the k colour 
W = W \ v 
 
For all v ∈ W and (vmax, v) ∈ E 
 If S (v , k ) = 0 then S (v , N ) := S (v , N ) + 1 
 S (v , k ) := 1 

 
So, S (v , N) element contains a number of neighbour colours for a vertex v and S (v , k ) 

equals to 1 if any vertex connected to v is coloured using the k-th colour and equals to 0 
otherwise. 

Notice that the proposed maximum clique algorithm requires re-ordering of coloured 
vertices by colour classes also and this task should be done either before or during the process 
of obtaining colour classes. Such resorting is never more complex than O(V2). 

3. TESTS 

In this section final testing results are presented showing efficiency of the described 
algorithms. Results are presented again as a ratio of algorithms spent times on finding the 
maximum clique – so the same results can be reproduced on any platforms. Tests are 
conducted on DIMACS graphs, which are a special package of graphs used in the Second 
DIMACS Implementation Challenge [Johnson and Trick 1996] to test different algorithms and 
find out what of them are the best one and on what types of graphs. 

The following notation is used in the table 4 below: 
PO – time needed to find the maximum clique by Carraghan and Pardalos [Carraghan and 

Pardalos 1990] algorithm divided by time needed to find the maximum clique by Östergård 
[Östergård 2002] algorithm. 

VColor-BT-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990] algorithm divided by time needed to find the maximum clique 
by the invented algorithm. 
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DSColor-BT-u – time needed to find the maximum clique by Carraghan and Pardalos 
[Carraghan and Pardalos 1990] algorithm divided by time needed to find the maximum clique 
by the invented algorithm. 

Greedy colors – number of colors (color classes) produced by the greedy coloring. 
DSatur colors – number of colors (color classes) produced by DSatur coloring. 
 

Table 4. Benchmark results at DIMACS graphs –colour classes and ratios of time spent on the maximum 
clique finding / the base algorithm’s time divided by a corresponding algorithm’s time. 

Graph name Edge 
density Vertices Maximum 

clique size 
Greedy 
colors PO VColor-BT-

u 
DSatur 
colors 

DSColor
-BT-u 

brock200_1 75% 200 21 54 2.1 8.4 51 4.6 
brock200_2 50% 200 12 36 2.3 4.0 31 3.0 
brock200_3 61% 200 15 44 1.2 3.2 39 2.7 
brock200_4 66% 200 17 49 2.0 6.0 44 3.7 
c-fat200-5 43% 200 58 68 58.2 49.2 84 2.0 
c-fat500-1 4% 500 14 14 0.7 1.0 14 1.0 
c-fat500-2 7% 500 26 26 1.2 2.2 26 2.2 
c-fat500-5 19% 500 64 64 72.1 85.4 64 90.1 
hamming6-2 90%   64 32 32 493.0 493.0 32 493.0 
hamming8-4 64% 256 16 32 247.8 7848.3 22 5674.1 
johnson8-4-4 77%   70 14 19 11.9 53.3 17 60.2 
johnson16-2-4 76% 120 8 14 4.4 20.9 17 11.6 
keller4 65% 171 11 26 2.8 11.8 23 8.8 
MANN_a9 93%   45 16 21 12.5 42 400.0 18 81 354.0 
p_hat300-1 24% 300 8 28 1.0 1.3 22 1.5 
p_hat300-2 49% 300 25 55 2.0 6.6 42 26.2 
p_hat500_1 25% 500 9 43 0.9 1.5 33 1.2 
p_hat700_1 25% 700 11 55 1.1 1.9 41 2.2 
sanr400_0.7 70% 400 21 89 1.7 5.6 83 5.8 
2dc.256* 47% 256 7 13 4.6 14.5 9 213.1 

* - An original task for those graphs is to find the maximum independent set, so the 
maximum clique is found from the complement graph. 

 
For example, 20.9 in the “VColor-BT-u” column means that the algorithm proposed in this 

paper is 20.9 times faster than the base algorithm, which is Carraghan and Pardalos one. 
Graphs in the previous table as the same as described in the table 3. 

The modified algorithm is not better than the core algorithm in many cases although the 
number of produced colours is always slightly smaller and this allows concluding that there 
are a lot of graphs where a small decrease of colours doesn’t produce any direct advantages. 
At the same time the modified algorithm produces a huge difference for some graph types – 
see for example “2dc.256” graph. Therefore there is a certain need for artificial intelligence 
type rules for selecting one or another colouring strategy or even a maximum clique finding 
algorithm to be applied [Kumlander 2006]. 

4. CONCLUSION 

In this paper a new adjusted algorithm for the maximum clique finding is presented. It is based 
on the heuristic vertex-colouring (i.e. uses colour classes) and the backtracking search. In the 
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first part of the paper a general idea of using colour classes during the maximum clique 
finding is explained. Thereafter an idea of backtracking on colour classes’ level is proposed. 
The actual algorithm is described in the meta-programming language. Besides a set of 
comparison tests is conducted on DIMACS graphs using Carraghan and Pardalos algorithm 
[Carraghan and Pardalos 1990] as it was advised by the Second DIMACS Implementation 
Challenge [Johnson and Trick 1996] and Östergård algorithm [Östergård 2002], which is 
reported to be one of the best at the moment. The new algorithm was the quickest on the major 
graph types – there were only once instance “c-fat200-5” where it was slightly slower than 
Östergård algorithm. For the “MANN” instance it was around 4 000 time faster than others.  

The proposed algorithm uses a heuristic vertex colouring only once before the core 
algorithm starts and this introduces a possibility to use more advanced techniques for finding 
the colouring rather than the greedy one. Moreover the algorithm uses intensively memory and 
those allocated spaces can be used by a colouring algorithm as well. The paper contains a 
modification of the algorithm by using DSatur colouring strategy, which is no more complex 
than O(V2) including this colouring sub-algorithm description. The modified algorithm is not 
better than the core one in many cases as it was expected in the discussion subchapter of the 
analytical section of this paper, but is worth to apply on some graphs producing a solution up 
to 15 times faster. Therefore artificial intelligence principles are needed to select a right 
modification of the core algorithm to be applied. 

There are one additional advantage of the proposed algorithm in compare to many others 
for finding the maximum clique – it is very simple from the implementation point of view. 
This makes it possible to grant the algorithm the title of “practical” and effectively apply as a 
subroutine in many real live problems as data mining, pattern recognition, artificial 
intelligence and many others. 
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