
IADIS International Journal on WWW/Internet

Vol. 18, No. 2, pp. 16-28

ISSN: 1645-7641

16

DISCO: WEB SERVICE DISCOVERY CHATBOT

Bahareh Zarei and Martin Gaedke

Technische Universität Chemnitz. Chemnitz, Germany

ABSTRACT

An increasing number of companies offer their capabilities as Web services and publish them through

public registries. Such Web services enable users to access and manipulate online data programmatically.

Moreover, they can be deployed in service-based systems (SBS) or composite web applications and

mashups to offer value-added services. A crucial step in deploying Web services is the Web service

Discovery. Selecting the best Web service candidates to address the needs of service requesters (e.g., SBS

designers) is an important task in SBSs and can influence the quality of the resulting composite web

application. So far proposed solutions for addressing this challenge, which are mainly categorized into

Syntactic-based and Semantic-based, are either too complex for end-users which hinders their large-scale

adaptation or suffer from low precision and recall. Considering the recent trend of shifting the development

activities more and more towards the end-users, we propose an approach based on chat-bot technology to

allow end-users to select a set of best-fitting Web services according to their goals. Conversational

Interfaces also known as chatbots aim at providing users a more natural framework to interact with web

applications and devices. The advantage of DISCO compared to the state-of-the-art approaches is

leveraging the natural language as the communication medium and alleviating the need for end-users to

have technical knowledge about the service’s structure and location. We conducted sets of experiments by

recruiting 8 test subjects to query the chatbot. The results achieve high precision and recall.

KEYWORDS

Conversational Interface, Chat-bot, Web service Discovery, Service-Based Systems, Natural Language

Processing, Query Expansion

1. INTRODUCTION

The last decade has witnessed an exponential growth in the number of published Web services

on the web. Users are enabled to build their desired applications leveraging the Web services

published in public and private registries by service developers and major Web service provider

companies such as Amazon and Google (Zhang et al., 2018). According to ProgrammableWeb1

1 https://programmableweb.com

https://www.programmableweb.com/

DISCO: WEB SERVICE DISCOVERY CHATBOT

17

(PW), the number of registered Web services in this public registry as of 2019 was reported

more than 22,000. Every year 2,000 new Web services and Web APIs are added to PW. The

reasons behind this large-scale adoption of Web services are reducing time and effort required

for building composite applications, proposed simplicity, reusability, and higher quality of the

resulting system (Bano et al., 2014).

Generally, the Web service life cycle consists of three phases: 1) service publication, in

which service providers publish the Web services on registries 2) service discovery and

selection, in which users find and select a set of best-fitting Web services and 3) service

execution, in which the selected Web service is invoked to perform a task (Jonquet and Cerri,

2006). In this paper, we focus on the service discovery phase. Providing automated and scalable

methods for identifying the most relevant Web services based on the user’s description plays an

important role in the quality of SBSs. Moreover it can influence the effectiveness of Web service

compositions and guarantee Web service’s full potential employment (Klusch, 2018, Bhardwaj,

2015).

Web service discovery approaches have been evolving during the last years. Researchers

focus on various research directions to address this challenge by considering factors such as

service description language or service goals. Most of the solutions can be categorized into two

categories: syntactic-based and semantic-based (Zhang et al., 2018). The syntactic-based

solutions such as the keyword-based approaches have proven to be inaccurate. Querying the

repository based on the keywords in the user’s query can result in many irrelevant Web services,

i.e., low precision. On the other hand, some semantically related Web services are not

discovered resulting in a reduced recall value (Bhardwaj, 2015). In comparison, the

semantic-based approaches exhibit better performance compared to syntactic-based. Describing

Web services using Semantic Annotations for WSDL (SAWSDL) and ontology-based

approaches (Fariss et al., 2018) are examples of semantic-based Web service discovery

solutions. However, the complexity of such approaches hinders their large-scale adaptation for

end-users without prior knowledge about SBSs or Web service development.

Leveraging natural language will reduce the complexity posed on users. Natural language

and conversational interfaces as found in personal assistants such as Siri and Amazon Alexa

provide a well-known medium for user’s interactions and deliver a high level of usability (David

Yoffie et al., 2018). Conversational interfaces a.k.a chatbots are computer programs able to

emulate a human-like conversation with users to provide specific services (Bapat et al., 2018).

Chatbots bring several advantages for users such as reducing the required time and effort to

perform a task up to 60% and increasing the retrieval accuracy. Moreover, Chatbots can engage

users in conversations according to their conversation flow and direct them towards more

informative interactions (Abdul-Kader and Woods, 2015, Fuckner, Barthès and Scalabrin,

2013).

Having those advantages in mind, we propose DISCO a chatbot capable of understanding

the service requester's queries. With the help of the Natural Language Understanding module

(NLU), the key parameters required to discover the intended Web services such as Web service

domain and operations, are extracted from the query. In the case of incomplete or unclear inputs,

DISCO initiates conversations with service requesters to guide them towards more informative

input. Finally, the chatbot invokes the best candidate Web services and generates reasonable

responses.

The main contribution of this research is proposing DISCO as a domain-specific

conversational interface for service discovery. This solution is not reliant on the semantic

annotations of the services and provides a user-friendly interface based on natural language.

IADIS International Journal on WWW/Internet

18

Moreover, a prototype of the solution is implemented, and for demonstrating its effectiveness,

sets of experiments are conducted.

The rest of this paper is structured as follows: Chapter 2 gives a detailed overview of

DISCO’s architecture and its comprising modules such as NLU and Dialog Manager. In chapter

3, a use case scenario is presented to showcase the chatbot's abilities in action. In chapter 4, we

provide the study’s evaluation. Related work is reviewed in Section 5 and finally, Section 6

concludes the paper and provides future insights.

2. DISCOVERY CHAT-BOT

The idea of using chatbots to provide a communication medium for the users is becoming an

industry standard and also a promising research direction in academia (Raghuvanshi et al.,

2018). Chatbots are normally following a straightforward Input-Intent-Action-Response

conversation model designed for modern conversational agents (Baez et al., 2020). In this work,

we used a modified version, by refining the Intent and Action steps, to design our

domain-specific chatbot for Web service discovery (Figure 1).

Figure 1. DISCO’s Conversation model

The second step in Figure 1 which is denoted as Intent, represents the key parameters

extraction such as the Web service target domain, its operations, and entities. The Action stage

in this model refers to the matchmaking mechanism used to retrieve suitable Web services.

We considered the following design principles for designing the Discovery Chatbot:

• DISCO is designed as a domain-specific chatbot capable of understanding the

service requester’s intention, initiating related conversations, and retrieving

relevant Web services. To further assist the service requesters without technical

knowledge, our chatbot can answer their general questions about the Web services.

Discovery Chatbot

„Find me a web service
to tell me the rainy days“

1. Input

NLU Module

Extracts the requester‘s
intents

2. Intent

Web Service
registry

Analysing the extracted
intents (Domain and

Operations)

Querying registry

Dialog Manager

 Generate the best
response Query output

„I found 10 web services.
Do you have any
particular operation in
mind?“

4. Response

3. Action

DISCO: WEB SERVICE DISCOVERY CHATBOT

19

• In this work, we focus on textual service descriptions to build our service

repository. The textual descriptions are more widely used in the case of RESTful

services and web APIs (Zhang et al., 2020).

• The services in our service registry are categorized based on the predefined

domains. In the case of overlap among two categories, the service is assigned to

each of the identified domains.

2.1 Architecture

Figure 2 illustrates the DISCO’s architecture. It consists of Natural Language Unit, Dialog

Manager and the Service Matchmaking Engine (SME) as its main modules.

Figure 2. DISCO architecture

The NLU is responsible for understanding the requester’s textual input and analyzing it to

extract the key parameters (Domain, Operation, and entities). The NLU is a critical component

of every chatbot, as the other modules are depending on the NLU’s result (Bapat et al., 2018).

The extracted parameters are evaluated in the Dialog Manager that decides either to continue

the conversation (in the case of incomplete queries) or to instantiate the Request Template.

Domain Classifier Dependency ParserEntity Classifier

Word2Vec
model

en_core_web
_sm model

Noun’s
vector

OntoNotes5
model

Tokenizing POS tagging Lemmatization

Preprocessing Unit

Stop-words
removal

Data analyser

C1

Target domain Entities Dependencies

NoYes. Continue.

Response Generation Engine

Vectorization

Similarity
measurement

Request Template
instantiation

Requetr’s Query

Domain KB

C1: Is there any missing
parameter?

Response

Service Retrieval Engine

Web Service
Registry RT.xml

WS Parser

IADIS International Journal on WWW/Internet

20

The Request Template is defined as a generic objective description, in XML syntax

instantiated during the runtime. This template will be used by SME to query the Web service

registry.

2.2 Natural Language Unit

The main building blocks of NLU are the Preprocessing unit and the Domain and Entity

Classifiers alongside the required datasets. Each query is preprocessed in the NLU by going

through the four steps shown in figure 2. The result is then used by the classifiers for retrieving

the key parameters. The classifiers play an important role in chatbots by normalizing the queries

and segmenting it into logical parts (Abdul-Kader and Woods, 2015).

2.2.1 Domain Classifier

The Domain classifier assigns the requester’s query into one of the predefined domains. This

classification enhances the discovery process by reducing the search to the set of Web services

with similar functionalities (Raghuvanshi et al., 2018). To identify the target domain, the

similarity between the query’s core nouns and each defined domain is calculated. Therefore, for

each domain, our test subjects select a list of representative nouns from a domain keyword list.

This list contains the words with the highest frequency in that particular domain. Afterward, the

domain with the highest similarity value is selected as the target domain. The similarity values

are calculated by Word2vec algorithm using Cosine similarity between vector representation of

the query nouns and domain representative words denoted respectively as Q and DR (Jin et al.,

2018):

cos 𝜃 =
𝑄 ∙ 𝐷𝑅

||𝑄|| ||𝐷𝑅||

The reason behind using the core nouns for domain identification is the higher importance

they have in reflecting the target domain. For instance, the two queries “buy a house” and “buy

a train ticket” are referring to Real Estate and Travel domains reflected by the nouns used in

both queries.

2.2.2 Entity Classifier

Entities are real-world objects such as people, Nationalities, and Companies that can be used as

service parameters. The entity classifier labels each entity with the proper identifier from the

knowledge base. For entity recognition, we use the spaCy2 open-source library written mainly

in Python and Cython. To train models, the OntoNotes5

(https://catalog.ldc.upenn.edu/LDC2013T19s) corpus is used. This corpus contains various

genres of text, such as news and conversations.

2.2.3 Dependency Parser

Web services provide functionalities known as operations. For an efficient Web service

discovery, those operations should be considered (Zhang et al, 2018). We formulate a Web

service operation as 𝑆𝑂 =< 𝐴𝑉, 𝐴𝑁, 𝑃 > with 𝐴𝑉 as an action verb describing the service

operation and 𝐴𝑁 as an action noun that is affected by the operation. 𝑃 denotes the optional

2 https://spacy.io/

https://catalog.ldc.upenn.edu/LDC2013T19
https://spacy.io/

DISCO: WEB SERVICE DISCOVERY CHATBOT

21

parameters and entities. To generate such triple, it is necessary to extract the grammatical

structure of the query. Generally, the grammatical structure of a sentence can be expressed by

part-of-speech (POS) tags and word dependencies. A dependency describes the grammatical

relation between two words in a sentence (Zhang et al., 2020). For example, the query “upload

music” has a dobj (upload, music) dependency that represents the direct object relation between

two nouns. To extract the full meaning from queries, we use nsubj (nominal subject), dobj

(direct object), and prep (preposition) as the main dependencies according to the Universal

Dependencies (https://universaldependencies.org/). Table 1 presents 3 example queries and the

generated service operations according to the word dependencies.

Table 1. Dependency extraction

2.3 Dialogue Manager

Dialogue Manager is the chatbot brain, responsible for keeping the current state of the

conversation, assessing the processed queries, and finally generating the best response

according to the conversation logic (Raghuvanshi et al., 2018). As shown in the DISCO

architecture (Figure 2), the Dialogue Manager consists of Data Analyzer and Response

Generation Engine.

The Data Analyzer assesses the key parameters extracted by the NLU for completeness and

correctness. Upon every input from the NLU, the Data Analyzer triggers the Response

Generation Engine to ask the user for confirming the information (i.e., target domain) or

providing a more descriptive query. The Request Template is instantiated containing the

extracted parameters once the user confirms. By involving the user in the parameter extraction

process we guarantee the preciseness of the retrieved services.

The responses are generated by the Response Generation Engine according to conversation

logic know as conversation flow. The conversation flow determines the possible paths that a

conversation between user and chatbot might lead to. It provides designers a comprehensive list

of responses and events that are triggered during the conversation (Candello et al., 2017).

Example query Service operation Dependency

“the hotel information in New York can be

retrieved”

SO =< retrieve, hotel information, {−} >

nsubj

“A service to calculate the tax rate and

insurance for international goods”

SO =< calculate, tax rate, {−} >

dobj

“An API to send the weather forecast by

geographical GPS location “

SO=<send, weather forecast,{GPS location, -}

prep_by

IADIS International Journal on WWW/Internet

22

Figure 3. DISCO conversation flow

To enable DISCO to respond to domain-specific questions, we create a knowledge base

using a corpus of textual data. This corpus contains texts about Web service technology from

Web service related articles such as scientific publications and Wikipedia pages. The chatbot

knowledge base highly influences the quality of the responses (Abdul-Kader and Woods, 2015).

For response generation, we used a straightforward TF-IDF (Term Frequency-Inverse

Document Frequency) method. This method calculates the similarity between the query 𝑄 and

the sentences in the knowledgebase 𝐷:

S(Q, D) = ∑ 𝑡𝑓𝑤𝑞 ∙
𝑡𝑓𝑤𝐷

𝑡𝑓𝑤𝐷 +
𝑘|𝐷|

avg|𝐷|

∙ log
|𝐶|

𝑑𝑓𝑤
𝑤

The summation of term frequencies of word 𝑤 in the query 𝑄 (denotes as 𝑡𝑓𝑤𝑞), indicates

the fact that the term frequency has a direct relation with the term’s importance. The second part

of the formula reduces the importance of repetition in the case of short documents. On the other

hand, rare words should have a higher weight compared to common words. Therefore, the IDF

part is added to the end of the formula, where |𝐶| is the number of documents while 𝑑𝑓𝑤 is the

number of documents containing word 𝑤.

2.4 Service Retrieval Engine

The Service Retrieval Engine parses the textual description of Web services in the registry and

extracting a set of service operations by using the query expansion techniques. Query expansion

is the process of enhancing the given query to capture and extend its meaning. Query expansion

can be done by adding new meaningful terms and phrases to the initial query (Selvaretnam and

Belkhatir, 2012). In this work, we use the existing grammatical dependencies to obtain new ones

and expand the original query. This approach is similar to the one proposed by Zhang et al.

(2018) for extracting goals from the service descriptions.

According to Figure 4, based on the expanded dependencies a list of service operations is

generated. For each query, the desired operations extracted by the dependency parser (cf. section

2.2.3) are matched with each Web service’s operations in the target domain. The services with

the highest number of operations in common will be retrieved. An overview of the service

operation retrieval process is shown in Figure 4.

C
o
n
v

e
rs

a
ti

o
n
 f

lo
w

R
e
q
u

e
s
te

r
C

h
a
tb

o
t

Type the desired

service description

Ask for initial

description

Domain

Correct?

Domain and Operation

Extraction

 Ask for info about

Domain

No

Operation

list empty?Yes

 Ask for info about

Operations

Instanciate the

Request TemplateNo

Yes

 Type the Domain

description

 Type the Operation

description

Operation Extraction

Request

Template

DISCO: WEB SERVICE DISCOVERY CHATBOT

23

Figure 4. Web service description parsing

3. USE CASE SCENARIO

In this section, we go through an example to demonstrate the DISCO’s functionality in detail.

Figure 5 shows the beginning of a conversation with the requester. This conversation is based

on the conversation flow in Figure 3.

Figure 5. Conversation’s beginning fragment

Until this part of the conversation, the target domain is identified as COVID-19 and one

operation 𝑆𝑂1 =< 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒, 𝐶𝑜𝑟𝑜𝑛𝑎𝑣𝑖𝑟𝑢𝑠 𝐶𝑎𝑠𝑒𝑠, {−} > is extracted. Since extracting more

operations improves the result, DISCO asks the user if he/she has any other operation in mind.

Figure 6. conversation fragment

WS desciption

Preprocessing Query Expansion
Dependency

Extraction

WS Operation

list creation

Preprocessed text list of expanded dependencies

SO=<AV, AN, P>

SO=<AV, AN, P>

SO=<AV, AN, P>

SO=<AV, AN, P>

...

List of existing dependencies

IADIS International Journal on WWW/Internet

24

Figure 6 shows the rest of this conversation as the second operation

𝑆𝑂2 =< 𝑡𝑟𝑎𝑐𝑘, 𝑢𝑝𝑑𝑎𝑡𝑒𝑠, {−} > is retrieved. 𝑆𝑂1 and 𝑆𝑂2 are matched against the Web service

operations in the target domain based on the semantic similarity. A list of top-three retrieved

services for this example is shown in Table 2.

Table 2. Top three retrieved services

4. EVALUATION

We collected the descriptive data including the name, category, and textual description of 1100

web APIs from the public PW repository. The APIs belong to six domains: Transportation

(120), Mapping (230), Weather (60), Mobile (240), Social (350), and COVID-19 (100). The

domains are selected according to their popularity and scale in the PW. For each API, a list of

service operations is generated by the Service Retrieval Engine.

We recruited eight test subjects including undergraduate and postgraduate students as well

as developers. The subjects were asked to perform several tasks such as building a representative

word set for each domain. To eliminate the impact of the subject’s understanding of the domain

on the result, we asked them to read selected short articles about each domain to familiarize

themselves with the terms and vocabulary of that particular domain. Afterwards, the subjects

had to construct a set of experimental queries from the six domains with no limitation on the

length. Collectively 60 queries were constructed by our subject requesters. Finally, the subjects

were asked to evaluate the identified domain, operations and the list of suggested APIs.

4.1 Evaluation Result

For evaluating the NLU performance, subjects grade the identified target domain and extracted

operations. The operations were graded separately on a scale of 0-3 where “0” indicates

irrelevant operations that are not meaningful or important. Such operations are mainly extracted

from general phrases. The grade “1” represents poorly relevant operations that are meaningful

but are not specific enough to match the user's intention. The operations with the grade ”2” are

relevant, while the grade “3” indicates the highly relevant operations with specific parameters.

Examples of evaluated operations by the subjects are presented in Table 2. According to the

evaluation result, for 60 queries, 97% of the target domains matched with the intended domains.

Name Description Category

Coronavirus (COVID-19) in the

UK

This API returns COVID-19 information

in the UK including testing capacity, case

count, ...

COVID-19

CoronaTracker

CoronaTracker functions as a portal to

keep track of latest news development

about the COVID-19. ...

COVID-19

Apple Exposure Notification

Contact Tracing interface that provides

interoperability between Android and iOS

devices …

COVID-19

DISCO: WEB SERVICE DISCOVERY CHATBOT

25

Moreover, the extracted operations were evaluated by subjects as follows: 20% of total

operations were evaluated as irrelevant and poorly relevant (10% each), 20% relevant and 60%

highly relevant.

Table 3. Subject's evaluation example

The two popular metrics to measure our approach performance are precision and recall,

defined as follows:

Precision =
|𝑊𝑆𝑟𝑡∩𝑊𝑆𝑟𝑙 |

𝑊𝑆𝑟𝑡
 Recall =

|𝑊𝑆𝑟𝑡∩𝑊𝑆𝑟𝑙 |

𝑊𝑆𝑟𝑙

Where 𝑊𝑆𝑟𝑡 and 𝑊𝑆𝑟𝑙 denote retrieved and related services respectively. The precision and

recall are computed based on the subject’s evaluation result. The precision of our approach in

retrieving the intended Web services is 0.78 and the recall value is computed as 0.80.

4.2 Threats to Validity

Two types of threats can target the validity of our evaluation result. The internal threats target

the evaluation repeatability. In our experiments, the subjects were responsible for building the

domain representative set and experiment queries as well as evaluating the result. If the subject

is not familiar with the domain and the procedure, the results might be affected negatively. As

already stated, to resolve this issue the subjects were educated about the procedure and domains

in advance.

The external threats affect generalizing the results to other situations and environments

outside the experiment scope. The PW repository is dependent on the inputs from API providers,

therefore the API popularity and scale change throughout the time (such as the newly added

COVID-19 domain to this repository). To overcome this issue, we have to consider the other

repositories for our evaluation as well.

5. LITERATURE REVIEW

A great deal of recent studies has been focused on conversational interfaces and chatbots.

Chatbot technology is covering a wide range of applications and has a great potential for

evolving in brand new domains. By leveraging natural language, chatbots provide a medium for

end-users to perform tasks without prior knowledge and as a result improving usability

(Abdul-Kader and Woods, 2015). Considering these advantages, we proposed a domain-specific

Discovery Chatbot for Web service discovery applications. To justify the novelty of our

approach we review some of the existing practices in this domain.

Example query Operations Evaluation

“Find an API for Attaching the image to a

Facebook post and write post in my Facebook”

 <find, API, {}>
 <attach, image, {}>
 <write, post, {Facebook}>

1

2

3

“provides the photographic functions to map a

picture to geographical point on the map”

 <provide, photographic functions, {}>
 <map, picture, {}>

2

1

IADIS International Journal on WWW/Internet

26

Researchers have proposed a variety of Web service discovery solutions considering factors

such as functional and non-functional requirements or Quality of Service (QoS). Our focus is

on the matchmaking techniques due to their relevance to our approach. From this point of view,

solutions are categorized as syntactic-based, semantic-based, and context-aware (Jalali et al.,

2014).

Syntactic-based solutions mainly rely on information retrieval (IR) techniques and vector

space model to retrieve the relevant services. These solutions such as keyword matching, are

simple, more familiar for users, and are used as a standard in already established UDDI.

However, they have low precision and cannot be used in automatic processing (Bhardwaj and

Sharma, 2016). On the other hand, the Semantic-based solutions, attempt to overcome the

aforementioned drawbacks by retrieving the semantically similar Web services. Depending on

the reasoning method the semantic-based solutions are categorized into logic-based and

non-logic-based approaches. The common methods in non-logic-base solutions are text

similarity measurements, schema matching, and graph matching. On the other hand, in

logic-based solutions, logical reasoning is performed on the service description using ontologies

and Semantic Annotations for WSDL and XML Schema (SAWSDL) (Klusch, 2014).

Ontology-based approaches allow automatic discovery and have a higher precision since they

are providing an accurate description of the services. However, the ontology specification and

maintenance require high effort that prevent large-scale adoption. Moreover, the different

ontologies used by users and providers can impose new challenges for logic-based solutions

(Zhang et al., 2018).

The idea of using conversational interfaces and natural language for service discovery was

practiced by Fuckner et.al. (2013). In this solution, the user interacts with a dialogue-based

multi-agent platform for invoking services. Authors used mainly a keyword-based approach to

match the concepts from the user’s query. Our work is different in the sense that we used the

service’s textual description as the source of information and instead of keyword-based we used

query expansion technique and semantic similarity to invoke the related Web services.

The two solutions proposed by Zhang et.al. (2018) and (2020), use query expansion to mine

the service goals and match them with user’s queries. The authors extract the linguistic structure

of the service description using the Stanford parser and match them with each query’s goal. In

contrast, DISCO retrieves services according to the conversation with the requester.

6. CONCLUSION AND FUTURE WORK

This research proposed a method based on chatbot technology to address the usability issues of
Web service discovery solutions. The low precision and recall and high technical skill required
to adopt the solutions are among the main issues regarding the existing approaches. Our
approach retrieves services based on the extracted parameters from the requester’s query such
as domain, operations and entities. Upon analyzing each query, the response generation engine
decides the conversation direction according to our conversation flow. By integrating the
chatbot in the Web service discovery process, we improved the retrieval rate and provided users
a natural-language-based interface that does not require them to have prior knowledge about
Web service’s structure. Also, our approach can benefit from several improvements in the NLU
by extending the query expansion to cover wider range of dependencies. The idea of integrating
conversational interfaces into the Web service life cycle introduces new research directions in
the field of mashup and SBSs such as requirement extraction chatbot for SaaS applications.

DISCO: WEB SERVICE DISCOVERY CHATBOT

27

ACKNOWLEDGEMENT

This work has been supported by the ESF and the Free State of Saxony with grant number

1000235478.

REFERENCES

Abdul-Kader, S. A. and Woods, J. (2015) ‘Survey on Chatbot Design Techniques in Speech Conversation

Systems’, (IJACSA) International Journal of Advanced Computer Science and Applications, 6(7),

pp. 72–80. Available at: www.ijacsa.thesai.org (Accessed: 30 December 2019).

Baez, M., Daniel, F. and Casati, F. (2020) ‘Conversational Web Interaction: Proposal of a Dialog-Based

Natural Language Interaction Paradigm for the Web’, in The 3rd International Workshop on Chatbot

Research (Conversations 2019). Springer, Cham, pp. 94–110. doi: 10.1007/978-3-030-39540-7_7.

Bano, M. et al. (2014) ‘What makes service oriented requirements engineering challenging? A qualitative

study’, IET Software, 8(4), pp. 154–160. doi: 10.1049/iet-sen.2013.0131.

Bapat, R., Kucherbaev, P. and Bozzon, A. (2018) ‘Effective crowdsourced generation of training data for

chatbots natural language understanding’, Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10845 LNCS,

pp. 114–128. doi: 10.1007/978-3-319-91662-0_8.

Bhardwaj, K. C. (2015) ‘Machine Learning in Efficient and Effective Web Service Discovery’, Journal of

Web Engineering, 14(3), pp. 196–214.

Bhardwaj, K. C. and Sharma, R. K. (2016) ‘Ontologies: A Review of Web Service Discovery Techniques’,

International Journal of Energy, Information and Communications, 7, pp. 1–12.

doi: 10.14257/ijeic.2016.7.6.01.

Candello, H. et al. (2017) ‘Evaluating the conversation flow and content quality of a multi-bot

conversational system’, Extended Proceedings of the 16th Brazilian Symposium on Human Factors in

Computing Systems., 9(October), pp. 60–61.

David Yoffie, P. B. et al. (2018) Voice War: Hey Google vs. Alexa vs. Siri. Available at:

www.hbsp.harvard.edu. (Accessed: 6 January 2020).

Fariss, M., Allali, N. El and Asaidi, H. (2018) ‘Review of Ontology Based Approaches for Web Service

Discovery : Methods and Protocols Review of Ontology Based Approaches for Web Service

Discovery’, in Springer, C. (ed.) International Conference on Advanced Information Technology,

Services and Systems. Springer International Publishing, pp. 78–87. doi: 10.1007/978-3-030-11914-0.

Fuckner, M., Barthès, J.-P. and Scalabrin, E. E. (2013) ‘Web Service Discovery and Execution Using a

Dialog-Based Approach’, in WEBIST 2013: Web Information Systems and Technologies. Aachen,

pp. 103–118. doi: 10.1007/978-3-662-44300-2.

Jalali, M., Pakari, S. and Kheirkhah, E. (2014) ‘Web Service Discovery Methods and Techniques:

A Review Re-Routing Based on QoS Requirements Changing in WSN View project Information

Dissemination in Social Networks View project Web Service Discovery Methods and Techniques:

A Review’, International Journal of Computer Science, Engineering and Information Technology

(IJCSEIT), 4(1). doi: 10.5121/ijcseit.2014.4101.

Jin, X., Zhang, S. and Liu, J. (2018) ‘Word Semantic Similarity Calculation Based on Word2vec’, ICCAIS

2018 - 7th International Conference on Control, Automation and Information Sciences, pp. 12–16.

doi: 10.1109/ICCAIS.2018.8570612.

IADIS International Journal on WWW/Internet

28

Jonquet, C. and Cerri, S. A. (2006) ‘Characterization of the Dynamic Service Generation concept’,

(06007). Available at: http://www.lirmm.fr/~jonquet/publications/documents/RR-LIRMM-06007-

Jonquet-feb2006.pdf.

Klusch, M. (2014) ‘Service Discovery’, Encyclopedia of Social Network Analysis and Mining,

pp. 1707–1717. doi: 10.1007/978-1-4614-6170-8_121.

Klusch, M. (2018) ‘Service Discovery’, in Alhajj, R. and Rokne, J. (eds) Encyclopedia of Social Network

Analysis and Mining. New York, NY: Springer New York, pp. 2474–2484. doi: 10.1007/978-1-4939-

7131-2_121.

Raghuvanshi, A., Carroll, L. and Raghunathan, K. (2018) ‘Developing Production-Level Conversational

Interfaces with Shallow Semantic Parsing’, in Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations. Brussels, pp. 157–162.

Selvaretnam, B. and Belkhatir, M. (2012) ‘Natural language technology and query expansion: Issues, state-

of-the-art and perspectives’, Journal of Intelligent Information Systems, 38(3), pp. 709–740.

doi: 10.1007/s10844-011-0174-3.

Zhang, N., Wang, J., Ma, Y., He, K., Li, Z. and Frank, X. (2018) ‘Web service discovery based on

goal-oriented query expansion’, The Journal of Systems & Software, 142, pp. 73–91.

doi: 10.1016/j.jss.2018.04.046.

Zhang, N., Wang, J. and Ma, Y. (2020) ‘Mining Domain Knowledge on Service Goals from Textual

Service Descriptions’, IEEE Transactions on Services Computing, 13(3), pp. 488–502.

doi: 10.1109/TSC.2017.2693147.

