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ABSTRACT 

An increasing number of companies offer their capabilities as Web services and publish them through 

public registries. Such Web services enable users to access and manipulate online data programmatically. 

Moreover, they can be deployed in service-based systems (SBS) or composite web applications and 

mashups to offer value-added services. A crucial step in deploying Web services is the Web service 

Discovery. Selecting the best Web service candidates to address the needs of service requesters (e.g., SBS 

designers) is an important task in SBSs and can influence the quality of the resulting composite web 

application. So far proposed solutions for addressing this challenge, which are mainly categorized into 

Syntactic-based and Semantic-based, are either too complex for end-users which hinders their large-scale 

adaptation or suffer from low precision and recall. Considering the recent trend of shifting the development 

activities more and more towards the end-users, we propose an approach based on chat-bot technology to 

allow end-users to select a set of best-fitting Web services according to their goals. Conversational 

Interfaces also known as chatbots aim at providing users a more natural framework to interact with web 

applications and devices. The advantage of DISCO compared to the state-of-the-art approaches is 

leveraging the natural language as the communication medium and alleviating the need for end-users to 

have technical knowledge about the service’s structure and location. We conducted sets of experiments by 

recruiting 8 test subjects to query the chatbot.  The results achieve high precision and recall. 

KEYWORDS 

Conversational Interface, Chat-bot, Web service Discovery, Service-Based Systems, Natural Language 

Processing, Query Expansion  

1. INTRODUCTION 

The last decade has witnessed an exponential growth in the number of published Web services 

on the web. Users are enabled to build their desired applications leveraging the Web services 

published in public and private registries by service developers and major Web service provider 

companies such as Amazon and Google (Zhang et al., 2018). According to ProgrammableWeb1 

 
1 https://programmableweb.com 

https://www.programmableweb.com/
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(PW), the number of registered Web services in this public registry as of 2019 was reported 

more than 22,000. Every year 2,000 new Web services and Web APIs are added to PW. The 

reasons behind this large-scale adoption of Web services are reducing time and effort required 

for building composite applications, proposed simplicity, reusability, and higher quality of the 

resulting system (Bano et al., 2014). 

Generally, the Web service life cycle consists of three phases: 1) service publication, in 

which service providers publish the Web services on registries 2) service discovery and 

selection, in which users find and select a set of best-fitting Web services and 3) service 

execution, in which the selected Web service is invoked to perform a task (Jonquet and Cerri, 

2006). In this paper, we focus on the service discovery phase. Providing automated and scalable 

methods for identifying the most relevant Web services based on the user’s description plays an 

important role in the quality of SBSs. Moreover it can influence the effectiveness of Web service 

compositions and guarantee Web service’s full potential employment (Klusch, 2018, Bhardwaj, 

2015). 

Web service discovery approaches have been evolving during the last years. Researchers 

focus on various research directions to address this challenge by considering factors such as 

service description language or service goals. Most of the solutions can be categorized into two 

categories: syntactic-based and semantic-based (Zhang et al., 2018). The syntactic-based 

solutions such as the keyword-based approaches have proven to be inaccurate. Querying the 

repository based on the keywords in the user’s query can result in many irrelevant Web services, 

i.e., low precision. On the other hand, some semantically related Web services are not 

discovered resulting in a reduced recall value (Bhardwaj, 2015). In comparison, the  

semantic-based approaches exhibit better performance compared to syntactic-based. Describing 

Web services using Semantic Annotations for WSDL (SAWSDL) and ontology-based 

approaches (Fariss et al., 2018) are examples of semantic-based Web service discovery 

solutions. However, the complexity of such approaches hinders their large-scale adaptation for 

end-users without prior knowledge about SBSs or Web service development. 

Leveraging natural language will reduce the complexity posed on users. Natural language 

and conversational interfaces as found in personal assistants such as Siri and Amazon Alexa 

provide a well-known medium for user’s interactions and deliver a high level of usability (David 

Yoffie et al., 2018). Conversational interfaces a.k.a chatbots are computer programs able to 

emulate a human-like conversation with users to provide specific services (Bapat et al., 2018). 

Chatbots bring several advantages for users such as reducing the required time and effort to 

perform a task up to 60% and increasing the retrieval accuracy. Moreover, Chatbots can engage 

users in conversations according to their conversation flow and direct them towards more 

informative interactions (Abdul-Kader and Woods, 2015, Fuckner, Barthès and Scalabrin, 

2013). 

Having those advantages in mind, we propose DISCO a chatbot capable of understanding 

the service requester's queries. With the help of the Natural Language Understanding module 

(NLU), the key parameters required to discover the intended Web services such as Web service 

domain and operations, are extracted from the query. In the case of incomplete or unclear inputs, 

DISCO initiates conversations with service requesters to guide them towards more informative 

input. Finally, the chatbot invokes the best candidate Web services and generates reasonable 

responses. 

The main contribution of this research is proposing DISCO as a domain-specific 

conversational interface for service discovery. This solution is not reliant on the semantic 

annotations of the services and provides a user-friendly interface based on natural language. 
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Moreover, a prototype of the solution is implemented, and for demonstrating its effectiveness, 

sets of experiments are conducted. 

The rest of this paper is structured as follows: Chapter 2 gives a detailed overview of 

DISCO’s architecture and its comprising modules such as NLU and Dialog Manager. In chapter 

3, a use case scenario is presented to showcase the chatbot's abilities in action. In chapter 4, we 

provide the study’s evaluation.  Related work is reviewed in Section 5 and finally, Section 6 

concludes the paper and provides future insights. 

2. DISCOVERY CHAT-BOT 

The idea of using chatbots to provide a communication medium for the users is becoming an 

industry standard and also a promising research direction in academia (Raghuvanshi et al., 

2018). Chatbots are normally following a straightforward Input-Intent-Action-Response 

conversation model designed for modern conversational agents (Baez et al., 2020). In this work, 

we used a modified version, by refining the Intent and Action steps, to design our  

domain-specific chatbot for Web service discovery (Figure 1).  

 

Figure 1. DISCO’s Conversation model 

The second step in Figure 1 which is denoted as Intent, represents the key parameters 

extraction such as the Web service target domain, its operations, and entities. The Action stage 

in this model refers to the matchmaking mechanism used to retrieve suitable Web services. 

We considered the following design principles for designing the Discovery Chatbot: 

• DISCO is designed as a domain-specific chatbot capable of understanding the 

service requester’s intention, initiating related conversations, and retrieving 

relevant Web services. To further assist the service requesters without technical 

knowledge, our chatbot can answer their general questions about the Web services.  
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• In this work, we focus on textual service descriptions to build our service 

repository. The textual descriptions are more widely used in the case of RESTful 

services and web APIs (Zhang et al., 2020).  

• The services in our service registry are categorized based on the predefined 

domains. In the case of overlap among two categories, the service is assigned to 

each of the identified domains. 

2.1 Architecture 

Figure 2 illustrates the DISCO’s architecture. It consists of Natural Language Unit, Dialog 

Manager and the Service Matchmaking Engine (SME) as its main modules.  

 

Figure 2. DISCO architecture 

 

The NLU is responsible for understanding the requester’s textual input and analyzing it to 

extract the key parameters (Domain, Operation, and entities). The NLU is a critical component 

of every chatbot, as the other modules are depending on the NLU’s result (Bapat et al., 2018). 

The extracted parameters are evaluated in the Dialog Manager that decides either to continue 

the conversation (in the case of incomplete queries) or to instantiate the Request Template. 
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The Request Template is defined as a generic objective description, in XML syntax 

instantiated during the runtime. This template will be used by SME to query the Web service 

registry.  

2.2 Natural Language Unit  

The main building blocks of NLU are the Preprocessing unit and the Domain and Entity 

Classifiers alongside the required datasets. Each query is preprocessed in the NLU by going 

through the four steps shown in figure 2. The result is then used by the classifiers for retrieving 

the key parameters. The classifiers play an important role in chatbots by  normalizing the queries 

and segmenting it into logical parts (Abdul-Kader and Woods, 2015).  

2.2.1 Domain Classifier  

The Domain classifier assigns the requester’s query into one of the predefined domains. This 

classification enhances the discovery process by reducing the search to the set of Web services 

with similar functionalities (Raghuvanshi et al., 2018). To identify the target domain, the 

similarity between the query’s core nouns and each defined domain is calculated. Therefore, for 

each domain, our test subjects select a list of representative nouns from a domain keyword list. 

This list contains the words with the highest frequency in that particular domain. Afterward, the 

domain with the highest similarity value is selected as the target domain. The similarity values 

are calculated by Word2vec algorithm using Cosine similarity between vector representation of 

the query nouns and domain representative words denoted respectively as Q and DR (Jin et al., 

2018): 

cos 𝜃 =
𝑄 ∙ 𝐷𝑅

||𝑄|| ||𝐷𝑅||
 

The reason behind using the core nouns for domain identification is the higher importance 

they have in reflecting the target domain. For instance, the two queries “buy a house” and “buy 

a train ticket” are referring to Real Estate and Travel domains reflected by the nouns used in 

both queries. 

2.2.2 Entity Classifier 

Entities are real-world objects such as people, Nationalities, and Companies that can be used as 

service parameters. The entity classifier labels each entity with the proper identifier from the 

knowledge base. For entity recognition, we use the spaCy2 open-source library written mainly 

in Python and Cython. To train models, the OntoNotes5 

(https://catalog.ldc.upenn.edu/LDC2013T19s) corpus is used. This corpus contains various 

genres of text, such as news and conversations.  

2.2.3 Dependency Parser  

Web services provide functionalities known as operations. For an efficient Web service 

discovery, those operations should be considered (Zhang et al, 2018). We formulate a Web 

service operation as 𝑆𝑂 =< 𝐴𝑉, 𝐴𝑁, 𝑃 > with 𝐴𝑉 as an action verb describing the service 

operation and 𝐴𝑁 as an action noun that is affected by the operation. 𝑃 denotes the optional 

 
2 https://spacy.io/ 

https://catalog.ldc.upenn.edu/LDC2013T19
https://spacy.io/
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parameters and entities. To generate such triple, it is necessary to extract the grammatical 

structure of the query. Generally, the grammatical structure of a sentence can be expressed by 

part-of-speech (POS) tags and word dependencies. A dependency describes the grammatical 

relation between two words in a sentence (Zhang et al., 2020). For example, the query “upload 

music” has a dobj (upload, music) dependency that represents the direct object relation between 

two nouns. To extract the full meaning from queries, we use nsubj (nominal subject), dobj 

(direct object), and prep (preposition) as the main dependencies according to the Universal 

Dependencies (https://universaldependencies.org/). Table 1 presents 3 example queries and the 

generated service operations according to the word dependencies.   

Table 1. Dependency extraction 

2.3 Dialogue Manager 

Dialogue Manager is the chatbot brain, responsible for keeping the current state of the 

conversation, assessing the processed queries, and finally generating the best response 

according to the conversation logic (Raghuvanshi et al., 2018). As shown in the DISCO 

architecture (Figure 2), the Dialogue Manager consists of Data Analyzer and Response 

Generation Engine.  

The Data Analyzer assesses the key parameters extracted by the NLU for completeness and 

correctness. Upon every input from the NLU, the Data Analyzer triggers the Response 

Generation Engine to ask the user for confirming the information (i.e., target domain) or 

providing a more descriptive query. The Request Template is instantiated containing the 

extracted parameters once the user confirms. By involving the user in the parameter extraction 

process we guarantee the preciseness of the retrieved services.  

The responses are generated by the Response Generation Engine according to conversation 

logic know as conversation flow. The conversation flow determines the possible paths that a 

conversation between user and chatbot might lead to. It provides designers a comprehensive list 

of responses and events that are triggered during the conversation (Candello et al., 2017).  

Example query  Service operation Dependency 

“the hotel information in New York can be 

retrieved” 

 

SO =< retrieve, hotel information,  {−} > 

 

nsubj 

“A service to calculate the tax rate and 

insurance for international goods” 

 

SO =< calculate, tax rate,  {−} > 

 

dobj 

“An API to send the weather forecast by 

geographical GPS location “  

 

SO=<send, weather forecast,{GPS location, -} 

 

prep_by 
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Figure 3. DISCO conversation flow 

To enable DISCO to respond to domain-specific questions, we create a knowledge base 

using a corpus of textual data. This corpus contains texts about Web service technology from 

Web service related articles such as scientific publications and Wikipedia pages. The chatbot 

knowledge base highly influences the quality of the responses (Abdul-Kader and Woods, 2015). 

For response generation, we used a straightforward TF-IDF (Term Frequency-Inverse 

Document Frequency) method. This method calculates the similarity between the query 𝑄 and 

the sentences in the knowledgebase 𝐷:   

S(Q, D) = ∑ 𝑡𝑓𝑤𝑞 ∙
𝑡𝑓𝑤𝐷

𝑡𝑓𝑤𝐷 +
𝑘|𝐷|

avg|𝐷|

∙ log
|𝐶|

𝑑𝑓𝑤
𝑤

 

The summation of term frequencies of word 𝑤 in the query 𝑄 (denotes as 𝑡𝑓𝑤𝑞), indicates 

the fact that the term frequency has a direct relation with the term’s importance. The second part 

of the formula reduces the importance of repetition in the case of short documents. On the other 

hand, rare words should have a higher weight compared to common words. Therefore, the IDF 

part is added to the end of the formula, where |𝐶| is the number of documents while  𝑑𝑓𝑤 is the 

number of documents containing word 𝑤. 

2.4 Service Retrieval Engine 

The Service Retrieval Engine parses the textual description of Web services in the registry and 

extracting a set of service operations by using the query expansion techniques. Query expansion 

is the process of enhancing the given query to capture and extend its meaning. Query expansion 

can be done by adding new meaningful terms and phrases to the initial query (Selvaretnam and 

Belkhatir, 2012). In this work, we use the existing grammatical dependencies to obtain new ones 

and expand the original query. This approach is similar to the one proposed by Zhang et al. 

(2018) for extracting goals from the service descriptions.  

According to Figure 4, based on the expanded dependencies a list of service operations is 

generated. For each query, the desired operations extracted by the dependency parser (cf. section 

2.2.3) are matched with each Web service’s operations in the target domain. The services with 

the highest number of operations in common will be retrieved. An overview of the service 

operation retrieval process is shown in Figure 4. 
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Figure 4. Web service description parsing 

3. USE CASE SCENARIO  

In this section, we go through an example to demonstrate the DISCO’s functionality in detail. 

Figure 5 shows the beginning of a conversation with the requester. This conversation is based 

on the conversation flow in Figure 3. 
 

 

Figure 5. Conversation’s beginning fragment 

Until this part of the conversation, the target domain is identified as COVID-19 and one 

operation 𝑆𝑂1 =< 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒, 𝐶𝑜𝑟𝑜𝑛𝑎𝑣𝑖𝑟𝑢𝑠 𝐶𝑎𝑠𝑒𝑠, {−} > is extracted. Since extracting more 

operations improves the result, DISCO asks the user if he/she has any other operation in mind.  

 

 

Figure 6. conversation fragment 

WS desciption 
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Figure 6 shows the rest of this conversation as the second operation 

𝑆𝑂2 =< 𝑡𝑟𝑎𝑐𝑘, 𝑢𝑝𝑑𝑎𝑡𝑒𝑠, {−} > is retrieved. 𝑆𝑂1 and 𝑆𝑂2 are matched against the Web service 

operations in the target domain based on the semantic similarity. A list of top-three retrieved 

services for this example is shown in Table 2.  

Table 2. Top three retrieved services 

4. EVALUATION  

We collected the descriptive data including the name, category, and textual description of 1100 

web APIs from the public PW repository. The APIs belong to six domains: Transportation 

(120), Mapping (230), Weather (60), Mobile (240), Social (350), and COVID-19 (100). The 

domains are selected according to their popularity and scale in the PW. For each API, a list of 

service operations is generated by the Service Retrieval Engine.  

We recruited eight test subjects including undergraduate and postgraduate students as well 

as developers. The subjects were asked to perform several tasks such as building a representative 

word set for each domain. To eliminate the impact of the subject’s understanding of the domain 

on the result, we asked them to read selected short articles about each domain to familiarize 

themselves with the terms and vocabulary of that particular domain. Afterwards, the subjects 

had to construct a set of experimental queries from the six domains with no limitation on the 

length.  Collectively 60 queries were constructed by our subject requesters. Finally, the subjects 

were asked to evaluate the identified domain, operations and the list of suggested APIs. 

4.1 Evaluation Result 

For evaluating the NLU performance, subjects grade the identified target domain and extracted 

operations. The operations were graded separately on a scale of 0-3 where “0” indicates 

irrelevant operations that are not meaningful or important. Such operations are mainly extracted 

from general phrases. The grade “1” represents poorly relevant operations that are meaningful 

but are not specific enough to match the user's intention. The operations with the grade ”2” are 

relevant, while the grade “3” indicates the highly relevant operations with specific parameters. 

Examples of evaluated operations by the subjects are presented in Table 2. According to the 

evaluation result, for 60 queries, 97% of the target domains matched with the intended domains. 

Name Description Category 

Coronavirus (COVID-19) in the 

UK 
 

This API returns COVID-19 information 

in the UK including testing capacity, case 

count, ... 
 

COVID-19 
 

CoronaTracker 

 

CoronaTracker functions as a portal to 

keep track of latest news development 

about the COVID-19. ... 

 

COVID-19 

 

Apple Exposure Notification 
 

Contact Tracing interface that provides 

interoperability between Android and iOS 

devices … 

COVID-19 
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Moreover, the extracted operations were evaluated by subjects as follows: 20% of total 

operations were evaluated as irrelevant and poorly relevant (10% each), 20% relevant and 60% 

highly relevant.  

Table 3. Subject's evaluation example 

 

The two popular metrics to measure our approach performance are precision and recall, 

defined as follows: 

Precision =
|𝑊𝑆𝑟𝑡∩𝑊𝑆𝑟𝑙 |

𝑊𝑆𝑟𝑡
     Recall =

|𝑊𝑆𝑟𝑡∩𝑊𝑆𝑟𝑙 |

𝑊𝑆𝑟𝑙
 

Where 𝑊𝑆𝑟𝑡 and 𝑊𝑆𝑟𝑙  denote retrieved and related services respectively. The precision and 

recall are computed based on the subject’s evaluation result. The precision of our approach in 

retrieving the intended Web services is 0.78 and the recall value is computed as 0.80. 

4.2 Threats to Validity 

Two types of threats can target the validity of our evaluation result. The internal threats target 

the evaluation repeatability. In our experiments, the subjects were responsible for building the 

domain representative set and experiment queries as well as evaluating the result. If the subject 

is not familiar with the domain and the procedure, the results might be affected negatively. As 

already stated, to resolve this issue the subjects were educated about the procedure and domains 

in advance.  

The external threats affect generalizing the results to other situations and environments 

outside the experiment scope. The PW repository is dependent on the inputs from API providers, 

therefore the API popularity and scale change throughout the time (such as the newly added 

COVID-19 domain to this repository). To overcome this issue, we have to consider the other 

repositories for our evaluation as well. 

5. LITERATURE REVIEW 

A great deal of recent studies has been focused on conversational interfaces and chatbots. 

Chatbot technology is covering a wide range of applications and has a great potential for 

evolving in brand new domains. By leveraging natural language, chatbots provide a medium for 

end-users to perform tasks without prior knowledge and as a result improving usability  

(Abdul-Kader and Woods, 2015). Considering these advantages, we proposed a domain-specific 

Discovery Chatbot for Web service discovery applications. To justify the novelty of our 

approach we review some of the existing practices in this domain. 

Example query  Operations  Evaluation  

“Find an API for Attaching the image to a 

Facebook post and write post in my Facebook” 

 

      <find, API, {}> 
     <attach, image, {}> 
     <write, post, {Facebook}> 
 

1 

2 

3 

“provides the photographic functions to map a 

picture to geographical point on the map” 

 

 <provide, photographic functions, {}> 
   <map, picture, {}> 

 

2 

1 
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Researchers have proposed a variety of Web service discovery solutions considering factors 

such as functional and non-functional requirements or Quality of Service (QoS). Our focus is 

on the matchmaking techniques due to their relevance to our approach. From this point of view, 

solutions are categorized as syntactic-based, semantic-based, and context-aware  (Jalali et al., 

2014).  

Syntactic-based solutions mainly rely on information retrieval (IR) techniques and vector 

space model to retrieve the relevant services. These solutions such as keyword matching, are 

simple, more familiar for users, and are used as a standard in already established UDDI. 

However, they have low precision and cannot be used in automatic processing (Bhardwaj and 

Sharma, 2016). On the other hand, the Semantic-based solutions, attempt to overcome the 

aforementioned drawbacks by retrieving the semantically similar Web services. Depending on 

the reasoning method the semantic-based solutions are categorized into logic-based and  

non-logic-based approaches. The common methods in non-logic-base solutions are text 

similarity measurements, schema matching, and graph matching. On the other hand, in  

logic-based solutions, logical reasoning is performed on the service description using ontologies 

and Semantic Annotations for WSDL and XML Schema (SAWSDL) (Klusch, 2014).  

Ontology-based approaches allow automatic discovery and have a higher precision since they 

are providing an accurate description of the services. However, the ontology specification and 

maintenance require high effort that prevent large-scale adoption. Moreover, the different 

ontologies used by users and providers can impose new challenges for logic-based solutions 

(Zhang et al., 2018). 

The idea of using conversational interfaces and natural language for service discovery was 

practiced by Fuckner et.al. (2013). In this solution, the user interacts with a dialogue-based 

multi-agent platform for invoking services. Authors used mainly a keyword-based approach to 

match the concepts from the user’s query. Our work is different in the sense that we used the 

service’s textual description as the source of information and instead of keyword-based we used 

query expansion technique and semantic similarity to invoke the related Web services.  

The two solutions proposed by Zhang et.al. (2018) and (2020), use query expansion to mine 

the service goals and match them with user’s queries. The authors extract the linguistic structure 

of the service description using the Stanford parser and match them with each query’s goal. In 

contrast, DISCO retrieves services according to the conversation with the requester. 

6. CONCLUSION AND FUTURE WORK 

This research proposed a method based on chatbot technology to address the usability issues of 
Web service discovery solutions. The low precision and recall and high technical skill required 
to adopt the solutions are among the main issues regarding the existing approaches. Our 
approach retrieves services based on the extracted parameters from the requester’s query such 
as domain, operations and entities. Upon analyzing each query, the response generation engine 
decides the conversation direction according to our conversation flow. By integrating the 
chatbot in the Web service discovery process, we improved the retrieval rate and provided users 
a natural-language-based interface that does not require them to have prior knowledge about 
Web service’s structure. Also, our approach can benefit from several improvements in the NLU 
by extending the query expansion to cover wider range of dependencies. The idea of integrating 
conversational interfaces into the Web service life cycle introduces new research directions in 
the field of mashup and SBSs such as requirement extraction chatbot for SaaS applications. 
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