
IADIS International Journal on WWW/Internet

Vol. 17, No. 2, pp. 56-70
ISSN: 1645-7641

56

SEMANTICAL ENRICHMENT OF WEB USER

INTERFACES IN THE CROWD

Claudia Steinberger and Joachim Frießer
Department of Applied Informatics, Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt,
Austria

ABSTRACT

Structured data on the Web have become very important in recent years and offer machine-readable
semantics of the data contained. Schema.org is the most recognized vocabulary for structuring data on
websites and serves beyond that also to organize and query Google’s knowledge graph. However,

Schema.org is mainly used today to semantically describe real-world entities and their relationships to one
another. To describe the functionality and handling of websites has not been the key application area of
Schema.org yet, though it also includes an appropriate vocabulary. In addition, most Schema.org tools are
limited in terms of the Schema.org classes and properties they offer and do not support the semantical
enrichment of web user interfaces.
In this article we motivate the potential of the sematic enrichment of web user interfaces regarding their
functionality and handling and present possible application areas to consume these structured data. We
analyze the requirements on structured user interface data and investigate the suitability of Schema.org as

a vocabulary to fulfil them. Since there are hundreds of classes and properties in Schema.org, we present
a conceptual model of Schema.org classes and properties that are appropriate to enrich web user interfaces.
We investigate to what extent interactive elements on HTML websites or applications can be automatically
mapped to our conceptual model elements. As a result, we present a method to semi-automatically produce
structured user interface data and illustrate our approach with a continuous use case. As a proof of concept,
we introduce Schemator, a comfortable structured user interface data tool supporting our method, which
can be used to crowdsource knowledge about the functionality and handling of websites and applications.

KEYWORDS

Semantic Web, Web User Interface, Schema.org, Structured Data, Crowdsourcing, Knowledge Base

1. INTRODUCTION

Over the past decade, amazing progress has been made in enriching websites with structured

data that provide a machine-readable semantics of the data they contain (Guha et al. 2016)

(Lehmann et al. 2015) (Ringler et al. 2017). In general, structured data simply stands for the

SEMANTICAL ENRICHMENT OF WEB USER INTERFACES IN THE CROWD

57

systematic structuring of data in order to be found better. In the Web, structured data appear in

texts, like the source code of a website or in knowledge bases consisting of structured records.

The two approaches may also be combined as a text may be enriched with semantic markup that

identifies mentions of entities from a knowledge base. Moreover, several knowledge bases with
different schemata may be combined (Bast et al. 2016).

Therefore, structured data does not form a single knowledge base on the Web, since there is

no uniform schema to tag the data. Given the heterogeneity of contents on the Web, it seems

illusionary to establish a standard for everything and to expect everyone to use this standard.

Thus, to structure data on the Web, many vocabularies have been developed (Vandenbussche

2017). One approach to improve the homogeneity of structured data in the Web is to encourage

contributors to reuse existing vocabularies as much as possible. A recent approach in this area

is Schema.org (Mika 2015).

Schema.org has proven to be the most widely acknowledged open vocabulary for structured

data on the Web, in email messages and beyond (Mika 2015) (Guha et al. 2016). The big search

engine providers have been the main promoters of Schema.org with the original aim to improve
the display of search results, making it easier for people to find the right web pages and to feed

their knowledge bases (Paulheim 2017).

Schema.org provides a vocabulary that is compact and easy to use to describe “things” on

the Web and to make them interoperable and understandable for automatic processing. Better

positions and representations in organic search results, knowledge cards or widespread online

map services in turn motivate website designers and operators to provide structured data on their

websites. Today over 10 million websites use Schema.org to markup some of their content

(https://schema.org). In practice, structured data are mostly used to describe content, namely

items of the universe and their properties. Functionality and handling of websites and

applications have not been the application focus of Schema.org yet, though it also includes an

appropriate vocabulary. In addition, most Schema.org plugins or tools are limited in terms of

offered Schema.org classes and properties they offer and are not appropriate to describe web
user interfaces.

This article deals with the following research questions: (1) what interests exist to have

access on structured user interface data, (2) what are requirements on structured user interface

data exist and what Schema.org classes and properties are appropriate, (3) who shall contribute

knowledge on user interface functionality and handling and (4) how can structured user interface

data be created and made available with the help of a suitable tool.

To find answers to this research questions, this article discusses reasons, why structured user

interface data can be helpful and analyzes requirements for structured data. We explain our

research process to investigate the suitability of Schema.org as a vocabulary to fulfil our

requirements. We start with the investigation of elements and relations of web user interfaces

and their semantics, which we intent to make machine-readable. As there exist hundreds of
classes and properties in Schema.org, we present a conceptual model of appropriate Schema.org

classes and properties to annotate this semantics. We investigate to what extent interactive

elements on HTML websites or applications can be automatically mapped to our conceptual

model elements.

As a result, we present our method to semi-automatically produce, validate, store and publish

semantic annotations of web user interfaces using the Schema.org vocabulary. As a proof of

concept, we present Schemator, a tool that allows users in the crowd to contribute, collect and

maintain structured data on websites and applications. To illustrate our approach, we use a

continuous use case.

IADIS International Journal on WWW/Internet

58

Possible application areas of structured user interface data are the conversational handling

of websites applications using intelligent voice assistants or chatbots, workflow management,

the search on the Web or for special functionalities. Another use case shows how the intelligent

assistance systems HBMS (Michael et al. 2018) consumes structured user interface data to
customize its personalized context model (Michael, Steinberger 2017).

The article is structured as follows: Chapter 2 gives an overview of structured data in the

Web, introduces Schema.org and mentions actual producers and consumers of structured data

on the Web. Chapter 3 investigates the suitability of Schema.org to semantically enrich user

interfaces in the Web and introduces our research method to produce structured user interface

data. Chapter 4 introduces the Schemator, a prototype that we have developed as a proof of

concept to support the production process of structured user interface data in the crowd. Chapter

5 summarizes our findings and gives an outlook to identified further research challenges.

2. STRUCTURED DATA ON THE WEB - PRODUCERS AND

CONSUMERS

In recent years, impressive advances have been made in enriching the Web with semantics to

provide a machine-readable "meaning" of data. In doing so, structured data have been used to

extract structured content from websites. Structured data can be embedded in the source code

of websites (Bizer et al. 2013), where they remain hidden from the human reader and are only

processed by crawlers or other “intelligent agents” to classify, interpret and process them. Thus,

the main consumer of structured data on the Web are machines, not humans. They automatically

use embedded structured data e.g. to build up their search engine index or to mine semantic data

for their knowledge database, which acts afterwards as a central storage. Some of these

knowledge bases are open for all to use and can be queried using an API or SPARQL endpoints

(Yu, 2014). Their main goal is to store millions of entities and reliable, associated facts about
those entities. Some of the more prominent players in development include Google Knowledge

Graph and Knowledge Vault, Bing's Satori, DBPedia or Wikidata (Paulheim 2017) (Färber

et al. 2018)(Lehmann et al. 2015).

To structure data on the Web, many vocabularies have been developed (Vandenbussche

2017). But semantic interoperability and the exchange of data with an unambiguous meaning

play an important role. One approach to improve the homogeneity of structured data in the Web

is to encourage contributors to reuse existing vocabularies as much as possible. Today,

Schema.org is the most acknowledged vocabulary to structure data on websites. Schema.org is

a collaborative community project promoted by the big search engine providers with the mission

to create and maintain a shared vocabulary for structured data used on websites, in email

messages, and beyond (Guha et al. 2016) (Hepp 2015). Schema.org structured data can be
embedded in the source code of websites encoded in RDFa, Microdata or JSON-LD (Sporny

et al. 2014) (Ronallo 2012) (Yu 2011). From there it can be interpreted and individually used

by any tool or service (Mika 2015). Schema.org also finds application in the field of knowledge

bases and enables e.g. the inclusion of information in the Google Knowledge Graph. The API

of the Google Knowledge Graph uses standard Schema.org types and is compliant with the

JSON-LD specification (GNG 2019). Google uses its Knowledge Graph e.g. to generate

knowledge cards shown in the search console (Paulheim 2017).

SEMANTICAL ENRICHMENT OF WEB USER INTERFACES IN THE CROWD

59

Figure 1. Schema.org structured data on the Web

Today, Schema.org structured data are mainly consumed by search engines to automatically

browse websites with high speed and accuracy and to take over search efforts for humans

(see Figure 1, application domain). The annotation with structured data increases the chance of

a website to appear as a rich result, for example a rich snippet, a featured snippet or a quick

answer.

As a result, Schema.org structured data are mainly produced and provided on websites in

the context of semantic search engine optimization for content types with mostly direct or

indirect commercial relevance like e.g. products, places, events, videos, persons, organizations
and more (see Figure 1, structured data). Although Schema.org vocabulary is commonly used

for the enrichment of “items”, websites and applications are more than just content – they offer

many ways to take actions. Schema.org offers a vocabulary to describe web user interface

elements and actions in a structured way (Mika 2015), but structured data describing user

interfaces can hardly be found today neither in the source code on websites or applications nor

in knowledge bases (Simsek et al. 2018).

Web content enrichment is complicated and costly, but website designers and operators have

been motivated in return for better search engine ranking and results. To produce structured

data, web designers must deal with the following challenges: the vocabulary to use, to create

the desired annotations and to represent, store and publish these enrichments. The demand for

tools to produce structured data has grown. There exist a lot of annotation tools and plugins with
different levels of automation (Webpals 2019) (WPLeaders 2019). Most of them are not widely

used because they are embedded in a CMS that enforces access rights to the CMS backend and

usually only support certain Schema.org classes. Some tools are strictly decoupled from the

underlying websites and generate, and store annotations separately from the content. However,

the complexity of the offered vocabulary often overburdens the average producer of structured

data. To counteract this (Khalili, Auer 2013) (Kärle et al. 2017) have worked on solutions for

the creation, publication and distribution of semantic annotations of content in an easier and

more intuitive way. In contrast to our approach, they did not focus user interfaces in their work.

Moreover, other intelligent agents started to consume Schema.org annotations. The

Schema.org markup "Speakable" for instance enables voice assistants to reproduce special

extracts of the content of a website linguistically on demand. Annotations of content and actions
in rich emails can help them to stand out from the rest in the inbox and to enable the user to call

go-to actions very easily (e.g. to order an item, to check in a flight, to reset a password) or to

summarize and to highlight key information in the inbox app.

IADIS International Journal on WWW/Internet

60

To the best of our knowledge, there is no approach semantically enriching the functionality

and handling of user interfaces of websites or applications. The machine-readable 'meaning’ of

relevant interactive elements like sign in, share, order, browse orders, comment, go to

homepage, change language or edit the profile would enable new possibilities for new intelligent
agents. Possible application areas are voice assistants for a conversational handling of websites

and applications, web application workflow management agents, online help agents, intelligent

assistance systems that are interoperable with websites and applications (Steinberger, Michael

2018) or the possibility to search web sites and applications for certain functions (see Figure 2).

Figure 2. Semantically enriched web user interfaces

With our approach, we want to semi-automatically produce, validate, store and publish

semantic enrichment of web user interfaces using the Schema.org vocabulary.

3. SEMANTIC ENRICHMENT OF WEB USER INTERFACES

Figure 3 summarizes our approach to enrich user interfaces with structured data and to store and

manage these data in an open knowledge base. On the right-side, Figure 3 includes the research

method we have applied and, on the left, it presents the production method for structured user

data we propose. We do our investigations on three levels: level I treats the website or

application user interface, level II the source code of the website and level III the structured user
interface data production. This chapter deals with our research method whereas chapter 4

focuses on the production method.

At level I of our research method, we start the requirements for structured user interface data

and try to find ways to meet them. First, we examine the elements and relations of a web user

interface and its semantics, which we intent to make machine-readable. We select typical

website or application use cases like the homepage of our University, a well-known online shop

or an online banking application. Based on these use cases, we identify and categorized those

characteristics and possible user interactions that we wanted to enrich with structured data so

that we are able to consume them later in conversations with intelligent personal assistants,

chatbots or intelligent assistance systems (Michael et al. 2018) (Steinberger, Michael 2018).

SEMANTICAL ENRICHMENT OF WEB USER INTERFACES IN THE CROWD

61

Figure 3. Production and Research Methods to produce semantic user interface data

To illustrate our approach, we use a continuous use case. Figure 4 shows a small fragment

of the Amazon.com landing page, which is one of our use cases on level I to investigate elements

and relations of web user interfaces and their semantics. We are going to take this use case

throughout this article. It is essential on level I to focus on the basic characteristics of the landing

page and its potential interaction elements like to find deals, to change the language, to filter

categories, to register at the website or to search a product. Based on these interaction elements

we characterize the types of the triggered actions, like find, change, register, order and to

describe the objects and results, an interaction produces (e.g. call of a subpage). We also want
to be able to describe the handling of potential interaction elements using media like text, image

or video.

Figure 4. Amazon.com Use Case

The next challenge in our research is to identify classes and properties to semantically

describe the characteristics and interaction elements found on level I with the vocabulary of

Schema.org. Our investigations are represented as level III of our research method in Figure 3.

Schema.org covers a large catalog of classes and properties, but only a small excerpt of the

vocabulary turned out to be necessary to describe the identified elements.

Based on the requirements collected on level I we develop a conceptual model of the

necessary excerpt of Schema.org classes (see Figure 5). We describe a website or application

using the Schema.org class WebApplication. WebApplication offers the properties name,
description, keywords, image to describe the required characteristics. A WebApplication can

include several webpages, what can be described using the property hasPart. Each webpage can

be described using the Schema.org class WebPage with its properties name, description and

headline.

IADIS International Journal on WWW/Internet

62

Schema.org knows several different subclasses of WebPage, like SearchResultsPage,

ProfilePage, QAPage, ItemPage, ContactPage and more, what is also helpful in our context

(Krutil et al. 2012). A WebPage can include multiple instances of the class WebPageElement,

representing user interaction elements on the weppage. WebPageElements, as WebPage and
WebApplication, are all subtypes of CreativeWork and therefore inherit the properties name and

description. Schema.org does not support many different subclasses of WebPageElement. Thus,

it is not possible to distinguish between elements like buttons, icons, sliders etc. on class level.

This differentiation is only possible within the scope of description property. To describe the

handling of a web user interface, we link MediaObjects and the more specific types

AudioObject, VideoObject and ImageObject to a WebPageElement by applying the property

associatedMedia.

Every associated WebPageElement has a potentialAction property linking it with an Action.

Each Action is characterized by a name and a description. Schema.org knows more than 100

different subclasses of the class Action (see http://schema.org/docs/full.html). A subset of these

subclasses like e.g. SearchAction, FindAction, RegisterAction, ApplyAction or SearchAction
works well to tag our identified user interactions. Every Action can be associated via an object

property with an entity of type Thing and via a result property with a WebPage again.

Figure 5. Conceptual model of Schema.org excerpt necessary for user interface enrichment
(Frießer 2019)

With this conceptual model in mind our next step is to produce structured user interface data

and store it in a knowledge base. We expect his knowledge base to use standard Schema.org

types and to be compliant with the JSON-LD specification.

SEMANTICAL ENRICHMENT OF WEB USER INTERFACES IN THE CROWD

63

Figure 6 shows simplified structured user interface data of the Amazon.com use case

represented in JSON-LD. To produce such structured data as easily as possible, it is desirable

to map HTML user interaction elements as automatically as possible to classes and properties

of our conceptual model. For that purpose, we investigate on level II of our research method
what information from the source code of these web pages can be used automatically to create

structured user interface data (see Figure 3, level II).

Thus, we analyze the HTML elements and Javascript events on our use case websites or

applications to find out, what semantic information about an identified interaction element can

be retrieved from the document object model (DOM). Not every clickable HTML element on a

website or application is relevant for us. Fortunately, some of the big companies like Apple,

Google, Mozilla and Microsoft worked on the development of the HTML living standard

(WHATWG) and introduced a concept named “inertness”: If an element is identified as inert,

the user agent (e.g. the browser) hast to ignore this element for user interaction (e.g. text search

or selection). As a result of their work, we can identify a number of interactive HTML elements

focusing only those covering at least an activation behavior as specified in (WHATWG):
“change”, “click”, “contextmenu”, “dblclick”, “mouseup”, “pointerup”, “reset”, “submit” and

“touchend” (Frießer 2019).

Our investigations show that the required structured data cannot be reliably and completely

extracted from the identified HTML elements on websites or applications. Some naming

conventions have been specified in the semantics section of (WHATWG), which state that the

name of a HTML tag can have a certain meaning and a clue for the purpose, e.g. the “addr” tag

is used for an address. Such conventions cannot be reliably adhered to. Even the label or rather

a text can be a hint for the functionality of e.g. button, but if an icon is used, a machine won't be

able to guess or “see” what the purpose of the control is.
In summary, knowledge gained from the DOM is enough for an initial draft of a website’s

structured user interface data but has to be checked and supplemented manually. Figure 6 shows

the JSON-LD representation of an excerpt of the structured user interface data enriching the use
case shown in Figure 4 with the focus on the interaction element represented by a globe icon to

change the language of Amazons landing page.

IADIS International Journal on WWW/Internet

64

Figure 6. JSON-LD structured user interface data of the launch site of Amazon.com (excerpt)

Chapter 4 now takes a closer look onto the tool support for the semi-automatic production

of structured web user interface data and defines the user roles and the architecture of the

Schemator platform.

4. ENRICHING WEB USER INTERFACES IN THE CROWD

Based on the results in chapter 3 as a proof of concept we now introduce Schemator, our tool to

support the semantic enrichment process of web user interfaces.

SEMANTICAL ENRICHMENT OF WEB USER INTERFACES IN THE CROWD

65

4.1 Schemator

Schemator is a comfortable semi-automatic web application that allows users to enrich the user

interface functionality and handling of specific websites or web applications. Schemator serves

also as an open knowledge base to store and manage the produced structured web interface data.

Figure 7 shows the roles that users can assume working with Schemator: (1) Tagger, (2) Content

Admin, (3) Data Consumer and (4) Model Designer.

Figure 7. Use case diagram of Schemator

The (1) Tagger’s main task is to annotate user interfaces of websites or applications and to
produce or structured user interface data in a semi-automatic way. With his knowledge about

the functionality and handling of a website or application and the way a user typically performs

certain tasks there the Tagger performs the production method presented in Figure 3:

After a website or web application of interest has been selected or registered, the Tagger can

view and access its webpages in “browse mode” embedded into Schemator in a graphical

representation. The website or application under consideration is loaded visually into the

Schemator and the underlying HTML code is scanned (see Figure 8). To edit existing or add

new semantics, the Tagger can switch from “browser mode” to “annotate mode”. Interactive

elements and their properties are listed now in the elements catalog on the left side of the

Schemator user interface. The detected landing page properties and the properties of their

interactive elements are displayed now and can be selected and enriched with structured data
according to our conceptual model in Figure 5. By clicking on an interactive element directly

or on an item in the elements catalog, Schemator highlights the control (e.g. an input field or a

button) and scrolls it into the Tagger’s view if necessary. Now the Tagger can focus the

interactive element and edit the corresponding structured data on the right side of the Schemator

interface. The same is done for subpages.

An advantage of using Schemator is that Taggers do not need to have any previous

knowledge of the Schema.org classes and properties they have to use. The input fields displayed

on the right are dynamically generated based on the conceptual model presented in chapter 3,

Figure 5.

IADIS International Journal on WWW/Internet

66

The vision of Schemator is to enrich web user interfaces in the crowd. Already available

structured user interface data contributed by others can be read, extended and adapted.

Comments can be left, the quality of the structured interface data can be rated and erroneous

annotations can be fixed and reported. Crowdsourcing knowledge on a large scale and in a
reasonable period requires large crowds. This makes it impossible to rely only on experts,

review each volunteer or manually review individual contributions (Heindorf et.al 2016).

Working with the crowd therefore means trusting them. Projects like Wikipedia and WikiData

prove that you can trust the crowd to build and maintain reliable knowledge bases in the freedom

that anyone can edit anything.

Schemator follows this assumption in the current version too but to prevent vandals from

abusing the Schemator, the (2) Content Admin has the possibility to validate annotations, to

grant or deny user rights or to ban unwanted websites.

The (3) Data Consumer retrieves structured user interface data from the Schemator

knowledge base via an API or SPARQL endpoint in form of JSON-LD documents. In fact, the

structured data can be also embedded as an external link target of a script tag.
Finally, the role of the (4) Model Designer is to customize the conceptual model of the

Schema.org vocabulary that Schemator is supposed to support. In the current version, the

conceptual model presented in Figure 5 is supported but Schema.org also evolves further and

Schemator is flexibly customizable this way. If any adaption is necessary, e.g. new and useful

action types or new properties are of interest, the Model Designer can customize this

modification without changing the code.

Figure 8. User interface of Schemator showing Amazon.com in the “annotate” mode

As a proof of concept, a first prototype of Schemator was implemented in a first version as

a web application in the context of a master thesis at the Universität Klagenfurt and covers the

main functionality to enrich website or applications (Frießer 2019). Figure 8 shows a snapshot,

where Schemator is used by a logged in Tagger in annotate-mode to enrich the user interface of

SEMANTICAL ENRICHMENT OF WEB USER INTERFACES IN THE CROWD

67

the Amazon.com website. The scanned user interface elements of Amazon.com are listed on the

left, the structured user interface data are displayed on the right side of Figure 8. To focus and

annotate a special element, the Tagger can use the reticle.

4.2 Use Case of a Structured User Interface Data Consumer

A data consumer, like an intelligent agent, workflow system or conversational agent can retrieve

and use the structured user interface data from the open Schemator knowledge base. Figure 9

shows a scenario, where the active assistance system called Human Behavior Monitoring

System (HBMS) consumes Schemator’s structured user interface data. HBMS is a system,
which monitors elderlies in their physical environment using different sensors. HBMS can gain

context knowledge in this way (Michael, Steinberger 2017) and supports the elderly in their

daily activities (e.g. order food, create tax return). Giving support means to help people to

remember how they once performed an activity by reactivating already existing memory

anchors, what makes it easier to remember situations and handlings. Thus, HBMS supports the

autonomy of a person with decreasing memory.

As digitalization of daily life progresses, it becomes increasingly important to help elderlies

to use their needed websites or applications. Web user interfaces cannot be treated as elements

in the physical user environment. Instead of installed location based, body or object based

sensors, web user interfaces possess potential interaction elements. The environmental context

knowledge about functionality and handling of websites or applications needed to support a

specific user can be imported flexibly from the Schemator knowledge base into the personalized
context model of the HBMS (figure 8, upper left corner) (Steinberger, Michael 2018).

Figure 9. Semantic markup interoperability scenario with HBMS
(adapted from (Steinberger, Michael 2019))

4.3 Schemator Architecture

Schemator relies on client/server architecture. As Figure 10 shows, due to security reasons the

web client does not directly interact with a website or application under consideration. The

server component additionally acts like an “in between web proxy”. The Content Checker scans

IADIS International Journal on WWW/Internet

68

the website or application and only if it considered as safe, then Schemator acts like a real

webserver proxy and saves the downloaded files in the Website Cache Storage. Schemator’s

main data representation and interchange format is JSON-LD, even for the representation of the

Schema.org conceptual model as presented in chapter 3. Because of the strong use of
JSON-LD, MongoDB (Chickerur et al 2015), a document-driven database is used for persistent

data management on the server component. The task of the client component is to recognize the

potential "tag-worthy" interactive elements of the website.

Some common frameworks like Bootstrap and jQuery are used for Schemator’s user

interface and business logic (https://getbootstrap.com/; https://jquery.com/), the latter

framework is mainly responsible for the interactive control detection. Finally, the LocalStorage

as defined in (WHATWG) is used to temporarily save valuable information of already annotated

items. This architecture allows a disaster recovery of the data if the browser crashes during the

tagging process. Moreover, functionalities to retrieve structured user interface data and to

customize the conceptual model are implemented but have not yet been integrated into the

Schemator web application. A next Schemator version is currently under development and
focusing structured data quality and system security.

Figure 10. System architecture of the Schemator following (Frießer 19)

5. CONCLUSION AND OUTLOOK

In this article, we motivate the importance of structured user interface data and showed that the

Schema.org vocabulary is suited also to semantically enrich the user interface of websites or

applications. We present a conceptual model of appropriate Schema.org concepts to annotate

interaction elements and show possibilities and limits to map interactive HTML elements to

these Schema.org model elements.

SEMANTICAL ENRICHMENT OF WEB USER INTERFACES IN THE CROWD

69

As a proof of concept, we present Schemator, a prototype to support the semantic enrichment

process of web user interfaces in an easy and intuitive way. The existing version of the

Schemator has not yet completely fulfilled all use cases presented in Figure 7, but it covers the

core functionality. The enrichment process works, and structured data represented in JSON-LD
can be retrieved and consumed by intelligent agents. Schemator is not only a platform for

generation, editing and storage of annotations but also a means to validate and publish them. By

this way, Schemator offers a free and open knowledge base of structured user interface data

collected in the crowd, separating structured user interface data from the websites they describe.

Despite the success of the free-to-edit model, all knowledge bases that rely on it are plagued by

vandalism. Vandalism has been around ever since knowledge crowdsourcing emerged. Given

the importance of knowledge bases to modern information systems, there exists a significantly

higher demand on the integration of structured knowledge bases (Heindorf et al. 2016). In future,

we want to continue developing the next Schemator version, collect structured user interface

data of selected websites and applications and evaluate the Schemator. In addition, we want to

investigate how to detect vandalism in Schemator.
We also plan to use Schemator beyond the enrichment of web user interface to semantically

describe the functionality and handling of appliances. His flexible conceptual model enables it

to broaden the application area of Schemator. In this context, we plan to produce and

administrate structured user manual data (Steinberger, Michael 2019).

REFERENCES

Bast, H., Buchhold, B. and Haussmann, E., 2016. Semantic search on text and knowledge bases.

Foundations and Trends in Information Retrieval, 10(2-3), 119-271.

Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M. and Völker, J.,2013. Deployment of
rdfa, microdata, and microformats on the web–a quantitative analysis. In International Semantic Web
Conference (pp. 17-32). Springer, Berlin, Heidelberg.

Bizer, C., Heath, T., & Berners-Lee, T. (2011). Linked data: The story so far. In Semantic services,
interoperability and web applications: emerging concepts (pp. 205-227). IGI Global.

Chickerur, S., Goudar, A. and Kinnerkar, A., 2015. Comparison of relational database with
document-oriented database (mongodb) for big data applications. In 2015 8th International

Conference on Advanced Software Engineering & Its Applications (ASEA) (pp. 41-47). IEEE.

Färber, M., Bartscherer, F., Menne, C. and Rettinger, A., 2018. Linked data quality of dbpedia, freebase,
opencyc, wikidata, and yago. Semantic Web, 9(1), 77-129.

Frießer, J., 2019. Semantische Aufbereitung von Benutzeroberflächen von Webapplikationen für die aktive
Assistenz mit HMBS, diploma thesis, August 2019.

GNG, Google Knowledge Graph Search API, https://developers.google.com/knowledge-graph,
(last access 2019/12/01).

Guha, R. V., Brickley, D. and Macbeth, S., 2016. Schema. org: evolution of structured data on the web.
Communications of the ACM, 59(2), 44-51.

Heindorf, S., Potthast, M., Stein, B. and Engels, G., 2016. Vandalism detection in wikidata. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Management

(pp. 327-336). ACM.

Hepp, M., 2015. The web of data for e-commerce: Schema. org and GoodRelations for researchers and
practitioners. In International Conference on Web Engineering (pp. 723-727). Springer, Cham.

IADIS International Journal on WWW/Internet

70

Kärle, E., Şimşek, U. and Fensel, D., 2017. semantify. it, a Platform for Creation, Publication and
Distribution of Semantic Annotations. arXiv preprint arXiv:1706.10067.

Khalili, A. and Auer, S., 2013. Wysiwym authoring of structured content based on schema.org.
In International Conference on Web Information Systems Engineering (pp. 425-438). Springer, Berlin,

Heidelberg.

Krutil, J., Kudělka, M. and Snášel, V., 2012. Web page classification based on Schema. org collection.
In 2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)
(pp. 356-360). IEEE.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., ... and Bizer, C., 2015.
DBpedia–a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 6(2),
167-195.

Michael, J. and Steinberger, C., 2017. Context Modeling for Active Assistance. In ER Forum/Demos

(Vol. 1979, pp. 207-220).

Michael, J., Steinberger, C., Shekhovtsov, V. A., Al Machot, F., Ranasinghe, S. and Morak, G., 2018.
The HBMS story. Enterp. Model. Inf. Syst. Arch, 13, 345-370.

Mika, P., 2015. On Schema.org and why it matters for the web. IEEE Internet Computing, 19(4), 52-55.

Paulheim, H., 2017. Knowledge graph refinement: A survey of approaches and evaluation methods.
Semantic web, 8(3), 489-508.

Ringler, D., & Paulheim, H. (2017, September). One knowledge graph to rule them all? Analyzing the
differences between DBpedia, YAGO, Wikidata & co. In Joint German/Austrian Conference on
Artificial Intelligence (Künstliche Intelligenz) (pp. 366-372). Springer, Cham.

Ronallo, J., 2012. HTML5 Microdata and Schema. org. Code4Lib Journal, (16).

Şimşek, U., Kärle, E. and Fensel, D., 2018. Machine readable web apis with schema.org action
annotations. Procedia Computer Science, 137, 255-261.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M. and Lindström, N., 2014. JSON-LD 1.0. W3C
Recommendation, 16, 41.

Steinberger, C. and Michael, J., 2018. Towards cognitive assisted living 3.0. In 2018 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)
(pp. 687-692). IEEE.

Steinberger, C. and Michael J., 2019. Using Semantic Markup to Boost Context Awareness for Assistive
Systems in Feng Chen, Rebaca I. García-Betances, María Fernanda Cabrera-Umpiérrez, Liming Chen,
Chris Nugent: Smart Assisted Living, Springer, 2019, 227-246.

Vandenbussche, P. Y., Atemezing, G. A., Poveda-Villalón, M. and Vatant, B., 2017. Linked Open
Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web. Semantic Web, 8(3),

437-452.

Webpals. https://www.webpals.com/seo/15-free-schema-markup-tools/ (last access 2019/12/05).

WHATWG. https://whatwg.org/ (last access 2019/05/24).

WPLeaders.https://wpleaders.com/wordpress-schema-plugins/ (last access 2019/12/05).

Yu, L., 2014. A developer’s guide to the semantic Web. Springer Science & Business Media.

