
IADIS International Journal on WWW/Internet

Vol. 12, No. 2, pp. 131-148
ISSN: 1645-7641

131

PERFORMANCE EVALUATION FRAMEWORK

OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

Sotiris P. Christodoulou. Computer & Informatics Engineering Dept, Technical Educational

Institute of Western Greece, Patras, Greece

Andreas B. Gizas. HPCLab, Computer Engineering & Informatics Dept., University of Patras,

Patras, Greece

ABSTRACT

Many JavaScript libraries (JL) have become available in order to facilitate programming of rich client-
side interactions in web applications. In some cases these interactions may cause non-negligible
overhead on the response time of web applications, esp. on average mobile devices, that negatively
influence user experience. An important fraction of this overhead is caused by some JL’s selectors on
DOM elements. The aim of this work is to thoroughly study and evaluate the performance of JL’s
selectors and categorize them in various performance classes. Towards this purpose, we produced a test-
suite of 263 selectors to cover all possible kinds of selectors found in real world cases and evaluate the
performance of these selectors on 6 popular JLs, with an enhanced version of slickspeed suite and a large

set of jsperf tests. The main result of this work is to introduce a framework (methodology and a set of
tools), that can be used by developers to estimate the performance overhead caused by JL DOM selectors
in a given web page, discover bad performing selectors and optimize them.

KEYWORDS

Javavascript Libraries selectors, performance evaluation, methodology and tools.

1. INTRODUCTION

Javascript is one of the most popular programming languages today. Along with the growth of

demands for more comprehensive and interactive user interfaces, the size and the complexity

of web applications are also increasing. JavaScript is also becoming a general purpose

computing platform for browsers (Richards et.al., 2010), for office applications

(openoffice.org), for RIA frameworks (like Google Web Toolkit, Qooxdoo.org,

IADIS International Journal on WWW/Internet

132

Cappuccino.org) and even program development environments (like lively-kernel.org). In

recent years Web sites are becoming more accessible by portable and wireless devices.

According to Pew Internet1 in 2012, 55% of Americans use a mobile device to access web.

31% of these mobile internet users say that’s the primary way they access the web. Obviously,
JavaScript performance is a more critical factor on mobile devices.

Due to the plethora of applications that JavaScript serves and the variety of programming

needs, several JavaScript Libraries (JLs) have been developed in order to facilitate the work

of web programmers. These libraries aim to be a useful tool for simplifying JavaScript code

development and reusing blocks of code by writing fewer code lines. Moreover they provide

clearer structure, new features, cross-browser support, pre-built applications, ready to use

plug-ins. For these reasons, JavaScript libraries, have become most popular2, and gain an

increasingly number of developers nowadays. Many developers have decided to program

much of the functionality of their applications using a JL at client side, while using the server

primarily to send and receive data. Shifting functionality to the client side enables the potential

for a much more powerful and responsive UI of web applications, which has always been an
advantage of native apps. But what about the performance overhead added by JLs? Can be

considerable?

Let’s start by making clear the difference between JS libraries and JS Frameworks. JS

Frameworks are bigger, built on top of a JL (most of them on top of JQuery) and provide more

advanced tools for developers, like data model as part of an MVC type architecture, and some

sort of built-in templating. Popular JS Frameworks include knockout.js, backbone.js,

angular.js, ember.js, etc. In this work we focus on the performance of JLs, which influence the

performance of JS Frameworks as well. Main aim of a JL is to facilitate programming of rich

client-side interactions in web applications. However, in some cases these interactions may

cause non-negligible overhead on the response time of web applications, esp. on average

mobile devices, that negatively influence user experience. The main scope of this work is to

thoroughly study and evaluate the performance of JL’s selectors, categorize them in various
performance classes and accurately estimate their overhead on various devices and different

browsers.

This research work may seem like a lot of effort to spend on a seemingly tiny performance

differential. However, research has consistently shown a strong correlation between fast sites

and higher conversion rates, more user actions per visit, and user satisfaction.

 37% of consumers will shop elsewhere if a mobile site or app fails to load in 3

seconds (Harris Interactive, 2013).

 The abandonment rate for mobile shopping carts is 97%, compared to 70% for desktop

carts. Performance is a significant abandonment factor (Google I/O Keynote, 2013).

 A company’s business performance suffers when its Web page takes longer than three

seconds to load, according to a study by Aberdeen Group (Aberdeen Group, 2012). An
additional delay of even one second can result in a loss of 7 percent of customers, an

11 percent decline in page views and a 16 percent drop in customer satisfaction.

The paper is organized as follows. After discussing related work, we select the JLs under

evaluation. In section 4 we introduce a methodology and a set of tools for dynamic analysis of

JL-based web applications and produce statistics on the volume and the type of selectors

actually executed. Furthermore, we extensively analyze the selectors used in a set of real

1
 http://www.pewinternet.org/2012/06/26/cell-internet-use-2012/

2
 The State of Web Development 2010 - Web Directions Survey, http://www.webdirections.org/sotw10/

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

133

applications, classify them according to their syntax and their performance and produce a test-

suite of more than 260 selectors to cover most possible kind of selectors found in real world

cases. Based on this test-suite we evaluate the performance overhead of selectors on six

popular JLs, by constructing and executing an enhanced version of slickspeed suite (described
in section 5) and a large set of jsperf tests (section 6). The results of these tests are also

presented and discussed in these sections, where we classify all kind of selectors in six discrete

classes according to their performance. In section 7 we present a methodology that developers

can use to evaluate the performance of their selectors and discover which should be optimized.

This work is completed with a summary of the conclusions and the intended future work.

2. RELATED WORK AND MOTIVATION

The heterogeneity of client devices / web browsers and the complexity of web applications’

front-end, lead to increased development and test efforts. The performance evaluation of such

applications is an important success factor, but measuring front-end performance requires a

deep understanding of measurement tools and techniques as well as a lot of human effort.

Recently, researchers (Westermann et.al., 2013) proposed an approach with which developers

can assess front-end performance without actually measuring it, but by using prediction

models. Towards this direction, our work may help such models to predict more accurately the

performance overhead of web apps on mobile devices, based on which JL is used, the DOM

size and the selectors executed during run-time.

There are few research efforts on comparing or evaluating Javascipt Libraries or
Frameworks and they mainly focus on comparing JLs’ features, like multimedia support on

developing RIA (Rosales-Morales et.al., 2011). On the other hand there are a few articles on

reputable web sites of technology companies or well-known Javascript developers that present

some sort of comparison of JLs or JFs, like:

 http://www.ibm.com/developerworks/library/wa-jsframeworks/wa-jsframeworks-

pdf.pdf

Lennon Joe, Compare JavaScript frameworks: An overview of the frameworks that

greatly enhance JavaScript development. IBM 2010.

 http://www.codefessions.com/2012/04/mobile-javascript-frameworks-evaluation.html

Mobile JavaScript frameworks, Evaluation and Comparison (Apr 2012)

 http://www.softfinity.com/blog/category/javascript-libraries/
The Battle of Modern Javascript Frameworks (Apr 2013)

These articles provide some good practices for developers, but are mostly compact,

evaluate JLs generically and lack of performance evaluation. Few online articles (like Grabner

Andreas, 101 on jQuery Selector Performance (Nov 2009) http://apmblog.compuware.com

/2009/11/09/101-on-jquery-selector-performance/ and jQuery Performance Rules (Apr 2009)

http://www.artzstudio.com/2009/04/jquery-performance-rules/) are coping with the

performance evaluation of the core components of JLs, namely DOM traversal (selector

engine) and DOM manipulation. However, by reading out the comments on these articles and

studying a plethora of jsperf.com tests, we understand that an in-depth comparison of these

libraries, esp. regarding their performance overhead on average mobile devices, would interest

the mobile web developers working with JLs. Moreover, an article written by Steve Souders
on Performance Impact of CSS Selectors (Performance Impact of CSS Selectors, Mar 2009

http://www.codefessions.com/2012/04/mobile-javascript-frameworks-evaluation.html

IADIS International Journal on WWW/Internet

134

http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/)

motivates us to start our study by primarily focusing on the performance of the selector

engines of JLs and leaving DOM manipulation performance for future work.

3. JAVASCRIPT LIBRARIES UNDER EVALUATION

A JavaScript Library typically provides a library of classes or functions that implements a

multitude of operations like managing DOM traversal and manipulations, insert visual effects,

managing Ajax manipulations and layout, whilst at the same time impose an architecture that

provides ways to extend the library (e.g. plug-ins, modules etc.).
As stated, our study is focused on the performance of the JL core component, namely

DOM Traversal / Selector Engine, while planning to work on DOM Manipulation

performance in future work. Let’s define the functionalities of these two components under

study:

1. DOM Traversal and Selectors Engines: All JLs implement a mechanism for easier

element(s) selection. These selectors make the process of obtaining references to

HTML elements much easier, and allow developer to select element(s) by ID, class

name, element type, hierarchy or by using a series of pseudo-selectors.

2. DOM Manipulation: Various manipulations on DOM elements like add, hide,

remove and copy elements, change their properties such as color, width, height, etc.

JavaScript developers can choose among a variety of JS Libraries. 62%3 of web sites are

using at least one JL. Today, the most popular JavaScript Library is jQuery, but there are some
other similar JLs that developers could also use like: MooTools, Prototype, YUI, ExtJS and

Dojo. Besides the latest version of each JL, we have also evaluated some older versions that

are still running on a significant number of web sites (as developers either don’t maintain

applications any more or they are afraid upgrading due to compatibility issues). Fig.1 shows

which versions of JLs we have evaluated and their usage percentage.

Figure 1. Javascript Libraries usage percentage 3 (Aug2014)

3
 http://w3techs.com/technologies/overview/javascript_library/all

0,0
10,0
20,0
30,0

% of all web sites % of web sites that use JFs

http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

135

4. JL DOM SELECTORS

All JLs provide a set of DOM selectors. Most of these selectors were borrowed from CSS 1–3

specifications, while each JL provide some additional selectors (some of them are common

among JLs) offering a powerful set of tools for matching a set of elements in an HTML page.

Selectors may range from simple element names to rich contextual representations. We

classify selectors according to their type, as described in W3C Specification of Selectors in

CSS34. Table 1 presents this classification.

Table 1. Selector Types

Simple Selectors

Universal Selector *

Tag Selectors tag

ID Selectors #id tag#id

Class Selectors .class tag.class

Attribute Selectors [att] [att=val] [att|=val] etc.

tag[att] tag[att=val] tag[att|=val] etc.

Multiple Attribute Selectors [att1][att2] [att1=val1][att2|=val2] etc.

tag[att1][att2] tag[att1=val1] [att2|=val2] etc.

UI element States Pseudo-classes :enabled :disabled :checked

Structural Pseudo-classes :root :empty

:nth-child(val) :nth-of-type(val) etc.

The negation pseudo-class :not(selector)

Other pseudo-classes :target :lang(val)

Combinators

Descendant combinator selector1 selector2

Child combinator selector1 > selector2

Adjacent sibling combinator selector1 + selector2

General sibling combinator selector1 ~ selector2

Group of selectors

Multiple Selectors Selector1, selector2,selector3 …

4.1 Dynamic Analysis of JL Selectors executed in Real Web

Applications

An important issue in our study was to discover what kind of selectors developers actually use

in their programs, and highlight patterns and programming practices used, either good or bad.

To achieve this we used Dynatrace AJAX Edition tool of Compuware Inc. It is a freeware live

web performance diagnostics tool for JavaScript execution, DOM access, rendering activities

and network traffic analysis. The tool provides data on Performance, User Experience, Path

4
 Selectors Level 3, W3C Recomm. 29/9/2011 http://www.w3.org/TR/css3-selectors/

http://www.w3.org/TR/

IADIS International Journal on WWW/Internet

136

analysis of JavaScript execution during runtime, Network and HotSpots analysis. HotSpot

analysis includes, among others, which selectors were actually executed either within the page

loading phase, or when the user interacts with the page. This is important for our case, as

different set of selectors can be executed for each distinct use case of applications under
evaluation. Dynatrace also measures the execution time for each selector, but it can be only

used for desktop computers and Firefox or Internet Explorer. Thus, we use it within our

methodology, just to extract the selectors of an application.

We analyzed 48 jQuery interactive applications found in GitHub. For each application we

traced one minute interaction with it by using Firefox. Afterwards, in HotSpots Analysis, we

filter all Contributors that contain the init(“) function within their text, as init() is the jQuery

function that every selector calls whenever a new instance of jQuery() starts in order to

interact with the DOM. This process produced a list of 1979 jQuery selectors that developers

actually use in their programs and produced after real user interaction. Fig. 2 shows the top 20

patterns of jQuery Selectors used.

Figure. 2. Patterns of jQuery Selectors used

4.2 JL Selectors Test-Suite

Based on the results of the abovementioned analysis and the results of a similar analysis

(Selectors that People Actually Use, Feb 2008, http://ejohn.org/blog/selectors-that-people-
actually-use/) provided by John Resig (JQuery creator), we constructed a test-suite of 263

selectors based on 131 distinct selectors’ patterns, that cover more than 98% of all possible

kind of selectors found in the real world cases analyzed. Moreover, we have included some

0,45%
0,51%
0,56%
0,56%
0,61%
0,61%
0,66%
0,66%
0,71%
0,71%
0,81%
0,86%
0,91%
1,01%
1,31%
1,57%

2,58%
3,94%

14,96%
45,98%

tag[name$=value]

*

#id #id

#id, #id

#id, #id, #id, #id, #id, #id

.class tag

.class tag[name=value]

tag[name=value]

tag.class

.class

http://ejohn.org/blog/selectors-that-people-actually-use/
http://ejohn.org/blog/selectors-that-people-actually-use/

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

137

selectors not found in real applications, but can assist us in statistical analysis of the results.

For instance we have included the selector [type=checkbox], even if we didn’t discover it, in

order to be able to compare the performance of the equivalent selector :checkbox.

We had to group these selectors together, in such a classification that will be helpful on
analyzing the results. The grouping of simple selectors is straightforward, but we need some

rules to classify complex selectors containing combinators, esp. the descendant combinator

which is by far the most commonly used. Our decision was based on the fact that most JLs

selector engines are parsing the selectors from right to left. Thus the most right sub-selector

determines the group of the complex selector. E.g. selector tag tag.class is classified under the

Class Selectors group. Table 2 presents the Selector Groups of our Test-suite. These selectors

were carefully produced for a local copy of this page: W3C specification of Selectors in

CSS34. We have modified this copy in various ways, in order to be able to cover all selectors

we want, e.g. we add a form at the end of the page, for testing form selectors, like :checked.

We tried to include selectors that match various numbers of elements, and even none elements,

in order to understand the overhead of such “bad” selectors. Some selectors match elements
that are dispersed over the DOM, while others match elements clustered in a certain part of the

DOM tree. For ID selectors we have included selectors that query for ids in different part of

DOM tree (top, middle, and bottom) and in different depth.

The full-list of the selectors in our Test-suite can be accessed by downloading the

SlickSpeed-enhanced tool (see next section) that we built based on the Slickspeed5 tool

developed by Mootools team.

Table 2. Selector Groups in our Test-suite

 214 Common Selectors supported by all JLs

ID Selectors #id tag#id #id #id
6
 tag#id tag#id

Class Selectors .class, tag.class and all complex selectors where the right-most sub-selector is a class

selector.

Tag Selectors *, Tag and all complex selectors where the right-most sub-selector is a tag selector.

Attribute Selectors [att],[att=val],[att|=val],tag[att],tag[att=val],tag[att|=val],[att1][att2],

[att1=val1][att2|=val2] tag[att1][att2],tag[att1=val1][att2|=val2], etc. and all complex

selectors where the right-most sub-selector is an attribute or multiple attribute selector.

Child Selectors :nth-child(val) :nth-of-type(val) etc.

Other Selectors :enabled, :disabled, :checked, :empty, :not(selector), :contains(text)

49 JQuery Extensions Selectors (some are supported by other JLs)

JQuery

Extensions Selectors

[att!=val], :selected, :checkbox, :input, :visible, :hidden, :header, :first, :last, :eq(val),

:gt(val), :lt(val), :even, :odd, :parent, :has(selector), some context selectors like

$(selector, context), and all complex selectors that include at least one of the above

selectors

5
 https://github.com/kamicane/slickspeed

6
 Although is meaningless to use the descendant combinator with an #id at the end, we included such selectors, as we

found out that they are used in some programs.

IADIS International Journal on WWW/Internet

138

5. SLICKSPEED-ENHANCED

Slickspeed is a simple test-suite for speed / validity tests for DOM selectors in JLs. Based on

Slickspeed we developed a new improved version called Slickspeed_Enhanced7 that

additionally provides:

 Saving the results to the server through a form, an important feature when testing from

mobile devices.

 A much bigger and organized set of 263 predefined selectors, with diverse complexity,

derived from the analysis in previous sections.

 Users can run their tests against three different HTML files with varying DOM size.

Trends (http://httparchive.org/trends.php) show that a medium DOM size page consists of

about 1000 DOM elements. Thus we decided to use three indicative sizes, i.e. small (140

elements), medium (902 elements) and large (2068 elements). We carefully produced the

three test HTML pages, so that the majority of selectors are matching elements even in the

small one, obviously in fewer numbers. You can see the matched elements per DOM and

per selector in the results of slickspeed enhanced tests in our site.

 Finally, a major addition we provide is a new Slickspeed_Commands implementation,

where testers can measure the time overhead not only for selectors, but for one JL

command or a piece of code. We used this tool to compare the performance of 35 (out of

49) jQuery Extensions Selectors with equivalent jQuery commands by using jQuery

functions.

5.1 Performance Tests with Slickspeed-enhanced

The tool measures the execution time for each selector and the total time for all selectors. We

used the core compact versions of all libraries, except Prototype that does not provide one. All

files with the detailed measurements and information about the tests described below are

available under this web page: http://alife.hpclab.ceid.upatras.gr:100/JLmetrics/. Our test bed

includes the configurations below:

 PCs/Laptops: We have tested the performance of each JL under 3 major browsers

(Firefox, IE11, and Chrome), on 2 strong computers. The overall outcome is that

performance is not an important concern when we run JL apps on desktop or laptop

computers.

 Mobile Devices: In mobile devices rendering and execution times of JavaScript code

are much higher because of hardware capabilities of those devices and mobile versions

of browser engines. We conducted the same performance tests with some indicative
mobile sets (devices, operational systems, browsers), shown in Table 3.

Before every test, cache memory was cleared. During the tests, no other applications were

running and there was no user interaction (like scrolling, zooming, etc.). The devices were

operated only with their batteries.

7
 https://github.com/gizas/Slickspeed_Enhanced

http://httparchive.org/trends.php
http://alife.hpclab.ceid.upatras.gr:100/JLmetrics/

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

139

Table 3. Mobile devices configurations

Brand / Name OS CPU Browsers

Samsung Galaxy S3 mini Android OS, v4.1.2 Dual-core 1 GHz Cortex-A9 with 1GB RAM Android Browser 2.3.3

Nokia Lumia 820 Win Mobile 8.0 Dual-core 1.5 GHz Krait with 1GB RAM Internet Mobile 10

Apple iPhone 5 iOS 7.0.4 Dual-core 1.3 GHz Swift (ARM v7) with 1GB RAM Safari Mobile 7.0

The first observation by analyzing the results is that some selectors match different number

of elements when used with different JL. For instance, :contains pseudo-class selector works

differently with Dojo and Prototype 1.6.1 (with Prototype 1.7.1 works correctly), while child

selectors are not working with early versions of MooTools and Dojo matches more elements
than it should. Fortunately, the latest versions of JLs are working correctly for almost all 214

common selectors. Thus, we present and compare the results of only the latest versions of JLs,

apart from jQuery that we show the results for 8 different versions of the most popular library.

Figure 3 illustrates the total execution times for each JL, on each mobile browser, on each

device. Table 4 presents the slowest common selectors on Big DOMs per JL.

Figure 4 shows the total execution time for all jQuery versions, for the JQuery Extensions

Selectors and equivalent jQuery code (see Slickspeed_Commands tool described above).

jQuery 1.3.2 doesn't support some of these selectors, thus we exclude it from the comparison.

Table 5 presents the slowest jQuery Extensions Selectors on Big DOMs per jQuery versions.

We measured much higher execution times than in PCs (from 10x to 40x depending on the

device). The execution times are mainly depending on the CPU power, thus we cannot
compare the performance of different browsers running on different devices, but we can

compare the performance of different JLs on the same browser. The main conclusions on these

performance results are:

 Browsers on slower devices display much higher execution times for all JLs.

 ExtJS is the fastest in all test sets. This is more obvious on average devices.

 Dojo performs poorly in all test sets. The difference with other JLs is bigger on average

devices.

 MooTools and YUI perform much slower on IE 10 Mobile, while on the other browsers

their execution times are close (or even better) to the ones of other JLs.

 While Android browser performs worse than IE10 Mobile on general selectors, it performs

better for selectors based on JQuery Extensions.

 For selectors based on JQuery Extensions, we observe that newer versions are slower than

early versions.

 The execution times are analogous to DOM size.

Additionally, we repeated all performance tests, with heavy user interaction during the
tests, i.e. scrolling, zooming in and out, etc. We measured much worst times (from 4x to 20x

times), except iPhone, that shows not affected by user interaction. For other devices, assuming

that users are not totally idle when they are browsing, we can estimate that the correct

performance times are the double of the values that are presented in this paper. Thus, the main

conclusion is that mobile users on average mobile devices are probably having bad experience

with some JL applications that include bad selectors that executed repeatedly.

IADIS International Journal on WWW/Internet

140

Figure 3. Performance of JLs Common Selectors on Mobile Browsers per DOM size (ms)

5.2 General Conclusions about jQuery Extensions Selectors

By further analyzing the results per selector, some specific selectors came out to be really slow

in performance. A surprising result is that some selectors are much slower in newer versions

of jQuery. Another important outcome, shown in Table 5, is that :has selector is by far faster

than .has() function, while jQuery documentation recommends the use of .has() function. Such

big latencies may cause halting of mobile browsers. Other selectors with big latency include

:hidden and :visible jQuery selectors, which are commonly used by developers. Moreover, the

use of jQuery context selector is slower in comparison to the equivalent descendant selector.
Other selectors that users should avoid is :not(), :contains(selector), or [colspan=val] attribute

selector.

Figure 4. Performance of Jquery Extensions Selectors on Mobile Browsers per DOM size (ms)

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

141

Table 4. Slow common selectors on Big DOMs per JL (msec)

Selectors JQ

2.0.3

JQ

1.10.2

JQ

1.9.1

JQ

1.8.3

JQ

1.7.2

JQ

1.6.1

JQ

1.5.2

JQ

1.4.2

MT

1.4.5

Proto

1.7.1

Dojo

1.9.2

Extjs

4.2.0

Yui

2.9.0

Browser

[colspan=2]

70 73 122 111 119 49 50 54 56 59 32 39 84 IE 10

118 176 192 177 320 346 184 259 62 155 56 46 104 Andr

18.5 17 27 26 22 13.5 13.5 15 14.5 14 11.5 14 21 Safari 7

ul:not(ul ul) > li

22 23 21 29 8 10 11 12 30 11 3 4 153 IE 10

81 116 52 141 96 73 65 80 61 71 39 30 236 Andr

9.5 8.5 9 8.5 8.5 9 8 9 5 8.5 3 6.5 34 Safari 7

div[class!=

made_up]
7 7 8 9 6 3 3 3 8 3 3 4 6 IE 10

84 39 21 33 29 21 12 26 15 44 4 34 10 Andr

3 3 5 5 2.5 2 1.5 1.5 2 1.5 1 5 4 Safari 7

:checked

1 1 1 1 1 1 2 2 1 2 17 1 2 IE 10

122 82 65 76 5 4 4 5 110 4 118 2 116 Andr

0.5 0.5 1.5 1.5 1 1 2 1.5 1 1.5 9 0.5 21 Safari 7

:contains(elector) 137 115 118 125 129 117 132 125 224 129 240 115 283 IE 10
p:contains(elector) 15 19 16 18 16 16 17 16 42 18 29 13 39

:contains(elector) 187 201 142 187 181 234 178 154 291 101 331 88 445 Andr
p:contains(elector) 57 20 40 92 52 51 53 54 48 94 50 30 63

:contains(elector) 25.5 25.5 24.5 23.5 24.5 25 25.5 29 107 25.5 49.5 24.5 103 Safari 7
p:contains(elector) 5.5 3.5 3.5 3.5 4 3.5 6 6 13.5 6 7 5.5 21

Overall, Slickspeed enhanced is a tool that facilitates the concurrent comparative

evaluation of several versions of JLs at once. But for precisely estimating the performance of

each class of selectors, we needed a more statistically significant tool. We chose jsperf for this

purpose.

6. PERFORMANCE TESTS WITH JSPERF

JSPerf is a service aim to provide an easy way to create and share test cases, comparing the

performance of different JavaScript snippets by running benchmarks. jsPerf is based on

Benchmark.js, a robust JavaScript benchmarking library that works on nearly all JavaScript

platforms, supports high-resolution timers, and returns statistically significant results.

However, we still need Slickspeed Enhanced for two reasons: a) JSPerf results are not

accurate when the execution time is close to 1 sec (as returns operations/sec) and b) comparing
several JLs is very hard, as we have to reproduce all tests for each different version of each JL

and rerun the tests many more times.

IADIS International Journal on WWW/Internet

142

Table 5. Slow jQuery Extensions Selectors on Big DOMs per jQuery versions (msec)

Selectors JQ

2.0.3

JQ

1.10.2

JQ

1.9.1

JQ

1.8.3

JQ

1.7.2

JQ

1.6.1

JQ

1.5.2

JQ

1.4.2

Browser

$(":visible") 319 325 325 345 505 509 502 1090 IE10 mob

 36 71 37 53 49 47 49 136 Andr 2.3.3

 11 13 15 14 15 15 15 35 Safari 7 mob

$(":hidden"); 293 294 304 294 500 506 503 1044 IE10 mob

 35 71 38 23 40 38 39 106 Andr 2.3.3

 9 11 9 9 11 11 12 26 Safari 7 mob

$(":has(code)"); 458 456 442 485 449 488 449 535 IE10 mob

$("*").has("code"); 16160 15660 15560 13817 6064 6015 5963 4806

$("p:has(code)"); 99 86 92 96 88 93 91 110

$("p").has("code"); 1869 1863 1891 1624 859 841 841 874

$(":has(code)"); 188 245 241 339 343 272 270 531 Andr 2.3.3

$("*").has("code"); 4293 4320 4103 3192 1803 1822 1772 5176

$("p:has(code)"); 112 89 52 54 53 46 45 84

$("p").has("code"); 1000 841 492 452 256 246 423 709

$(":has(code)"); 38 40 40 39 39 40 38 130 Safari 7 mob

$("*").has("code"); 808 874 838 701 371 395 397 1169

$("p:has(code)"); 9 10 11 10 10 10 10 26

$("p").has("code"); 68 73 69 55 25 27 25 148

div p 2 2 2 2 3 2 2 2 IE10 mob

$("p","div"); 49 46 59 46 54 53 51 51

div p 2 3 2 9 2 2 3 6 Andr 2.3.3

$("p","div"); 139 181 84 30 34 34 37 70

div p 1 1 1 1 1 2 1 1 Safari 7 mob

$("p","div"); 12 13 13 6 6 7 5 9

6.1 Tests in JSPerf

In total we have created 360 test cases (presented in Table 6), grouped under 5 tests, classified

according to the selector groups of our Test-suite (Table 2) and some extra complex selectors

we produced, in order to confirm some conclusions, after analyzing the abovementioned

results. We have built and run the above tests for the big, medium and small DOM, on all

devices and browsers used in slickspeed tests. To access these tests and their results follow the
links shown in the first column of Table 6.

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

143

Table 6. Selector Groups in our Test-suite

jsperf.com tests DOM Size Description

214 Common Selectors supported by all JLs

Jsperf.com/a-f-tests

Jsperf.com/a-f-tests/2

Jsperf.com/a-f-tests/3

Big

Medium

Small

ID, .class, tag.class, tag selectors (with descendant combinator), tag

selectors (with other combinators), Multiple selectors

Jsperf.com/g-j-tests

Jsperf.com/g-j-tests/2

Jsperf.com/g-j-tests/3

Big

Medium

Small

Attribute selectors, Child Selectors, Other selectors, Complex selectors

found in real web sites and belonging in various groups

49 JQuery Extensions Selectors (some are supported by other JLs)

equivalent code (by using jQuery functions) for 35 of the above selectors

Jsperf.com/klmnop-tests

Jsperf.com/klmnop-tests/2

Jsperf.com/klmnop-tests/3

Big

Medium

Small

[att!=val], :selected, :checkbox, :input, :visible, :hidden, :header, :first,

:last, :eq(val), :gt(val), :lt(val), :even, :odd, :parent, :has(selector), context

selectors like $(selector, context), Complex selectors found in real web

sites and include at least one of the above selectors

20 basic Javascript functions

Jsperf.com/q-tests

Jsperf.com/q-tests/2

Jsperf.com/q-tests/3

Big

Medium

Small

document.getElementById()

document.getElementsByTagName()

document.getElementsByClassName()

42 complex selectors

Jsperf.com/r-tests

Jsperf.com/r-tests/2

Jsperf.com/r-tests/3

Big

Medium

Small

We produced 42 more selectors than Slickspeed Enhanced. We needed

them to confirm some conclusions, after analyzing the first results.

The performance times of the selectors, are different on various browsers and devices, but

they are proportional showing that slow selectors perform the same despite the browser or

mobile device. According to their performance we categorized the selectors in six categories

named A-Selectors (faster selectors) to F-Selectors (slower selectors). Table 7a and 7b shows

part of jperf tests results, for all DOMs for Android Browser 2.3.3. The results for the other

browsers are proportional. In first column we categorize each selector according to each

performance. Below we describe each class of selectors and discuss them.

A-Selectors:

For selecting only one element, the faster way is by using an #id selector. The reason is that it

maps directly to a native JavaScript method, getElementById(). Although, #id is 12x slower
than the native method, it is still very fast, thus it is safe to be used. Most selectors used in

today jQuery programs are of this type. Especially in IE10, the #id is very faster than tag#id,

#id #id or #id followed by a pseudo-class, e.g. #id:hidden.

IADIS International Journal on WWW/Internet

144

Table 7a. Part of jsperf tests results for Android Browser 2.3.3 (msec)

Class SELECTOR Test(s) Small Med Big

 getElementById Q01-Q05 0.0005 0.0005 0.0005

A #id A01-A05 0.01 0.01 0.01

A tag#id A07-A09 0.14 0.13 0.12

A #id:hidden L13 0.31 0.33 0.19

 getElementsByClassName Q14-Q16 0.0010 0.0009 0.0009

B .class B01-B03 1.08 6.03 35.71

B tag.class C01-C03 2.64 8.29 15.28

 getElementsByTagName Q07-Q12 0.0246 0.0244 0.0242

B tag D01-D06 1.62 5.41 12.74

B tag,tag F01-F04 2.94 10.09 16.97

B #id,#id F05 2.50 7.41 14.93

B .class,.class F06-F07 3.60 11.49 20.64

B #id,tag,.class F11 4.95 11.49 21.74

B [name] G01-G04, J14 4.20 13.99 29.00

B [name=value] G06-G08 3.42 10.57 21.94

B tag[name] G11-G14 3.25 11.00 21.43

B tag[name=value] G16-G18 3.16 8.59 16.90

C * J01 6.94 19.23 41.67

C :empty I19 3.80 13.33 29.41

B SEL:empty I20 2.22 6.90 14.29

C :not(SEL) I11 5.95 23.26 45.45

B SEL:not(SEL) I12-I13 2.47 6.74 13.71

C SEL * J02-J04 4.98 16.13 31.59

D $('p','div') O01 8.70 34.48 125.00

D $('code','p') O02 2.75 18.52 90.91

B $('a','dl') O03 0.16 7.35 13.70

B div p D19 2.48 7.30 14.49

B p code D20 2.71 7.30 14.29

B dl a D21 2.63 7.30 14.49

F :checked I01 24.39 66.67 142.86

B input:checked I02 2.16 6.33 13.51

F :visible L01 21.28 62.50 125.00

B input:visible L05 2.07 6.85 12.35

F :hidden L09 18.87 62.50 125.00

B input:hidden L14 2.02 6.67 13.51

F header M01 15.38 52.63 111.11

F [colspan=2] G09 40.00 166.67 333.33

F [maxlength=20] R06 38.46 200.00 333.33

B th[colspan=2] G18 3.95 8.26 15.15

F [class=left][type!=radio] R10 58.82 250.00 500.00

F [type!=radio][class=left] R11 40.00 166.67 333.33

F :contains(elector) I14 58.82 250.00 500.00

B p:contains(elector) I15 2.60 8.93 21.28

F :has(code) N03 166.67 500.00 >1,000

B p:has(code) N05 3.00 13.89 33.33

F $('p').has('code') N06 3.39 66.67 1,000.00

B div:has(label) R22 6.99 11.63 22.73

A #myBody div:has(label) R23 2.01 3.39 6.41

A #myDiv div:has(label) R24 1.64 1.87 2.06

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

145

Table 7b. Part of jsperf tests results for Android Browser 2.3.3 (msec)

Class SELECTOR Test(s) Small Med Big

E .myClass .myForm div:has(input[name!=T3]) P07 66.67 76.92 111.11

 $('.myClass .myForm

div').has('input[name!=T3]')

P08 13.33 19.23 25.00

E $('div[id!=myBody]:contains(not):has(label)'); R37 8.55 20.41 52.63

 $('#myBody

div[id!=myBody]:contains(not):has(label)');

R38 2.36 5.68 10.87

 $('#myDiv

div[id!=myBody]:contains(not):has(label)');

R39 1.83 2.15 2.43

E $('div[id!=myBody]:contains(not):has(label)

*');

R40 200.00 1,000.00 >1,000

 $('#myBody

div[id!=myBody]:contains(not):has(label) *');

R41 33.33 200.00 500.00

 $('#myDiv

div[id!=myBody]:contains(not):has(label) *');

R42 26.32 125.00 333.33

B-Selectors:
A selector is slower when we need to get more than one element. The simplest way to do this

is by a .class selector or a tag selector, which they also map directly to native JavaScript

methods. A .class selector is slower when the DOM size is big, thus in big DOMs prefer to use

tag.class instead.

Attribute selectors are 1.5x slower that tag and .class. Use a tag in front of them. Multiple

attributes and other operators than equals (=) are not affecting the time. However, there are

some exceptions that we analyze below in F selectors.

Prefer Multiple Selectors when possible, esp. on big DOMs, because the DOM is traversed

once for all selectors, thus the total execution time is not the sum of the separate times, but the
execution time of the slowest selector. Do not use Multiple Selectors for #id, e.g. #id, #id.

All combinatory selectors, no matter how complex they are, as soon as they don’t include

any F-selector, are belonging to this class of performance. The majority of selectors belong to

this category and for the rest of the text we use the keyword SEL for referring to a B-Selector.

C-Selectors:

The universal selector (*) is 4x slower than a B-Selector. Avoid this selector, esp. on big

DOMs. SEL * type of selectors are also 2x slower than a B-Selector. Two more selectors

(:not() and :empty) belong to this class too. Prefer to use them with a B-Selector in front.

D-Selectors:

jQuery supports context selectors, i.e. the selection of elements within a context. For instance,

programmer can use this expression $('p','div') to selects all p elements included within a div.
This is equivalent with the selector $(‘div p’). Context selectors are much slower depending

on the matched elements, while B-selectors like $(‘div p’) are faster independently of the

matched elements, thus they should be preferred.

F-Selectors:

These are the slowest selectors and developers should always avoid the use of them. Most of

them are jQuery Extensions. Avoid using these selectors even in small DOMs.

IADIS International Journal on WWW/Internet

146

 :checked, :checkbox, :button, :file, :focus, :image, :input, :password, :radio, :reset,

:selected, :submit, :text, :visible, :hidden, :header, :parent, :first, :last, :eq(), :gt(), :lt(),

:slice(), :odd, :even, :animated, all child filter pseudo-classes, etc.

 [name=value], when name is one of these keywords: tabIndex, readOnly, maxLength,

cellSpacing, cellPadding, rowSpan,colSpan, useMap, frameBorder, or contentEditable.

 [name!=value]

 :contains()

 :has()

E-Selectors:

E-selectors are complex selectors combine C, D and F selectors. They can be very slow when
the selector or a part of it, matches high number of elements or it is incorporating more than

one F Selectors in combination. Developers should study carefully the performance of these

selectors and modify them if it is necessary. Normally, the easiest way to optimize such

selectors is to minimize the DOM area that you apply such selectors, by descending from the

closest parent ID (if there is no such ID, create one). Some examples can be seen in Table 7b.

Especially since a web page is likely to grow more complex over time, the data clearly shows

that selectors which don’t directly descend from an ID should always descend from an HTML

tag when possible.

7. METHODOLOGY

Figure 5. Performance of jQuery (msec)

Based on the results of our test-bed, we introduce a step-by-step methodology that can be used

by developers to evaluate the performance overhead caused by the DOM selectors in their web

pages, by the use of JavaScript Libraries. This methodology consists of 5 steps (see fig 5),

demonstrated below:

 1st step- Dynatrace Session recording: User records for a specific time period his or hers

activities in a web page with the Dynatrace Ajax Edition tool. Then user navigates and

interacts in the page and stops recording at some point.

 2nd step- Filtering of Selectors used: Open the session saved from previous step. Locate

Hotspot tab in the open menu. Add a new filter like the example image below in order to

extract only the init() functions triggered during the session.

PERFORMANCE EVALUATION FRAMEWORK OF ALL CLASSES OF SELECTORS FOR

JAVASCRIPT LIBRARIES

147

Figure 6. DynaTrace Screenshot

Then a new list of functions will appear, with time execution statistics and number of

invocations of each function.

 3rd step- Extraction of Selectors’ List: Select all the init(“)function list and copy-paste

them in an excel file. Keep only “Contributor” and “Invocations” columns and delete other

unwanted columns. Save this file with a csv extension.

 4th step- Upload List to our Server: Upload csv file to server with the help of the form

provided at the http://alife.hpclab.ceid.upatras.gr:100/JLmetrics/.

 5th step- Evaluation of Selectors: The system handles the uploaded list file finds for each

selector its matching class (A to F), and presents the results to the developer.

 6th step- Optimize Selectors: Replace D-Selectors with the equivalent B-selector. Replace

the F-Selectors with a B-selector. For instance, instead of :checked, give an ID to your form

and use the B-selector #formID :checked. Carefully check the performance of every E-

selector, esp. those that match many elements, and optimize them mainly by narrowing the

DOM area that the selector applies.

8. CONCLUSIONS & FUTURE WORK

The importance of good performance and usability testing is arguably more important now

than ever before, especially given the growth of mobile devices. When web applications are as

likely to be viewed on tablets or smartphones as on traditional PC browsers, the need for good

testing to ensure they will run efficiently is very important. Research proves that a

performance difference of a few dozen milliseconds is a user-perceptible delay.

http://alife.hpclab.ceid.upatras.gr:100/JLmetrics/

IADIS International Journal on WWW/Internet

148

In this work we introduce a step-by-step methodology and a set of tools that can facilitate

developers to analyze and evaluate DOM selectors’ performance of JavaScript Libraries. This

methodology aims to help in the categorization of selectors used into different performance

classes and reveal the selectors that developer should optimize by priority. Moreover, by
conducting some specific tests with a set of indicative devices and browsers, we underline the

major good practices that developers should have under consideration when they build JL

selectors. The main outcomes of this assessment are outlined below for each stakeholder.

 Developers: Should choose carefully which selectors to avoid in their programs according

to the DOM size of the document they interact with. Even the way of usage of some

selectors is important in order to avoid unwanted overhead. Good selector practices

underlined above, should become part of the training in programming with JLs. Mobile

application developers should prefer jQuery and ExtJS.

 JL Communities: Our intention was not to name the best library, but to reveal to their

supporting community the drawbacks of their DOM traversal engines and help them to

improve them. Surprisingly, the results of jQuery extensions selectors tests revealed that

some newer versions of jQuery perform slower that older ones. JL Communities should

guide developers towards the adoption of good selectors’ choice.
Regarding future work, our aim with jsperf tests-suite is to produce a data set with

measurements produced by all browsers that are available, running on a representative set of
currently used mobile devices. The enhancement and systematic categorization of those

measurements can be useful for further analysis for JL communities.

 The first version of Selectors Classification tool helps developers, by just uploading the

output produced by dynatrace, to quickly categorize the selectors of their programs. This tool

is open source and we plan to integrate it as browser plugin in a future version. Future

enhancements could be online suggestions on optimize selectors. Moreover, we plan to build

a similar framework for evaluating the performance of DOM traversal and manipulation

functions of jQuery.

REFERENCES

Aberdeen Group, First Class Mobile Application Performance management, Research brief, Aug. 2012.

Harris Interactive (2013). 3 Seconds or Else: Survey Shows Mobile Performance a Make or Break for
Holiday Sales, Online survey conducted within the U.S. by Harris Interactive on behalf of
Compuware APM from October 14–16, 2013. www.compuware.com/content/dam/compuware/
apm/assets/pdfs/Compuware%20APM%202013%20Holiday%20Survey%20Report.pdf

Google I/O Keynote, May 15-17, 2013 Moscone Center, San Francisco.

Richards G., Lebresne S., Burg B. and Vitek J., 2010. An analysis of the dynamic behavior of JavaScript
programs. ACM SIGPLAN conf. on Programming language design and implementation (PLDI).
Canada, Toronto, pp 1-12.

 osales-Morales . ., Alor-Hern ndez ., Ju rez-Mart nez ., 2011. An overview of multimedia

support into JavaScript-based Frameworks for developing RIAs. In U. Electrical Communications
and Computers (CONIELECOMP), 21st Int. IEEE Conference, San Andres Cholula pp. 66 - 70.

Westermann D., Happe J, Zdrahal P, Moser M, and Reussner R. 2013. Performance-Aware design of
web application front-ends. In Proc. of 13th conf. on Web Engineering (ICWE'13), Springer-Verlag,
Berlin, Heidelberg, pp132-139.

http://www.compuware.com/content/dam/compuware/%20apm/assets/pdfs/Compuware%20APM%202013
http://www.compuware.com/content/dam/compuware/%20apm/assets/pdfs/Compuware%20APM%202013

