
IADIS International Journal on WWW/Internet

Vol. 12, No. 1, pp. 35-51

ISSN: 1645-7641

35

DEVELOPING AND INTERACTING WITH

DIALOGUE-BASED WEB SERVICES

José Javier Durán. CETINIA, University Rey Juan Carlos. c/ Tulipán s/n, Móstoles, Madrid, Spain.

Alberto Fernández. CETINIA, University Rey Juan Carlos. c/ Tulipán s/n, Móstoles, Madrid, Spain.

ABSTRACT

In this article we tackle the problem of developing and accessing to dialogue-based applications that

require using Web technologies, such as REST services. In particular, we focus on services that are not

executed in one-shot (e.g. pipe process), but that require engaging in a dialogue where several messages

are exchanged (with the number of messages not known a priori). We propose a protocol for such service

interaction, and offer a framework that assists in their life-cycle: programming, deployment, search,

invocation, and feedback management. A running example is used to illustrate our proposal and assess

how it improves the experience of service developers.

KEYWORDS

Web services, Platform as a Service, Service directory, Middleware

1. INTRODUCTION

HTTP REST
1
 services are getting fast adoption in current Web applications because of their

simplicity both in programming and integration (Guinard et al. 2012). Despite the fact that

developing such services is easy, as well as creating composed services, there is not a standard

protocol for deploying dialogue-based services. These kinds of services require an interaction

between the user and the server that cannot be expressed using Web service descriptions like

WADL, or exchange languages like JSON.

In this paper we present a framework for deployment and use of dialogue-based

applications that require using Web technologies, such as REST services. In a dialogue, a

service may ask the user for additional information, and next steps depend on the nature of the

information supplied. For example, a medical diagnosis service typically requires different

1 Representational State Transfer

IADIS International Journal on WWW/Internet

36

information (e.g. analytic measures) depending on the values of other parameters (symptoms)

already analysed. We cover the main issue of such applications: services do not necessarily

need to be used only in one-shot workflows. However, others can only be performed using a

dialogue workflow. This is the case, for example, of a medical diagnosis service, where it is

not necessary to send the whole patient health records but just the requested measure.

The proposed framework covers different needs of an ecosystem for Dialogue-Based Web

Services (DBWS), such as service description, registration, invocation and reputation. The

main contributions of this paper are an interaction protocol, a middleware for supporting Web

services development and a Web interface for searching and invoking Web services.

The rest of the paper is organised as follows. Section 2 summarises other related works. In

section 3, we introduce the running example that is used to illustrate the different aspects of

our framework. The proposed architecture is presented in section 4. The next three sections are

devoted to detail the main contribution of this article: the development support middleware

(section 5), the service directory for registration, search and reputation (section 6) and a Web

user interface for service invocation (section 7). We finish with conclusions and future works.

2. RELATED WORK

Description languages and transport protocols are important parts of Web services

development. There are two main technologies: REST services with JSON payload (mainly

described using WADL), and SOAP (as WSDL services). The former is lightweight, easier for

developers to understand, and more adaptable. The latter is more widely adopted in industry

due to existing standards (WS-*) and tools (Guinard et al., 2012; Pautasso et al., 2008).

Deployment environment is another important aspect in the development of Web services.

Nowadays industry is moving towards PaaS (Platform as a Service) environments (Lawton

2008) in which different applications are deployed together sharing resources and its highly

useful when different applications share a common structure and/or they are used in the same

way (e.g. Heroku platform is running more than 3 million applications
2
).

There are different solutions focused on the creation of dynamic interfaces for Web

services. Usually, the user interface is created depending on the type of service to use, or the

parameters required for its execution. Some of these solutions translate a WSDL description

into a Web interface that represents the different kinds of restrictions and input types using

HTML widgets (Kopel et al., 2013). Others are focused on testing services by creating

requests based on service definitions, but offering an interface more appropriate to software

developers (Bartolini et al., 2009). There are other options that integrate both a directory of

services with a test user interface for such services, even including options for user feedback.

In particular, there are several existing public service directories.

In Table 1 we enumerate the different characteristics that we think should be present in a

Web Service directory, and how they are implemented in different solutions. The first

characteristic is whether the directory provides search capabilities. Registry defines whether

users can register their own services or the directory is closed. A useful information for

selecting services is reputation. There are different mechanisms for reputation, such as: rating,

users’ feedback as comments, or wiki-like in which users can update the description of a

2 https://blog.heroku.com/archives/2013/4/24/europe-region

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

37

service in order to correct any wrong information. By execution we mean if it is possible to

invoke the service directly from the directory web interface, without needing to develop an ad-

hoc application, or if there is specific documentation of that process (e.g. example script, or

unitary tests of the service). Finally, format represents the kind of services that can be

registered (SOAP/WSDL, REST, …).

Table 1. Comparison of different web service directories

 Search Registry Reputation Execution Format

Membrane SOA

registry

No (list) Yes Rating Yes

Low-level

SOAP

WS-index.org Text No Rating No Unknown

API-Hub Text + Filters Yes No No Any

Programmable

web

Text + Filters Yes Rating No Any

X Methods No (list) Yes No No SOAP

BioCatalogue Text + Filters

+ In/Out

Yes No (wiki) Examples SOAP, REST

Embrace Text No Comments Unitary tests SOAP,

REST, DAS,

BioMOBY

Membrane SOA Registry
3
 includes a five-star rating system and a (low-level) SOAP

invocation user interface, but lacks of a search capability. WS-index.org is a directory of web-

pages related to web services, but a standard format is not applied to the entries, and most of

the entries are out-dated. API-Hub
4
 and Programmable Web

5
 focus on API documentation and

both offer text and filter-based search. X Methods
6
 offers a WSDL-only directory, but it lacks

of search capabilities and reputation mechanisms. BioCatalogue
7
 offers a complex search

mechanism able to filter by text, tags, and kind of input and/or output, but instead of offering

an execution mechanism, it serves as a repository of execution examples. Embrace
8
 is a

specialized directory for medical services (support for domain description formats like DAS

and BioMOBY), which offers access to unitary tests that are run in background in order to

measure the reliability of the services.

Despite the existence of all those tools, there is a lack of a solution that integrates all the

important Web service mediation characteristics together. Programmable Web is the most

complete regarding those characteristics, but it does not allow execution, which is only

supported by Membrane. Moreover, they do not provide support for service development.

3 http://www.service-repository.com/
4 http://www.apihub.com
5 http://www.programmableweb.com/
6 http://www.xmethods.com/
7 https://www.biocatalogue.org/
8 http://www.embraceregistry.net/

IADIS International Journal on WWW/Internet

38

3. EXAMPLE

In this section we introduce an example to illustrate the process of adapting a specific

dialogue-based application to our architecture. We chose a simple application that assists users

in deciding what cocktail to make, by asking the user questions about desired ingredients or

restrictions (e.g. % alcohol). This application relies on a database of cocktails based on

different ingredients that are required in order to mix a new drink. This example has been

chosen for its simplicity and the continuous use of a question-answer mechanism for finding

the solution. Also, this kind of problem cannot be solved using a questionnaire, as the number

of items to check can be very extensive.

Figure 1. Cocktail advice algorithm

This algorithm (Fig. 1) tries to find a recipe for a cocktail based on a list of ingredients that

are required for their making. Cocktails are defined by the ingredients that are needed

(amounts are not taken into account). The algorithm manages sets of available and unavailable

(or discarded) ingredients. Initially, both sets are empty. Drinks that require the discarded

ingredients are filtered out, while the rest form the set of possible drinks. From those

candidates, the ones that can be made exclusively with the available ingredients are chosen

(ready). If any drink can be made at this point, the algorithm finishes, and sends the recipe to

the user. Otherwise, the user is asked whether he has the most common ingredient among the

candidate drinks. Depending on the user’s answer, the ingredient will be appended to the

available or discarded list. After this, the algorithm repeats until a drink can be made.

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

39

4. ARCHITECTURE

Fig. 2 shows our framework architecture. There are three main components: a development

middleware, a service directory and a Web user interface. Also, for clarity of the example, we

included in the diagram an additional component (the development stage) that is provided by

the developer itself, using whatever tool it is required for the creation of an algorithm, and it is

not a part of our architecture.

Figure 2. Framework components

The Development support middleware is a set of tools that facilitate the development of

dialogue-based services. A Script Engine takes script code and generates a Web service

implementation (WS) and its descriptions.

IADIS International Journal on WWW/Internet

40

The Service Directory acts as a mediator (yellow pages) among services and users. Agents

advertise the services they provide by registering with the directory. A service registration

includes (i) a description of its functionality, (ii) a grounding specifying the endpoint where

the service can be invoked, and (iii) the agent/organisation that created or owns the service

(for reputation management).

The Web User Interface is a generic Web application that provides a human interface to

search and invoke services registered with the directory, as well as providing feedback about

service use.

There are three options developers can choose to use our framework. They can create a

web service on their own without using the development support middleware. They may

register their services with the directory so as to be found by the users, or they just might not

use the directory and somehow provide the users the endpoint. The second option is to write

the script that represent the service logic and use the development support middleware to

generate the web service and registration. Additionally, the framework includes a compiler to

translate ESTA
9
 knowledge bases into JavaScript, so the third option is to write the expert

system in ESTA and let the framework to do the rest.

5. SERVICE DEVELOPMENT SUPPORT MIDDLEWARE

In order to ease the implementation and integration of Web Services using our framework, we

have developed a middleware that deals with process workflow and message exchange. The

advantage of this middleware is that it is possible to create a DBWS without implementing

any Web functionality, since the communication part is isolated from the application itself.

Also, this middleware offers a sandbox environment in which multiple applications can be run

together isolated among them, and where errors are properly managed by the middleware.

The main characteristics of the proposed middleware are:

 Isolate the communication layer from the application. The middleware is divided in

two parts: Transport and Script engine. The transport layer captures Web requests and

translates them into a standard model object. Then, the script engine is invoked with

that object, and the new state of the object is sent back to the requester as a response.

 Transform Web requests into software objects used by the application. Whenever a

Web request is received the middleware transforms it into an object that contains the

value of the parameters used in the dialogue. Also, the application can register

parameters and their constraints (used in the dialogue). An advantage of this isolation

is the possibility to create unitary tests without requiring access to the middleware.

 Do not impose a programming language, or paradigm. The script engine used is the

standardized Java script engine (JSR-223). This script engine lets the developer

include new parsers, while keeping a common API. We only require access to method

invocation with a unique argument, the object model.

 Avoid the use of special structures, or patterns, for dialogue management. Thanks to

the model object, applications do not require to apply a special pattern for dialogue

management. Whenever an application requires access to a parameter, the script

engine marks the parameter as missing and stops the execution of the script until the

9 Expert System Shell for Text Animation

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

41

requester provides a value. This way of dealing with dialogue is similar to lazy

programming, in the way that parameters are asked only when they are really needed

by the program.

5.1 Interaction Protocol

In this section we describe a workflow process for dialogue-based services, and a format for

message exchange.

5.1.1 Workflow

In order to use dialogue-based services, a record of the interaction has to be kept. Services

could be invoked in two states: initialisation and resume. During initialisation a service

communicates to the client which parameters must be provided. During resume, the service

takes the parameters received and returns a message that may include additional information

(parameters) required to continue the execution or the result. The message content is explained

in next section.

Fig. 3 shows the interactions involved during a cocktail drinks’ assistance. Green lines

represent user to service messages, blue lines responses shown using the user interface, while

other lines represent software level communication.

Figure 3. HTTP message exchange between a web client and the service

IADIS International Journal on WWW/Internet

42

First, the server asks if the user wants to use alcoholic drinks. The user answers Yes. Then,

the server tries to specify a limit for alcohol graduation in the drink (an enumeration). The

user answers ‘any’. For clarity, we simplified the question field, omitting their description.

Then, the service asks whether the user wants it with some orange (true/false) and the user

answered true (this is not shown in the figure). Next, Vodka is offered as a possible ingredient

(true/false), and the user agrees (true). As a result, a cocktail is found in the knowledge base,

and the service closes the dialogue with the recipe as a message with no further values to be

provided.

5.1.2 Message Format

Messages are quadruples <S, R, Q, P>, with:

 S = State information. This part includes a set of variables, with their current values,

representing the service state. This information is used when interacting with stateless

services and must be sent to the service again in order to keep a track of the dialogue.

Examples of information include parameters asked, internal variables, session id, or a

combination of them. They might not be important for the client, except that they must

be included in subsequent requests.

 R = Responses. This is a set of messages that are sent to the client for its use. Each

message can be, for example, a text, an HTML document, a picture, or an RDF

document. Those messages are considered the output of the service. In general, those

responses are expected to change in reply to subsequent requests, although it is not

mandatory (e.g. the response is like an RDF document with additional triples).

 Q = Question. When a service requires more information, or asks the user to wait for a

time condition to be reached, a question is sent to the client. That question has a

textual condition (the question), a motivation (why it is needed, and/or some semantic

information about the question), a parameter name (id) (used to send back a client

response), and a rule of accepted values (combination of type and values) (e.g. an

integer a range, an enumeration of possible values, or a class/type like a date). If that

field is missing the dialogue is considered finished as the system does not need any

further interaction with the client.

 P = Properties. As services are defined to be stateless, it must be possible to infer all

the information of the algorithm in any state of the request. In our case, we decided to

represent description, name and language of the service in this field. This information

is used by user interfaces, and by the service directory.

We use JSON serialisation in our framework. Fig. 4 shows an example of message.

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

43

{

 state_info: {

 state: "main",

 alcohol: "true",

 alcohol-percentage: "any-percentage",

 diary-products: "true",

 wine(red): "false" },

 response: [

 ”Still requiring more info for a suitable recipe”

],

 question: {

 id: ”vodka”,

 question: ”Would you like to use vodka in the drink?”,

 motivation: ”http://dbpedia.org/resource/Vodka”,

 type: ”boolean”,

 values : null

 }

 properties: {

 description: "This algorithm has a database of drink recipes, and searches for a

suitable recipe

 depending the available ingredients, asking one by one.”,

 name: "Cocktail advice",

 language: "en-us"

 }

}

Figure 4. Example of a message sent by the Web service

5.2 Script Engine

The script engine relies on the implementation of the JSR-223
10

 API present in the Java

runtime. This API is capable of loading applications created in different script languages,

offering an abstraction of the communication between Java classes and script applications.

The advantage of this approach is that it is possible to access applications independently of the

programming language as long as a parser for that language is available. In our case, we

require the presence of a setup method, and specifying the initial method. Both methods must

accept as unique argument a model object.

The model object offers a proxy between the middleware and the script. There are different

methods used to connect the script with the dialogue process, which are shown in Table 2.

Table 2. Methods of object model

Method Description

name a descriptive name for the application

language the default language used in the messages

initialState establishes which method must be invoked to process the information received

registerInput parameters are registered in the setup method with id, question, motivation, and type

(e.g.: boolean, string, enumeration)

get used to access to the dialogue parameters. If a parameter is missing the execution is

stopped and a response is sent to the requester asking for a value

info used to send information to the user (response message field)

setState it changes the method that will be invoked in next requests, for example to continue

10 http://www.jcp.org/en/jsr/detail?id=223

IADIS International Journal on WWW/Internet

44

the dialogue process from a different method instead of the initial one

set it assigns values to dialogue parameters. It may be used to keep a trace of a dialogue

status when changing state. For example, the service asks (in its initial state) the

requester’s birthday and, if he is minor, that age is sent to another state focused on

children

get_safe Same as get method, but if a variable is not set, it returns a null value. Useful when

decisions are made depending if a variable has been set or not, or if the algorithm

must not stop at the moment.

An example illustrates the use of the model object in Fig. 5.

function setup(domain) {

 domain.name = "Cocktail advice Algorithm";

 domain.language = "en-us";

 domain.initialState = "main";

 i = 0;

 // All ingredients are set

 for (;i < ingredients.length; i++){

 ing = ingridients[i];

 domain.registerInput(ing.name, ing.question, ing.dbpedia_url, ing.type,

ing.values);

 }

}

function main(env) {

 ingredients = {};

 i = 0;

 // Are ingredients available? (true, false, null=unknown)

 for (;i < ingredients.length; i++){

 name = ingredients[i].name

 // env.get_safe never stops the execution of the algorithm,

 // and assumes null as default value

 ingredients[i] = env.get_safe(name)

 }

// candidate: if no ingredient is set to false

 candidates = can_be_made_with(ingredients);

 // ready: if no ingredient is set to null

 ready = not_discarded(candidates, ingredients);

 if (ready.length > 0){

 // end condition

 env.info(‘Recipes found.’);

 env.info(ready);

 return

 }

 // env.get of an unset variable reset the algorithm, until the user sets the

variable

 env.get(most_common_null_ingredient(candidates, ingredients));

 return;

}

Figure 5. Partial script of the cocktail algorithm

The Script Engine accepts different programming languages. In particular all JSR-223

compliant languages can be used, such as Java, JavaScript, Python, Scheme, Ruby, Lua,

PROLOG, etc. In addition, we have built a compiler that transforms ESTA knowledge bases

into JavaScript compliant with our middleware. ESTA is a rule-based language used to build

Decision Support Systems (DSS).

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

45

The Script Engine also generates service descriptions. In particular, WADL and GCM

descriptions are generated. GCM (General Common Model) is a unified language, which was

used to integrate in a single framework different existing syntactic and semantic service

description languages (OWL-S, WSMO, WSDL, SAWSDL, etc.). GCM descriptions include

typical elements found in existing service description models such as inputs, outputs,

preconditions, effects, category, keywords, tag cloud (weighted keywords) and text. Details

about the GCM language can be found in (Fernández et al. 2012).

6. SERVICE DIRECTORY

The service directory is a key element to coordinate providers and clients. It keeps a database

of service descriptions and provides the following functionalities:

 Registration: provider agents can advertise their services by providing a description of

their functionality and access point.

 Search: client agents can query the directory to get a list of services matching the required

functionality. Matching services are attached with a reputation value, which is obtained

by a reputation module included in the directory.

 Feedback: clients can provide feedback to the directory by evaluating their experience

with the services they have interacted.

In the rest of this section we detail those aspects.

6.1 Service Registration

Registration of services in the service directory module is done by using the information

attached to the messages used in the protocol. Within those messages, there is meta-

information about the service, like name, description, and language. In order to register a

service, it is only required a URL to that service, as the directory will query the service itself

the required information.

Once the service information is read, the directory will extract the most important

keywords of its description, and measure their importance in the text. These weighted

keywords will be used later in the search mechanism. Also, and attending to the web domain,

services are clustered to be able to use reputation of related services when there is not enough

reputation information available. For the keyword extraction, we rely on AlchemyAPI

Keyword Extraction API
11

.

6.2 Service Search

While service registration is used by service providers wishing to advertise their services,

service search is a functionality for users that are looking for services.

Service matchmaking is based on the similarity of two texts (description of a service, and

text query) based on its weighted keywords. For each service in the directory we measure their

relevance with the text query, attending to the next equations:

11 http://www.alchemyapi.com/products/alchemylanguage/keyword-extraction/

IADIS International Journal on WWW/Internet

46

where rep(Service) represents the reputation as detailed in next section.

Then, services that are above an established threshold are offered to the user ordered by

their score. In our case we offer a specific interface (Fig. 6) that displays both the service

similarity with the query, as its rating (in our case, based on its reputation).

Figure 6. User interface for the web service directory

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

47

6.3 Reputation

Our framework includes a reputation module. Users can provide feedback to the system by

evaluating their experiences with services. When a service search is launched the relevant set

obtained by the service search module is attached with a reputation value ([0..1]) of each

service based on past experiences.

We use a simplification of the reputation mechanism proposed by (Hermoso et al., 2006)

for task oriented multi-agent systems. They propose a trust model for Virtual Organisations

where agents play some roles in different interactions. In our case we have only two

components, namely agents (organisations) and services. Our resulting reputation mechanism

is as follows.

The reputation of a given service (rep(s)) is updated whenever a new evaluation (eval(s)) is

obtained:

rep(s)=  · rep'(s) + (1 − α) · eval(s)

where rep' is the reputation value previous to the update and   [0..1] is a parameter

(empirically adjusted) specifying the importance of the past reputation value. It may happen

that a matching service has not been sufficiently evaluated (zero or very few evaluations). In

those cases we take into account the reputation of other services run by the same agent

following Hermoso’s approach.

The recommendation value of a service s is given by the following equation.

where r(s) measures how reliable rec(s) is, and θ  [0..1] is a threshold. Reliability is

based on the mean and standard deviation of user votes, assuming a Gaussian probability

distribution. In case that the direct reputation is not reliable enough the value is calculated as a

weighted sum of the reputation of similar services provided by the same organisation:

where O(s) is the organisation that provides service s, and ssim(s, s') is service similarity

(section 6.2).





















otherwise

ssw

sswsrep

srifsrep

srec

i

i

i

ii

),(

),()(

)()(

)(



IADIS International Journal on WWW/Internet

48

7. WEB INTERFACE FOR WEB SERVICE INVOCATION

Since our framework defines a common interface for multiple services (the message protocol)

it is possible to reuse a user interface to access different services. In our case, we have

developed a user interface that covers the main aspects of our proposal: search, invocation,

and feedback.

The web interface has been designed to be used in different devices like computers, tablets

or smart phones.

7.1 Service Search

The user interface is presented through the list of services that are accessible by the server.

This initial page lets users search for services attending to a free text query that uses the

service directory component. Results are shown ordered by their relevance (rating) and,

besides their name, their languages, reputations and descriptions are shown. It is possible to

choose which information is shown. When the user selects a service, it is invoked, as

described in the next section.

Figure 7. Web Service interface for the service directory

7.2 Service Invocation

The proposed protocol includes information needed for a dialogue stage, i.e. parameter

required (question field) and response messages. The user interface (mobile UI in Fig. 8,

desktop UI in Fig. 9) shows the response messages followed by the parameter question and by

a log of previous responses in the dialogue. The parameter question contains two elements: the

parameter question (enriched with motivation information) and the input field. The latter is

created with the most appropriate HTML input, e.g. for a boolean or small enumeration a

button for each option is shown, for long enumerations a drop list is used, etc. Some of the

information available through mobile app is shown in Fig. 8.

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

49

Figure 8. Mobile User Interface. Two different questions, the second with additional information

gathered using the motivation field of the question.

7.3 Service Feedback

During the invocation process, the current reputation score is shown, and the user can submit a

feedback about the service. The feedback can include a score, a text about the user’s

experience and the dialogue log (e.g. for debugging). Fig. 9 shows a snippet of the Web user

interface. The panel on the right allows the user to rate the service as well as download the log

and service descriptions.

Figure 9. Desktop Web User Interface for the application

IADIS International Journal on WWW/Internet

50

8. CONCLUSION

In this paper we have described a framework for developing and interacting with Dialog-

Based Web Services. We have presented a service directory that manages service

advertisement and search, extended with a reputation mechanism to take into account user’s

feedbacks. We have proposed a protocol for interacting with this kind of services. In order to

support service construction we have developed a middleware that generates web services

from scripting languages. We also have developed a generic Web interface to invoke such

services using our framework, from either desktop computers, or mobile devices.

Web service developers and users can benefit from the proposed framework in different

ways, using all or part of its functionality. (i) Developers can implement web services using

the techniques they prefer and use only the directory functionality by registering their services.

Alternatively, (ii) developers can implement the functionality of their services using a

scripting language and the tool generates the Web services and directory registrations. In

addition, (iii) developers (maybe not experienced programmers) can write an ESTA

knowledge base and our compiler generates the script that can be used in (ii). Finally, the Web

Interface is a tool that allows users to (iv) search services and/or (v) invoke them if wanted.

We have implemented a prototype to assist clinicians in their diagnosis. The system

integrates knowledge-based medical decision support systems. Those systems are

programmed in ESTA expert system, and its integration in our framework has been

straightforward. We use the user interface presented in this paper to test that system.

In the future, we also plan to extend our approach to deal with asynchronous services, i.e.

services that can pause their execution and resume it later (e.g. a diagnosis service requires

blood analysis tests). Web service composition is another open issue we plan to tackle. We

will also work on the automatic generation of web services provided by humans, i.e. they are

not implemented from a script describing the algorithm but a human user (e.g. an expert) is on

the server side using a Web based interface to provide the service.

ACKNOWLEDGEMENT

This work has been partially supported by the Spanish Ministry of Economy and

Competitiveness through grants CSD2007-00022 ("Agreement Technologies",

CONSOLIDER-INGENIO2010), TIN2009-13839-C03-02 (“OVAMAH”, co-funded by Plan

E), TIN2012-36586-C03-02 ("iHAS") and RTC-2014-1850-4 ("SmartDelivery") as well as by

the Autonomous Region of Madrid through grant P2013/ICE-3019 ("MOSI-AGIL-CM",

co-funded by EU Structural Funds FSE and FEDER").

DEVELOPING AND INTERACTING WITH DIALOGUE-BASED WEB SERVICES

51

REFERENCES

Bartolini, C. et al, 2009 Ws-taxi: A wsdl-based testing tool for web services. In Software Testing

Verification and Validation, 2009. ICST ’09. International Conference on, pp 326–335.

Fernandez, A. et al, 2012. Bridging the gap between service description models in service matchmaking.

Multiagent and Grid Systems, Vol. 8, No. 1, pp 83–103.

Guinard, D. et al, 2012. In search of an internet of things service architecture: REST or WS-*? a

developers’ perspective. In Mobile and Ubiquitous Systems: Computing, Networking, and Services,

pp 326–337.

Hermoso, R. et al, 2006. Effective use of organisational abstractions for confidence models. Proceedings

of the 7th international conference on Engineering societies in the agents world, pp 368–383.

Kopel, M. et al, 2013 Automatic web-based user interface delivery for soa-based systems. In

Computational Collective Intelligence. Technologies and Applications, volume 8083 of Lecture

Notes in Computer Science, pp 110–119.

Lawton, G. 2008. Developing software online with platform-as-a-service technology. Computer, Vol.

41,No. 6,pp 13–15.

Pautasso, C. et al, 2008 Rest- ful web services vs. “big” web services: Making the right architectural

decision. In Proceedings of the 17th International Conference on World Wide Web, WWW ’08, New

York, USA, pp 805–814.

