
IADIS International Journal on Computer Science and Information Systems 
Vol. 19, No. 1, pp. 1-14 
ISSN: 1646-3692 

1 

ANALYSIS OF EMBEDDED GPU 
ARCHITECTURES FOR AI IN NEUROMUSCULAR 
APPLICATIONS 

Simon Pfenning1, Raul C. Sîmpetru2, Niklas Pollak2, Alessandro Del Vecchio2,  
and Dietmar Fey1 
1Chair of Computer Architecture, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 
Germany 
2Neuromuscular Physiology and Neural Interfacing Laboratory, Friedrich-Alexander-Universität 
Erlangen-Nürnberg, Erlangen, Germany 

ABSTRACT 

The advancements in deep neural network design have led to a significant increase in the possibilities and 
functioning of AI-assisted medical hardware. To make use of this progress in the field of mobile 
applications or even as wearable devices, a suitable hardware-software ecosystem must be identified to 
meet the high computation and memory demands of neural networks with minimal energy consumption. 
In this paper, we analyze an up-to-date heterogenous embedded platform employing a deep convolutional 
network for hand position recognition through electromyography signals. Our evaluation aimed to 
determine the optimization efforts required for the architecture to function as a human wearable device 
and identify the most suitable accelerators on the given platform for this task. 

KEYWORDS 

EMG, GPU, Embedded Hardware, Deep Learning, Prosthesis, AI 

1. INTRODUCTION 

Hand position recognition using electromyography (EMG) signals has become an increasingly 
popular area of research in recent years (Liu et al., 2021; Saif et al., 2022; Rahimian et al., 2022; 
Sîmpetru et al., 2022, 2023; Chen et al., 2023).  

This technology has a variety of potential applications, including prosthetic devices,  
human-machine interfaces, and robotics. Deep learning algorithms have been shown to deliver 
reliable results in classifying EMG signals into different hand gestures (Liu et al., 2021; 
Rahimian et al., 2022). Compared to classical pattern recognition approaches such as support 



IADIS International Journal on Computer Science and Information Systems 

2 

vector machines (SVM) or random forests, deep neural networks (DNN) are far less time 
consuming in design and achieve a better mapping of the complex and non-linear relationships 
between EMG signals and the hand positions. The convolutional neural network (CNN) 
(Goodfellow et al., 2016) which we used in this paper, is trained on regressing not only specific 
gestures but estimating the position of the entire hand beginning from the wrist.  
On a high-performance computing (HPC) system equipped with capable hardware, this network 
is able to deliver precise results in real-time. For the application of this algorithm in the field 
however, there are still some major challenges remaining, when deploying deep learning models 
on resource-constrained devices, such as embedded systems. Especially for the use in human 
wearable systems the limited power budget and size of the hardware leads to a drastic restriction 
of its computational capabilities. On the other hand, in particular CNNs, which are commonly 
used for hand position recognition, are both computationally and memory demanding to deliver 
accurate estimations in real-time. For this reason, embedded systems designed with executing 
the inference of such algorithms in mind, often come with adapted hardware architectures. 
Those application specific accelerators can improve the duration of the network operations most 
efficiently (Reuther et al., 2020). Consequently, in order to make use of this specific design, a 
highly optimized implementation of CNNs on embedded systems is a crucial precondition to 
achieve desirable results. Our objective was to find an alternative hardware solution to the 
current existing HPC platform, equipped with an RTX 3090 graphics card. 

The device should be able to fulfill the needs of the high resource demand of the neural 
network, while staying very efficient at the same time. For these reasons we decided to evaluate 
the algorithm on NVidia’s current embedded Jetson platform, which still delivers a decent 
amount of computational power and memory size. In order to see how the algorithm behaves 
when optimizing for embedded systems we investigated the real-time capability and energy 
consumption of the resulting implementation. The embedded device contains a small graphics 
processing unit (GPU) as well as two application specific deep learning accelerator (DLA) 
cores. The proposed system has significant potential advantages over traditional CPU focused 
architectures. General purpose GPUs (GPGPUs) are highly parallel architectures and have a 
high memory bandwidth, making them well suited for deep learning inference workloads (Kayid 
et al., 2018). The implemented DLA cores, which are designed specifically for accelerating 
common operations of CNNs, such as convolutions, activation functions, or pooling are a 
promising additional feature for increasing the energy efficiency of the system (Zhou et al., 
2018). 

To obtain reasonable results, the original network as described in (Sîmpetru et al., 2023) is 
modified to make use of the embedded hardware’s specific architectural design. For this 
purpose, we describe multiple different approaches for optimization. We give insights on how 
the work is dispatched on the hardware and which benefits can be obtained by the conducted 
steps. Afterwards we then evaluate the suitability of the implemented system with regard to be 
mounted directly on the human body for different use cases, including orthotic and prosthetic 
devices. Both scenarios are extremely challenging, as there is very strict energy- and  
size-limitations for a comfortable application close to the human being. Finally, a proposal is 
given on whether the current system is sufficient, or if more optimization work needs to be done. 
This can be achieved by either further improving the software implementation, or by the digital 
design of a specific hardware architecture, for example as an embedded FPGA solution. 

The remainder of the paper is structured as follows. In chapter 2 we explain the DNN that 
controls the joints of a hand. Chapter 3 describes the embedded GPU hardware we investigated 
for a future smaller and a wearable hardware solution than the original PC based one. In chapter 



ANALYSIS OF EMBEDDED GPU-ARCHITECTURES FOR AI IN NEUROMUSCULAR 
APPLICATIONS 

3 

4 we describe in detail the different optimizations methods we used for the GPU hardware to 
evaluate in chapter 5 the GPU accelerator cores concerning their usefulness for an embedded 
AI neuromuscular controller. Finally, we conclude and summarize our paper in chapter 6. 

2. DEEP CNN FOR EMG REGRESSION 

2.1 Experimental Protocol 

We previously collected surface EMG (sEMG) data from nine subjects performing three hand 
gestures (pointing, peace sign, and rock sign) as well as a multitude of dynamic movements 
(flexing and extending of the fingers and opening and closing of the fist) in sync with their hand 
kinematics (Sîmpetru et al., 2023). The sEMG was acquired from 5 electrode grids (8 rows x 8 
columns, 10-mm interelectrode distance; OT Bioelettronica, Turin, Italy). Figure 1 shows the 
positioning of the electrodes. Three high-density EMG grids were placed around the thickest 
part of the forearm and two around the wrist, proximal to the ulnar head. Before placing the 
electrode grids, the skin was shaved and cleaned with an alcoholic solution. We recorded a total 
of 320 monopolar sEMG signals using a multichannel amplifier (EMG-Quattrocento, A/D 
converted to 16 bits; OT Bioelettronica, Turin, Italy), amplified (×150) and band-pass filtered 
(0.7–500 Hz) at source. The signals were sampled at 2048 Hz and captured during the movement 
execution using a custom script written in Python.  
 

 

Figure 1. Experimental setup taken from Sîmpetru et al., 2023. The subjects have 5 electrode grids 
attached to their forearm. Each electrode grid has 64 electrodes resulting in a total of 320 EMG signals 

(reused with permission from Sîmpetru et al.) 

We recorded 30 seconds per movement, resulting in a total of 12 minutes of data for training 
a previously published network (Sîmpetru et al., 2022) from zero that we have updated for  
real-time capabilities (Sîmpetru et al., 2023). 

 

 



IADIS International Journal on Computer Science and Information Systems 

4 

2.2 EMG Preprocessing 

In order to provide an embodied feeling for the subjects during real-time testing we set the EMG 
multichannel amplifier to provide the sEMG signals as 32 non-overlapping segments per 
second. This allowed our system to make a prediction every 31.25ms resulting in smooth 
movement intent prediction. Ideally, prediction works only based on the neurophysiological 
information contained in a single sEMG segment, but we have found empirically that the 
temporal information contained in a single segment is not sufficient. To collect enough temporal 
information, we create a queue containing 3 such segments, which gives 93.75ms of 
information. The queue is always shifted by one segment to ensure a smooth prediction of 
movement.  

We further augment the 93.75ms sEMG with its 20Hz low-passed version to provide a less 
variable view of the neurophysiological information. The low-pass filter was a fourth order 
Butterworth filter, which we used to filter forward and backward to achieve phase-free filtering. 

2.3 Model Architecture 

The model (Figure 2) for motion intention detection has already been described in detail in 
Sîmpetru et al. (Sîmpetru et al., 2023) thus we only provide information necessary for 
understanding the computational necessity of the individual layers. Detailed theoretical 
justifications for the layers can be found in the above-mentioned paper. 

The network consists of two parts: a CNN, which maps the sEMG signals into a  
high-dimensional latent space, and a subsequent multilayer perceptron (MLP) (Goodfellow  
et al., 2016), which transforms the latent space into Cartesian space. 

The input of the network is a 3D tensor that has the following shape: 
 height: 320 electrodes, 
 width: 93.75ms or 192 samples temporal information, 
 depth: two used to index the low-pass filtered and unfiltered EMG signals. 

In total one input tensor consists of 61442 floating point values. The first step of the network 
is to reshape the input by dividing the 320 electrodes into the five grids they correspond to, 
creating a 4D tensor of the form 2 x 5 x 64 x 192. This reshaped tensor is then standardized  
grid-wise. 

The CNN operations described in chronological order are: 
 The first 3D CNN layer contained 128 channels and ran a time-wise kernel of size 32 with 

a stride of 8. 
 Then, the output of the first layer is circularly padded by 2 in the grid dimension (from 5 to 

9) and 16 in the electrode dimension (from 64 to 96). On the padded tensor we ran a  
5 x 32 x 18 kernel that integrates the electrode wise only information into cross-grid patterns. 
To reduce computational complexity, the kernel is dilated in the electrode dimension by a 
factor of two. The layer had 32 channels. 

 The last layer also had 32 channels and was used to further extract information from the 
previously generated patterns by applying a 5 x 9 x 1 kernel. 



ANALYSIS OF EMBEDDED GPU-ARCHITECTURES FOR AI IN NEUROMUSCULAR 
APPLICATIONS 

5 

 

Figure 2. Model architecture overview taken from Sîmpetru et al., 2023. The hand movement intention 
detection model takes 320 EMG electrode signals and outputs the hand position in Cartesian space as 

60D vector corresponding to the x, y, and z values of 20 joints. The network consists of two parts:  
a CNN and a multilayer perceptron (MLP) (Goodfellow et al., 2016). The CNN maps the EMG signals 
into a high-dimensional latent space, which is then converted into kinematics using the MLP (reused 

with permission from Sîmpetru et al.) 

Each layer mentioned is followed by an Instance Normalization layer (Ulyanov et al., 2017) 
and the activation function GELU (Hendrycks & Gimpel, 2020). The output of the CNN is 
flattened and passed through a three layered MLP with sizes of 6656, 128, and 128, respectively. 
The last layer of the network outputs a 60D vector that represents the twenty hand joint 
coordinates in Cartesian space (x, y, and z). 

3. HARDWARE OVERVIEW 

For the implementation of the embedded inference system, we decided to use two platforms 
from Nvidia, the Xavier AGX and Xavier NX. Both being built upon the same Tegra Xavier 
architecture, but with a different configuration of the integrated CPU- and GPU-cores as well 
as the usable memory bandwidth. Xavier AGX has 33 % more GPU shaders and a memory 
interface double the size. So, in theory it should be able to deliver more computational 
performance but at the cost of a higher power consumption of 30 Watt instead of 15 Watt. Even 
though these numbers sound quite high for an embedded system, it is already a significant 
improvement to the previous system using an RTX 3090 with more than 300W.  

The two DLA cores are identical and directly attached to the main memory interface. In the 
evaluation section we will investigate if the differences between both hardware configurations 
makes for a better sweet spot regarding the entire efficiency of the system. In the next two 
subsections we will give a brief overview on the respective architectures of the accelerator cores 
as well as where their strengths reside. 

 
 
 
 



IADIS International Journal on Computer Science and Information Systems 

6 

3.1 GPU Architecture 

In recent years GPUs have proven themselves repeatedly to be well suited for the usage in Deep 
Learning (Kayid et al., 2018). Their properties as streaming processors make them an ideal 
choice for processing graph-based algorithms such as neural networks. Both Xavier SoCs 
contain GPUs, which are based on NVidias Volta design. This architecture introduced a couple 
of new features specifically designed for the improved execution of neural network algorithms 
in both training and inference. 

1) Quantization: A decisive technology that had an incredibly significant impact on the 
efficiency of executing deep neural networks on embedded architectures is the improved 
acceleration of values quantized in a lower bit width, for example FP16 or INT8, instead of 
FP32 (Choukroun et al., 2019). The use of lower precision data types for both activations and 
weights has had a twofold positive impact. First, the same compute units can perform double or 
quadruple the number of calculations at the same time and with the same necessary energy. 
Second, the memory footprint of the network can be shrunk to an excessive degree, which makes 
up for the smaller amount of memory available in embedded devices. Even though this leads to 
a certain drop in the accuracy of the inferred results, many deep learning algorithms have proven 
to be very robust against more aggressive quantization due to the under determined character. 
We will examine the influence of quantization on the accuracy of our network in the evaluation 
section. 

2) Tensor Cores: The most prominent improvement of NVidia’s Volta GPU family is the 
introduction of so-called Tensor Cores (Choquette et al., 2019). Tensor Cores are vector 
processing units, based on the design principles of systolic arrays (Chowdhury et al., 2020). 
They are able to conduct a 4x4 mixed-precision matrix-matrix multiplication and addition per 
clock-cycle. For each 64 scalar compute units there are eight Tensor Cores, effectively 
increasing the number of peak calculations per cycle by a factor of five. This special type of 
compute units is greatly beneficial for the deployment of neural networks, especially CNNs. 
The most common components for these types of networks are convolutional and fully 
connected layers, which can be easily mapped onto matrix-matrix multiply accumulate (MAC) 
operations and thus being very efficiently computed by the tensor cores. 

3.2 DLA Cores 

Both platforms also offer two NVDLA accelerators, which are designed specifically for 
improving the inference run of convolutional networks. Every DLA core contains five optimized 
blocks for conducting certain types of convolutions, activation functions, pooling, normalization 
and reshape (Zhou et al., 2018). During runtime it is possible to use each of the functional units 
separately, such that independent parts of the network can be executed in parallel. Or a pipelined 
approach can be adopted where small chunks of consecutive network-layers are mapped onto 
the respective functional units. The advantage of this procedure consists in the more effective 
data transfers between consecutive layers of the network, which can now be passed from one 
execution unit to the next by register transfers. 

In the present case, the implementation is realized as a headless core. This implies that the 
configuration and control of a DLA core is handled by the CPU via a kernel driver. The reason 
for this kind of design is power saving because an additional control unit and an SRAM memory 
can be saved. On the other hand, the DLA’s function units now need to directly access the slow 



ANALYSIS OF EMBEDDED GPU-ARCHITECTURES FOR AI IN NEUROMUSCULAR 
APPLICATIONS 

7 

main memory, because the cores do not offer their own L2 cache. This has the potential of a 
huge negative impact in cases where a pipelined execution of the network is not easily feasible, 
because every unit has to access the slower main memory for obtaining its data separately. In 
Chapter 5 we give an evaluation of how well the execution of the given network was improved 
by these cores.  

4. OPTIMIZATION METHODS 

In order to get the most out of the hardware we decided to firstly conduct the following 
optimization steps, to obtain an overview of the achievable results and to see which way turns 
out to be most promising. 

4.1 Network Structure 

The first steps towards achieving a better runtime are hardware agnostic methods that optimize 
the generic mathematical operations in the network. Traditionally the computation of neural 
networks is executed layer-by-layer, requiring intermediate results to be stored in memory and 
transferred between layers. This process incurs additional memory accesses and computational 
overhead, resulting in increased latency and reduced overall efficiency. As a countermeasure 
we use NVidia’s model-compiler TensorRT, to modify the network structure. In the process 
unnecessary operations are eliminated from the compute graph, for example dropout layers, 
which are only relevant during training. Furthermore, it fuses the operations of sequential or 
adjacent layers into a single kernel. This fusion eliminates the need for intermediate memory 
transfers, redundant computations, and the number of kernel calls. For our network model the 
predominant fused layer types are convolutions and activations. 

4.2 Quantization 

The second measure is already more hardware oriented, since it exploits the ability of the 
embedded GPU to compute on smaller data types in a vectorized way (Choukroun et al., 2019). 
In this manner, it is possible for the regular scalar processing unit to achieve twice as high a 
computing throughput. Another particularly key factor to note here are the aforementioned 
Tensor Cores, which are implemented within NVidia’s Volta architecture and only allow for a 
data width of 16bit for matrix-matrix multiplication. This is the reason why we chose 16bit as a 
first step for quantizing the weights and activations of the neural network. Because on the one 
hand we lose a minimal amount of information, but on the other hand we do not only gain twice 
the computational performance, but a factor of more than seven. This is because the scalar units 
on Xavier NX delivering a peak single precision computational power of roughly 850GFLOPS 
and the 48 Tensor Cores having a total of 6.1 TFLOPS. For the quantization procedure there are 
two possible implementations, either during the training phase, or afterwards. The major benefit 
of so-called quantization-aware training is a reduced loss in precision of the estimation results 
of the network. For our case we decided to stick with post training quantization, because our 
goal was to optimize an already trained network onto embedded hardware without the necessity 
of retraining. In the evaluation, we will address the impact of this decision when considering 
the loss of accuracy compared to the original model. 



IADIS International Journal on Computer Science and Information Systems 

8 

 
 

4.3 DLA 

The final stage of our optimization pipeline is represented by the integration of the dedicated 
deep learning accelerator cores. As mentioned before the DLA implementation on the Jetson 
boards is headless, which means they do not have a dedicated cache and all memory transfers 
need to be conducted directly to the slow main memory. For this reason, we decided to opt for 
the pipelined programming option of the cores as extensively as possible to keep the number of 
accesses to the main memory reasonably low. Memory transfers already are a burden since the 
DLA cores alone are not able to solve all the network’s layers. This leads to an additional 
continuous data traffic between DLA cores and GPU, which needs to be handled via the main 
memory. Because of this, our primary intention of making use of the accelerator cores was not 
necessarily an improvement in execution time, but rather to achieve a significant advance in 
energy efficient computing. 

5. EVALUATION 

For the overall evaluation we compare the three optimized variants (A to C in chapter 4) on both 
Jetson boards with each other and against the original unoptimized network runtime, as well as 
the formerly used desktop GPU RTX 3090. To be able to classify the results correctly, it must 
first be determined which threshold value the inference time must meet to be considered  
real-time capable. It is not easy to establish an adequate threshold for latency since a prosthetic 
hand that can be considered a complete replacement has not yet been implemented. As the 
current frequency of input data from the sensors is a maximum of 32Hz, we assume that 
inference within this time frame can be tentatively assumed to be real-time capable. If in the 
future this threshold should decrease, due to improvements in signal transmission, the estimation 
of real-time capability in this paper might need to be reconsidered. 

5.1 Inference Latency 

Before we get more into detail, we first want to provide an overview of the inference latency 
(Figure 3), to obtain a first impression of which implementation yields a good value. As 
expected, the desktop GPU delivers the best results by far and is always able to stay below the 
real-time threshold, but at the cost of a twenty-fold increase in power consumption (360W).  



ANALYSIS OF EMBEDDED GPU-ARCHITECTURES FOR AI IN NEUROMUSCULAR 
APPLICATIONS 

9 

 

Figure 3. We observe 33% performance increase by the adaptation of the network structure and another 
6x increase due to quantization with FP16 precision. However, the DLA implementation which suffers 

from memory transfers is substantially slower, so that it cannot keep up with the signal  
frequency from the sensors 

From the original Torch-model we can already obtain a 33% lower latency by reducing the 
operations of the networks compute graph with the help of a TensorRT engine. This is without 
losing any information. When applying the quantization to FP16 the GPU’s Tensor Cores come 
into play. This can be observed in the graph as a decrease in the latency by a factor of six, which 
is just the amount in peak computational performance delivered by the Tensor Cores. With this 
boost, the quantized inference time is easily below the real-time threshold. The DLA 
implementation, however, suffers a lot from the additional memory transfers and is not able to 
keep up even though it also uses weights and activations of FP16 precision. As we will see later 
on, the problem arises from the layer structure of the network, which is also responsible for the 
indistinguishable performance between the two Jetson boards, despite their different hardware 
capabilities. 

 

 

Figure 4. The sweet spot can be found for FP16 at 300MHz. The DLA implementation  
converges against the real-time threshold but does not reach it 



IADIS International Journal on Computer Science and Information Systems 

10 

In order to find the sweet spot for real-time execution of the inference, the frequency of the 
processing units is now varied for every iteration. (Figure 4). The only optimized model 
available to reach well below the real-time threshold is the FP16 GPU implementation. For this 
a GPU core frequency of 300 MHz is sufficient. The DLA implementation, even though it also 
works with 16bit quantized parameters, cannot achieve the same performance. We will see later 
on why this is the case. 

5.2 Quantization Error 

With the improvements in runtime due to quantization, a certain error is likewise introduced 
into the estimation of finger joint positions. Before we start talking about the effects of the 
quantization induced error, we first need to define how to measure it. For this we calculate the 
Euclidean distance between the estimated 3D-coordinate of the i joints of the quantized network 
to the original one. 

 

Figure 5. The quantization introduced error is significant but still acceptable,  
2mm average per finger joint 

This error already has relatively high quantity going from an average of 0.001mm to 2mm 
in the FP16 model (Figure 5). Nevertheless, it is quite acceptable for the early stage of 
development, but for the future a solution based on quantization-aware training should be aimed 
at. Especially considering another reduction in parameter size to 8bit for further improving on 
the inference efficiency. 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ൌ  ඩ෍ሺ𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑௜ െ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙௜ሻ²

௡

௜ୀଵ

 



ANALYSIS OF EMBEDDED GPU-ARCHITECTURES FOR AI IN NEUROMUSCULAR 
APPLICATIONS 

11 

5.3 Layer-wise Latency Analysis 

In Figure 3 we detected that Xavier AGX, even though having the substantially more powerful 
GPU, could not deliver up to this promise compared to its smaller counterpart Xavier NX. Since 
this seems very counter-intuitive at first sight, we measured the execution time for each layer of 
the network, to identify any bottlenecks. It appears that layer conv_1 of size  
5 × 32 × 18 has by far the most impact, since it amounts to over 90% of an entire inference run 
(Figure 6). The dimensionality of the convolutional layer leads to the same mapping of 
operations onto the processing units of the GPUs on both platforms. For this reason, Xavier 
AGX cannot gain any profit from its additional two GPU compute clusters, because they do not 
get used in this situation. Another mapping of the operations onto more compute clusters is 
possible but will also lead to a more inefficient implementation inside a single cluster and 
eventually lead to an even worse result. For a better utilization of the larger GPU, a redesign of 
the layer proportions or a split into two consecutive layers are the most promising alternatives 
to get rid of the bottleneck. 

 

 

Figure 6. The network layers execution time for TensorRT FP32 configuration, sorted by their impact on 
the execution time. Conv_1 has the highest impact on the inference runtime overall 

For the FP16 and DLA implementation we can observe a similar behavior. However, since 
NVidia’s DLA compute units do not yet support the 3D convolutional layers, they are not 
offloaded to them but stay on the GPU instead. The consecutively following layers can be 
processed by the deep learning accelerators, but at the cost of a higher number of main memory 
transfers due to the pipelined principle of the architecture not in use. Even though these results 
are not too bad, in the future we will investigate how well the 3D convolutions can be replaced 
by their 2D counterparts in order to make better use of the accelerator cores. 

 



IADIS International Journal on Computer Science and Information Systems 

12 

 

Figure 7. The individual layers of the network for the GPU FP16 and DLA configurations, sorted by 
their respective impact on the execution time. The layers marked in red are executed by the DLA cores. 

However, the computation-heavy 3D convolutional layers need to be assigned to the GPU. This also 
leads to a lot of memory transfers because of the DLAs not working in pipelined mode. 

5.4 Power Consumption 

Power efficiency is one of the major points of interest, when it comes to designing embedded 
systems. For this part we neglected the differentiation between the Jetson boards, since both of 
them behave remarkably similar when running our network. At the sweet spot of 300MHz the 
quantized GPU-only implementation has a power consumption of roughly 7W. Especially for 
lower clock speeds the GPU appears to be the more efficient choice, at least regarding our FP16 
model. When it comes to higher frequencies, the additionally used DLA cores start to pay off 
and the system gets a lot more power efficient.  

So, chances are good that with a few more adaptations, such as the exchange from 3D to 2D 
convolutions and further 8bit quantization-aware training, the already achieved results will be 
significantly surpassed in the near future. 



ANALYSIS OF EMBEDDED GPU-ARCHITECTURES FOR AI IN NEUROMUSCULAR 
APPLICATIONS 

13 

 

Figure 8. The GPU implementation at sweet spot of 300MHz consumes roughly 7W. The DLA core 
implementation shines at higher clock speeds with a better energy efficiency below 9Watt 

6. CONCLUSION 

With our rapid prototyped GPU/DLA implementation, we were already able to obtain decent 
results. A power consumption of below 10 Watt is a great achievement, compared to the desktop 
GPU with more than the twenty-fold energy expense. However, to be of reasonable use in a 
portable device, it is still far too high. Therefore, our future efforts from now on will be in two 
directions. Further tuning of the existing GPU/DLA design for even higher efficiency, to quickly 
examine how robust the neural network behaves on more severe measures and further 
optimization techniques. For the development of a future portable device, we are also striving 
for a custom digital design around an FPGA. We anticipate that this will allow for a reduction 
of the power consumption for the entire system to less than 1 Watt. Which in turn would allow 
us to dispense with the bulky cooling system, as well as significantly extend battery operation. 
To ease our efforts on the digital circuit design, we can draw on preliminary work already 
available at our institute. For an effective framework on implementing systolic DNN 
accelerators, we rely on the work achieved by (Knödtel et al., 2020). The mapping of the entire 
network on hardware, will be based on the process described in (Pfenning et al., 2021). It uses 
a high-level Python implementation of a Neural Network in TensorFlow and executes the 
inference tasks according to the principles described in (Holzinger & Reichenbach, 2021).  
In this way, we expect to be able to quickly achieve decent results on low-power FPGA SoCs, 
such as Xilinx Zynq Ultrascale+ family. 
 
 
 
 
 
 



IADIS International Journal on Computer Science and Information Systems 

14 

REFERENCES 

Chen, C. et al. (Jun. 2023). Real-Time Hand Gesture Recognition by Decoding Motor Unit Discharges 
Across Multiple Motor Tasks from Surface Electromyography. IEEE Transactions on Biomedical 
Engineering, pp. 1-11 

Choquette, J.  et al. (Apr. 2018). Volta: Performance and programmability. IEEE Micro, vol. 38, no. 2.  
pp. 42–52 

Choukroun, Y. et al. (Oct. 2019). Low-bit quantization of neural networks for efficient inference.  
pp. 3009–3018. 

Chowdhury, R. et al. (Jul. 2020). A computational model for tensor core units. 32nd ACM Symposium on 
Parallelism in Algorithms and Architectures. p. 519–521. Available: 
https://doi.org/10.1145/3350755.3400252 

Goodfellow, I. et al. (2016). Deep Learning. MIT Press. Available: https://www.deeplearningbook.org/ 
Hendrycks, D., & Gimpel, K. (Jul. 2020). Gaussian Error Linear Units (GELUs). arXiv:1606.08415. 

Available: http://arxiv.org/abs/1606.08415 
Holzinger, P. , & Reichenbach, M. (Oct. 2021). The HERA methodology: Reconfigurable logic in  

general-purpose computing. IEEE Access, vol. 9. pp.147 212–147 236 
Kayid, A. et al. (May 2018). Performance of cpus/gpus for deep learning workloads.  
Knödtel, J. et al. (Sep. 2020). A model-to-circuit compiler for evaluation of DNN accelerators based on 

systolic arrays and multibit emerging memories. 9th International Conference on Modern Circuits and 
Systems Technologies (MOCAST). pp. 1–6. 

Liu Y. et al. (Apr. 2021). NeuroPose: 3D Hand Pose Tracking using EMG Wearables. Web Conference, 
ser. WWW ’21. New York, NY, USA: Association for Computing Machinery. Available: 
https://doi.org/10.1145/3442381.3449890 

Pfenning, S. et al. (Jan. 2021). Transparent FPGA Acceleration with TensorFlow. DATE Friday Workshop 
on Systemlevel design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021) 

Rahimian, E.  et al. (May 2022). Hand Gesture Recognition Using Temporal Convolutions and Attention 
Mechanism. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 
pp. 1196–1200. 

Reuther, A. et al. (Sep. 2020). Survey of machine learning accelerators. IEEE High Performance Extreme 
Computing Conference (HPEC). pp. 1-12.  doi: 10.1109/HPEC43674.2020.9286149. 

Saif, R.  et al. (Sep. 2022). Multi-Channel EMG Signal analysis for Italian Sign Language Interpretation. 
International Conference on Emerging Trends in Smart Technologies (ICETST). pp. 1–5. 

Sîmpetru, R. C.  et al. (Jul. 2022). Accurate Continuous Prediction of 14 Degrees of Freedom of the Hand 
from Myoelectrical Signals through Convolutive Deep Learning. 44th Annual International 
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). pp. 702–706. 

Sîmpetru, R. C.  et al. (Jul. 2023). Proportional and Simultaneous Real-Time Control of the Full Human 
Hand from High-Density Electromyography. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering (TNSRE). doi: 10.1109/TNSRE.2023.3295060 

Ulyanov, D., Vedaldi, A., & Lempitsky, V. (Nov. 2017). Instance Normalization: The Missing Ingredient 
for Fast Stylization. arXiv:1607.08022 [cs]. Available: http://arxiv.org/abs/1607.08022 

Zhou, G. et al. (Nov. 2018). Research on NVidia deep learning accelerator. 12th IEEE International 
Conference on Anti-counterfeiting, Security, and Identification (ASID). pp. 192–195. 

 
 
 


