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ABSTRACT 

We introduce a surface streamline generation approach for visualizing vector fields defined on curved 

surfaces. This approach performs the intersection calculation on curved surfaces with complex topology 
to achieve the highly detailed underlying vector. Then, an extended Runge-Kutta streamline integration 

technology is applied for performing streamline tracing on an unstructured mesh, where the adaptive 

stepsize strategy and intersection acceleration structure are presented for sake of simplicity and efficiency. 

Finally, this algorithm applies the ball feature to improve its visual intuitiveness and is integrated into the 
general visual analysis platform. Experimental results show that our method can generate continuous and 

consistent geometric surface streamlines by tracing streamlines on curved surfaces. 
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1. INTRODUCTION 

The analysis of flow on polyhedral surfaces is of particular importance for design and 

optimization of complex geometry in computational fluid dynamics, which plays a key role in 

visual analysis of electromagnetic shielding effects, surface currents on electronic equipment 

and flow characteristics inside engine combustion chambers from physical sciences and 

engineering. 

A significant body of research is dedicated to vector field visualization such as LIC (Battke 

et al., 1997; Cabral and Leedom, 1993; Mao et al. 1997), ISA (Laramee et al. 2003), or IBFVS 

(van Wijk, 2003), in order to support exploration of flow on large and unstructured polygonal 

meshes. Although texture-like representations allow to increase the spatial resolution and to 

depict small details accurately, it is still challenging to visualize the flow feature on complex 

models for engineering designer. Covering an image with a set of evenly spaced streamlines is 

a good way to visualize the flow features. However, image quality enhancement needs to be 
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achieved by using streamline placement algorithms which optimize the placement of a set of 

streamlines according to an image-based criterion. In other words, these methods can generate 

sparse or dense representations of vector fields. However, the generation and advection of 

texture properties in object space is finally projected to image space. 

Directly performing streamline tracing on 3D curved surfaces is interesting due to the visual 

intuitiveness from the perspective of a designer. The work on streamline tracing visualization 

has been concentrated on Runge-Kutta integration methods which can’t adapt to the constraints 

of complex geometric surfaces due to the intrinsic properties. It is difficult to generate the 

continuous and consistent streamlines on curved surfaces with the challenge of the robust 

intersection testing and numerically stable methods. Polthier and Schmies (2006) introduced 

straightest geodesics in geometry to solve the initial value problem for geodesics on polyhedral 

surfaces. However, their algorithm only uses intrinsic geometric properties of polyhedral 

surfaces, not considering underlying discrete triangulation of surfaces in vector field. 

This paper proposes an efficient streamline generation algorithm for the analysis of flow on 

curve surfaces. Different from previous work, we introduce the high-precision polygon 

intersection and interpolation algorithm to achieve vector field extraction on surfaces with 

complex topology which keeps the underlying detail of geometric surfaces in vector field. Then, 

we present surface streamline integration technology to perform streamline tracing on 

unstructured mesh where the fourth-order Runge-Kutta integrator is extended to 2D surfaces.  

2. RELATED WORK 

Visualizing vector fields defined on curved surfaces or manifolds is of particular importance for 
engineering designer in computational fluid dynamics and has received much attention. Due to 
the complex topology of CAD geometries with holes and discontinuities, to use a technique 
based on surface parametrization would be especially difficult. The research on the visualization 
of vector fields defined on surfaces focuses on texture-based approaches (Laramee, 2004; 
Stalling and Hege, 1997; Li et al. 2008). In the early 1990s, Spot Noise (van Wijk, 1991) and 
LIC (Cabral and Leedom, 1993; Forssell and Cohen, 1995) were presented to generate dense 
representations based on textures which are limited to curvilinear surface in 2D. An extension 
of LIC for arbitrary surfaces in 3D were proposed by Mao et al. (Mao et al., 1997) where the 
convolution of noise image with filter kernels are performed only at visible ray-surface 
intersections. See Stalling and Hege (1997) for more comprehensive overviews of LIC 
techniques applied to surfaces. In order to overcome computation time hurdle introduced by 
LIC, two representative approaches, ISA (Laramee et al., 2004) and IBFVS (van Wijk, 2003), 
were proposed to generate dense representation of flow on complex surfaces at fast frame rates. 
Although texture properties are advected on boundary surfaces in 3D, they essentially realized 
texture advection in image space in 2D by projecting the surface geometry and its associated 
vector field to image space and then applying texturing.  

Covering an image with a set of streamlines is also a good way to visualize the flow features. 
A significant body of research is dedicated to using image-based approach to generate 
streamlines with different streamline seeding strategies for vector fields defined on curved 
surfaces (Li and Shen, 2007; Mattausch et al., 2003; McLoughlin et al., 2010; Spencer et al., 
2009; Verma et al., 2000; Ye et al., 2005). These methods can generate sparse or dense 
representations of vector fields, and image quality enhancement can be achieved by using 
streamline placement algorithms based on an image criterion. However, the generation and 
advection of texture properties is still confined to image space. It is still difficult to generating 
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surface streamlines directly on complex CAD models, and the quality is affected by various 
factors such as vector field projection deformation and seed point distribution. 

Generating geometric streamlines in object space is an efficient means for engineering 
designers to perform flow field analysis directly based on complex geometric models due to 
their visual intuitiveness. This can help them analyze the flow feature of arbitrary positions on 
curved surfaces in order to aid the design of computational fluid dynamics models. However, it 
is very difficult to perform streamline tracing on an unstructured mesh with the challenge of the 
robust intersection testing and numerically stable methods of handing special cases 
(Reshetnyak, 1989). Geodesic curves in geometry solve the initial value problem on polyhedral 
surfaces on smooth surfaces and play a key role to streamline generation (Polthier and Schmies, 
2006; Spencer et al., 2009; Alexander and Bishop, 1996). For instance, Polthier and Schmies 
presented an efficient straightest geodesics method to generate streamlines on polyhedral 
surface and arbitrary manifolds, which allows to move uniquely on a polyhedral surface in a 
given direction along a straightest geodesic. Their work only uses geometric properties of the 
polyhedral surface and not considers the underlying discrete triangulation of the surface.  

At the same time, the special or general post-processing software such as Tecplot, ParaView 
and VisIt rely on output results of the solvers, which makes it difficult for users to directly obtain 
the dynamic trend of the flow field on curved surfaces from complex models. Inspired by these 
works, we achieve the highly detailed underlying vector by surface extraction and present a 
novel and efficient method of directly generating streamlines on curve surfaces from complex 
models to make up for the deficiencies of commercial software.  

3. ALGORITHM 

The streamline generation algorithm proposed in this paper is applied to vector fields defined 

on complex curved surfaces. The key to performing streamline tracing is to accurately calculate 

the projection of the streamline on curved surfaces and the integral value of the streamline at 

different steps. 

Our algorithm consists of three parts. First, it performs the vector extraction operation by 

applying the polygon intersection and interpolation algorithms of geometric surfaces with vector 

field in order to achieve a high-precision vector field defined on curved surfaces. Then, it applies 

the surface streamline integration technology to generate streamlines with the aid of specific 

optimization operations. Finally, this algorithm is incorporated into the visual analysis platform 

with ball feature rendering algorithm to achieve expressive dynamic simulation of flow field on 

surfaces. 

3.1 Surface Extraction 

The streamline generation algorithm proposed in this paper is applied to vector fields defined 

on complex curved surfaces. The key to performing streamline tracing is to accurately calculate 

the integral value of the streamline on curved surfaces. From the viewpoint of engineering 

designer in computation fluid dynamics, the surface streamline generation algorithm is 

essentially different from the traditional image-based streamline visualization algorithms. It is 

limited by the geometry model with high-order, discontinuous and multi-scale characteristics, 

and firstly requires the high-precision acquisition of the vector field on the geometric surface. 
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Figure 1. Two cases that a geometry and its surface clipping cell intersecting with volumetric cells in 

vector field 

Figure 1 illustrates the intersection cases of geometry and vector fields where red points 

denote calculated intersection points and polygons surrounded by green lines are extracted valid 

polygons. Here, our algorithm extends the previous polygon clipping approaches presented by 

Greiner and Horman (1998) and Vatti (1992) to 3D curved surfaces to achieve the  

high-precision surface extraction which keeps the underlying detailed structures of geometric 

surface on vector field. 

Considering the fact that vector field may be composed of structured or unstructured grids, 

this paper applies the grid-related interpolation algorithms to calculate the vector field on 

extracted surfaces. For unstructured grids, we adopt the trilinear interpolation method to 

calculate the vector on arbitrary point on curved surfaces. For structured grids, domain-related 

interpolation methods are applied. 

 

 

Figure 2. Geometric structure of vector field E defined on the hexahedral cell 

Figure 2 shows an example of the structured grid generated by the numerical solver. The 

physical quantity E in vector field is registered as the center of the grid cell, but the components 

of the vector E are located at the edge center of the grid cell. In order to calculate the vector 

value of any node P on the complex geometric surface, three reference planes, as shown in the 



IADIS International Journal on Computer Science and Information Systems 

182 

area enclosed by the three groups of green dashed lines in Figure 3, are introduced for vector 

field defined on structured grids. The projection points of the point P on the three reference 

planes are P1, P2, and P3 respectively. P1 is used to calculate the x-axis component Ex of the 

vector field E associated with P. P2 and P3 are used to calculate y-axis component Ey and z-axis 

component Ez respectively. 

 

Figure 3. Geometric structure of vector field E defined on the hexahedral cell 

Figure 3 shows the example of calculating the projection point P1, and the complete linear 

interpolation formula is: 

                                                  (1) 

 

where,  

 

                                (2) 

   

Substituting the and in Equation 2 into Equation 1 can obtain the component of 

Ex(P1). Ey(P2) and Ez(P3) can be obtained in the same way. 

3.2  Surface Streamline Generation 

Through extracting vector field using curved surfaces, we can obtain a high-precision surface 

vector field which provides the pre-processing data for streamline generation. Then, according 

to the initial seed point specified interactively by engineering designer, a streamline moving 

along the geometric surface needs to be generated. However, due to the limitation from the 

complex curved surfaces, the classical Runge-Kutta integrators is no longer valid. Focusing on 

this central challenge, this paper adopts a new and extended Runge-Kutta method based on 
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surface projection for integration calculation, with the aid of an adaptive stepsize strategy and 

streamline-surface intersection acceleration structure, to accomplish the continuous and 

consistent surface streamline generation. 

3.2.1 Runge-Kutta Integral 

The core idea of the surface streamline generation algorithm is to track and calculate the motion 

trajectory of these seed points on curved surfaces in vector field. The trajectory is a curve, 

namely a streamline. For each streamline x(t), its motion equation satisfies: 

                                                           (3) 

Where V (t, x) is the value of vector field at the position x(t), and for the static field, V (t, x) = V 

(x). 

Considering the case that surface streamlines are constrained by geometric shapes, this paper 

defines an extended Runge-Kutta streamline integral formula as 

                                   (4) 

Where Ω represents the geometric surface and ProjΩ represents the projection of the integral 

formula on the geometric surface. The choice of h is more important. If h is too small, the 

calculation overhead will be too large. If h is too large, it will bring greater errors and reduce 

the accuracy of streamline generation. 

For generating continuous surface streamline in vector field, we need to iteratively calculate 

the integral points of the streamline according to the Equation 4, and finally obtain a complete 

streamline that can show the move trend of flow field. We adopt the fourth-order Runge-Kutta 

method used for concrete calculation. This method is used as the basis of solving the derivative 

and initial values in differential equations. Specifically, the next step value xi+1 of the streamline 

is determined by the current value xi plus the projection on the surface of the product of the step 

interval h and an estimated slope, formulated by 
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error. When using a fixed step size, the complexity of the projection calculation becomes a  

time-consuming problem. As shown in Figure 4, s1, s2, and s3 represent three polygonal cells on 

the geometric surface, and p1, p2, and p3 represent the projection points of streamline integration 

on surface. The structural diversity of curved surfaces increases the complexity of generating 

surface streamlines after projection. 

 

Figure 4. Surface projection under two types of integration with fixed steps h1 (left) and h2 (right) 

For solving this problem, we construct an adaptive stepsize method based on the grid size 

and shape to calculate and generate surface streamline as shown in Figure 5. 

 

Figure 5. Classification of the adaptive stepsize on a polyhedral surface according to the shape of 

polygon 

According to the type of polygon cells on curved surface, different stepsizes are processed 

during surface integration. For a triangle, the integral projection directly crosses the internal 

field of the triangle, and the step length is only h1. The quadrilateral or pentagon is triangulated 

separately to form two step sets h1h2 and h1h2h3, where there is still only one integration step 

inside each triangle. This algorithm avoids the complicated calculations when the streamlines 

are projected on the geometric surface, and at the same time takes into account the grid shape 

and the changes of cell volume. When visualizing streamlines, we synthesize surface 

streamlines orderly according to the adaptively generated projection pointsets. 
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3.2.3 Intersection Acceleration 

Surface streamline generation algorithm involves how to accurately calculate the projection 

point of the streamline on curved surfaces. When the resolution of the dataset grows, the 

geometric surface extraction operation will generate a large number of surface polygons. 

Therefore, a lot of time will be consumed in the calculation of the streamline integral during the 

surface projection. 

 

Figure 6. Notion of constructing bounding box of geometric surface with the parameter relTol 

Considering the surface topology, we introduce the spatial threshold relTol in the vertical 

direction of the surface to construct the surface-based volume cell, as shown in Figure 6. Based 

on this, an octree-based acceleration structure of the geometric surface is constructed, where the 

spatial volume represented by each polygon represents a valid node information in the octree.  

 

 
Figure 7. An overview diagram of generating surface streamlines using octree acceleration structure 
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The complete process of performing the surface streamline generation is shown in Figure 7. 

It includes two main stages, namely the pre-processing stage and the streamline generation stage. 

In the preprocessing stage, its core purpose is to extract vector fields from large-scale simulation 

data based on the geometric model provided by the user. Here, domain related interpolation 

methods for structured and unstructured grids will be applied, resulting in high-precision 

distribution of these vector fields on the geometric surface, and their accuracy is consistent with 

that of the data field. The purpose of the streamline generation stage is to perform  

two-dimensional integration calculations dependent on the geometric surface. To avoid a large 

amount of time consumption, the octree acceleration structure will be constructed to improve 

the intersection efficiency. At the same time, cycle to calculate the next integration point after 

calculating one integral point. 

3.3 Dynamic Feature 

Generally, the geometric form of each streamline is a polyline, which can be drawn directly or 

by a pipe surface. This paper introduces a feature ball to depict the flow trend in the way of 

moving small balls. 

 

Figure 8.  Geometric diagram of ball generation dependent on latitude and longitude constraints 

Figure 8 shows the geometric diagram of generating the feature ball, where the longitude θ 

and latitude φ control the polygon density on the surface of the ball. The small ball starts from 

the seed point and moves along the streamline, cyclically and repeatedly, in order to dynamically 

display the trend of the flow field. In particular, our rendering algorithm supports two types of 

coloring modes based on the physical field value and the number of integration steps. 

3.4 Limitation 

Numerical robustness is an issue to deal with floating-point computations in computational 

geometry, and many methods have been proposed to overcome the problems of finite precision 

and inexact data. Generally, there exit some degeneracies where each vertex of one polygon 

does not accurately lie on an edge of the other polygon. In the work of Greiner and Hormann 

(1998), they assume that if the perturbation is less than pixel width, the output on the screen will 

be correct. However, it requires very high accuracy for our extracting model, and also provides 

interactive features such as zooming that allows the user to observe local details. Here we do a 
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small modification by setting 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 =  𝑚𝑖𝑛 {0.1 ∙ ∆𝑤, 0.01 ∙ ∆𝑝}  according to the 

actual data resolution where ∆𝑝 denotes minimum diagonal length of volume cells and ∆𝑤 

denotes pixel width. In addition, because of our extracting model being built on the intersection 

of plane and volume, the cell type of volumetric data is limited to tetrahedron, hexahedron, 

voxel, wedge or pyramid. 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

We implemented our surface streamline generation algorithm and integrate it into a general 

visual analysis platform, namely VisIt (Childs et al., 2005), in the form of plugin-in component. 

We also demonstrated its validity by applying our method to representative datasets for 

visualizing the surface field of objects with regular and irregular geometry. All of the images in 

this work were produced on a Dell T7600 workstation with a 2.40 GHz Intel Xeon CPU  

E5-2609. 

 

Figure 9. Visualization results of extracting high-precision surface vectors defined on planes and aircraft 

Calculating vector field defined on the curved surfaces is the first step of generating surface 

streamlines. For geometric models with arbitrary topological structures, this paper applies the 

high-precision extraction algorithm to obtain the surface vector field with the same mesh density 

and accuracy as original 3D vector field, meanwhile to maintain the profile of the geometric 

model. Figure 9 shows the visualization results of the extracted surface vector field using plane 

and aircraft models. Figure 9a and Figure 9b show the geometric structures of planes and 

airplane respectively, and Figure 9c and Figure 9d show the extracted vector defined on planes 
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and airplane. As shown in the Figure 9, our vector field extraction algorithm is not limited by 

the complex topology of the geometric model, and can generate vector field with high accuracy.  

In addition, Table 1 provides a concise overview of performance by extracting surface vector 

field using cylinder and sphere models from two different types of datasets under 6 CPU cores, 

where the consumed time can be further reduced with the increase of the CPU cores. 

Table 1. Performance comparison of extracting two types of datasets using cylinder and sphere under 6 

CPU cores 

Type of dataset Num of cells Time(cylinder) Time(sphere) 

Structured grid 36000 0.257 s 0.189 s 

Unstructured grid 45618700 3.872 s 3.591 s 

 

 

 

Figure 10. Visualization of generating surface streamlines using geometric plane 

Figure 10 shows the complete process of generating surface streamline. Figure 10a denotes 

a structured vector field composed of 36 grid patches and a total of 36,000 hexahedrons. Figure 

10b shows the visualization result of surface extraction using three planes where the vector field 

is retained with high accuracy through our vector field interpolation algorithm related to 

structured grid. Figure 10c shows the visualization result of the magnitude of the extracted 

vector field. Figure 10d presents the streamlines generated by the proposed surface streamline 

algorithm with 9 initial seed points. It can be seen that our algorithm can accurately generate 

continuous and consistent surface streamlines constrained by the geometric surface. The 

direction of generated streamlines is consistent with the vector field.  
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Figure 11. Visualization of generating surface streamlines under different integration step 

Numerical integration is the central feature of surface streamline generation. This paper sets 

the number of integration steps to be 0, 6, 9 and 15 respectively, and generates the corresponding 

surface streamlines as illustrated in Figure 11. The coloring method of the streamline adopts the 

steps as the color mapping standard. It can be seen from Figure 11 that the streamline integral 

points generated by our streamline generation algorithm fully fit the surface of the geometric 

model and are not constrained by the geometric model. Its own trajectory is also consistent with 

the direction of vector field defined on the surface, which is determined by the extended  

Runge-Kutta equation. 

 

Figure 12. Visualization of moving small balls along streamline direction with different integration step 
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In order to enhance the visual effect of dynamic generation of streamline, this paper 

introduces the small ball feature to identify the moving position under different integration steps 

in order to dynamically describe the moving trend of the vector field defined on the curved 

surfaces. Figure 12 shows the visual effects of the moving small ball along the streamline at the 

integration steps of 0, 8, 18, and 23 respectively.  Users can understand the surface flow field 

characteristics through the movement of these small balls. 

 

Figure 13. Visualization of coloring surface streamline using different physical variable. The comparison 

with the underlying scalar field shows the expected better approximation quality 

In addition to the coloring method based on streamline distance corresponding to Figure 11, 
A very important feature in streamline rendering is to support the visualization of streamline 
colors based on arbitrary physical field values. Figure 13 shows the surface streamline coloring 
effects based on the four types of scalar fields u, v, and w, with the corresponding scalar field 
coupled in the background. It can be concluded that our surface streamline generation algorithm 
can effectively describe the flow characteristics of the vector field and the changing trend of 
physical quantities. 

 

Figure 14. Proximity comparison: (top row) between the underlying direction of motion in vector field 
and the generated streamlines using our algorithm, (bottom row) between scalar field and our coloring 

method. The underlying structure of the flow mesh is now more clearly reflected by the streamlines 

a. variable = u b. variable = v c. variable = w 
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The complexity of the geometric surface models varies with numerical devices simulated in 

the field of engineering. As shown in Figure 14, this paper selects another common geometric 

surface model for surface streamline generation and verification. Figure 14a shows the  

high-precision vector field obtained after surface extraction. The upper half of the vector 

diverges upward, and the lower half of the vector diverges downward, that is, there should be 

two completely different directions of surface flow on the entire surface. Figure 14b shows the 

continuous and consistent surface streamlines generated using 14 seed points, which is the same 

as the trend of the surface flow field, where the color is generated based on the physical field u. 

Figure 14c is a schematic diagram of the coupling of the pseudocolor diagram and surface 

streamlines. Figure 14c verifies the flexibility and accuracy of the algorithm in this paper when 

coloring the surface streamline. In particular, the above experiments further prove that the 

proposed surface streamline method is not limited by the shape of the geometric model and the 

characteristics of the vector field. 

In addition, a comparison with Tecplot’s streamline generation results as illustrated in Figure 

15 also demonstrates the expected high approximation quality of our proposed algorithm. 

 

 

Figure 15. Comparison of generating surface streamlines on curved surface using Tecplot and our 

method  

5. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a streamline generation algorithm for vector field defined on 

curved surfaces. This algorithm achieves the underlying discrete feature of curved surfaces by 

applying the polygon intersection and the grid-related high-precision interpolation algorithms. 

Then, we present the surface streamline integral technology, combined with the adaptive 

stepsize strategy and acceleration structure, in order to support continuous and consistent surface 

streamline generation, which solves the bottleneck problem of performing streamline tracing 

directly on curved surfaces. We have shown that this work can aid engineering designer for the 

design and optimization of major devices by analyzing flow on curved surfaces. 
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In future, we focus on the adaptive adjustment of seed points to enhance the interaction 

and friendliness from the viewpoint of designer. We will also study the asynchronous 

calculation mechanism in order to improve the efficiency of parallel generation of surface 

streamlines in unsteady flow visualization. 

REFERENCES 

Alexander, S. and Bishop, R. L. (1996). Comparison theorems for curves of bounded geodesic curvature 

in metric spaces of curvature bounded above. Differential Geometry and its Applications, Vol. 6,  

No. 1, pp. 67-86. 

Battke, H. et al. (1997). Fast line integral convolution for arbitrary surfaces in 3D. In H. C. Hege and K. 

Polthier (eds) Visualization and Mathematics. Springer, Berlin, Heidelberg, pp. 181-195. 

Cabral, B. and Leedom, L. C. (1993). Imaging vector fields using line integral convolution. Proceedings 

of the 20th annual conference on Computer graphics and interactive techniques, California, USA,  

pp. 263-270. 

Childs, H. et al. (2005). VisIt User’s Manual. Lawrence Livermore National Laboratory, USA. 

Forssell, L. K. and Cohen, S. D. (1995). Using line integral convolution for flow visualization: curvilinear 

grids, variable-speed animation, and unsteady flows. IEEE Transactions on Visualization and 

Computer Graphics, Vol. 1, No. 2, pp. 133-141. 

Greiner, G. and Hormann, K. (1998). Efficient clipping of arbitrary polygons. ACM Transactions on 

Graphics, Vol. 17, No. 2, pp. 71-83. 

Laramee, R. S. (2004). Interactive 3D Flow Visualization Using Textures and Geometric Primitives. 

Vienna University of Technology, Institute for Computer Graphics and Algorithms, Vienna, Austria. 

Laramee, R. S. et al. (2003). Image space based visualization of unsteady flow on surfaces. Proceedings 

of Visualization. Los Alamitos, USA, pp. 131-138. 

Laramee, R. S. et al. (2004). The state of the art in flow visualization: Dense and texture-based techniques. 

Computer Graphics Forum, Vol. 23, No. 2, pp.203-221. 

Li, L. and Shen, H.-W. (2007). Image-based streamline generation and rendering. IEEE Transactions on 

Visualization and Computer Graphics, Vol. 13, No. 3, pp. 630-640. 

Li, G. et al. (2008). Flow charts: visualization of vector fields on arbitrary surfaces. IEEE Transactions on 

Visualization and Computer Graphics, Vol. 14, No. 5, pp. 1067-1080. 

Mao, X. et al. (1997). Line integral convolution for 3D surfaces. Proceedings of Eurographics. Vienna, 

Austria, pp. 57-69. 

Mattausch, O. et al. (2003). Strategies for interactive exploration of 3D flow using evenly spaced 

illuminated streamlines. Proceedings of Spring Conference on Computer Graphics, pp. 213-222. 

McLoughlin, T. et al. (2010). Over two decades of integration-based, geometric flow visualization. 

Computer Graphics Forum, Vol. 29, No. 6, pp. 1807-1829.  

Polthier, K. and Schmies, M. (2006). Straightest geodesics on polyhedral surfaces. Association for 
Computing Machinery, New York, USA, pp. 30-38. https://www.math.kit.edu/iag5/lehre/ 

semgeometrie2016s/media/geodesics.pdf 

Reshetnyak, Y. G. (1989). Two-dimensional manifolds of bounded curvature. Encyclopaedia of 

Mathematical Sciences, Vol. 70, pp. 3-164. 

Spencer, B. et al. (2009). Evenly spaced streamlines for surfaces: An image-based approach. Computer 

Graphics Forum, Vol. 28, No. 6, pp. 1618-1631. 

Stalling, D. and Hege, H.-C. (1997). LIC on surfaces. Proceedings of Computer Graphics and Interactive 

Techniques. Los Angeles, USA, pp. 51-64. 



A VISUAL ANALYSIS METHOD FOR VECTOR FIELDS DEFINED ON CURVED SURFACES 

193 

van Wijk, J. J. (1991). Spot noise-texture synthesis for data visualization. ACM SIGGRAPH Computer 

Graphics, Vol. 25, No. 4, pp. 309-318. 

van Wijk, J. J. (2003). Image based flow visualization for curved surfaces. Proceedings of Visualization. 

Los Alamitos, USA, pp. 123-130. 

Vatti, B. R. (1992). A generic solution to polygon clipping. Communications of the ACM, Vol. 35, No. 7, 

pp. 56-63. 

Verma, V. et al. (2000). A flow-guided streamline seeding strategy. Proceedings of Visualization. Los 

Alamitos, USA, pp. 163-170. 

Ye, X. et al. (2005). Strategy for seeding 3D streamlines. Proceedings of Visualization. Los Alamitos, 

USA, pp. 471-478. 


