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ABSTRACT 

Patterns of human motion were found to mirror cognitive processes in both psychological studies and 

applied research in Human-Computer Interaction (HCI). Notably, the behavioral entropy of movement 

trajectories of users was identified as a reflection of workload and fatigue across different settings, 
including Virtual Reality (VR). In the context of VR particularly, this metric is predominantly derived 

from the movements of VR controllers, denoted as the Entropy of Controller Movements (ECM). Despite 

its promising sensitivity and unobtrusive nature as a metric for human workload, ECM's application and 

proven efficacy in practical and authentic VR-based applications, such as industrial teleoperation 
platforms, has not been validated yet. Additionally, current literature predominantly features younger 

experimental samples, leaving unresolved the potential impact of age-related alterations in motor 

performance on using ECM as a workload metric. This study explored these dimensions by examining the 

relationship between workload and ECM among 15 young and 15 senior participants who manually 
operated an industrial robot within a VR environment. Participants were instructed to navigate the robot 

through a pick-and-place task by using their physical movements in VR. Our research identified 

unexpected variations in ECM values, particularly in older users, revealing an inverse relationship between 

movement entropy and task complexity in our scenario. High levels of behavioral entropy were also 
observed in younger participants. These findings unveil some criticalities in using ECM as a measure of 

workload in our VR-based industrial contexts, posing new questions regarding its applicability and 

effectiveness. 
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1. INTRODUCTION 

1.1 Virtual Reality in Manufacturing and Industrial Robotics 

Industry 5.0 is enabling greater use of robotic and autonomous systems in manufacturing while 

bringing peculiar attention to humans. Always more considerations are done regarding human 

workload in the workplace (Coronado et al., 2022; Panagou et al, 2023) and a great deal of effort 

is spent on better designing human-machine interactions, to lower users’ fatigue and provide 

workers with the best robotic support. 

Lately, physical industrial settings are being transferred into digital platforms also known as 

digital twins. In digital representation, a "Digital Twin" functions as a virtual counterpart of a 

real-world entity or system. Harnessing sensor-derived data and historical records offers  

a high-fidelity simulation that facilitates precise monitoring, analysis, and optimization without 

direct intervention on the physical entity (Van der Valk et al., 2020). This technological 

advancement can enhance diagnostic, predictive and operational capabilities within various 

scientific and industrial applications. Such platforms, can exploit the most various interfaces, 

including Virtual Reality (VR) (Havard et al., 2019). VR is particularly attractive in this sector 

for the following reasons. First, VR can faithfully reproduce real scenarios, even the most 

complex ones, with high levels of immersion. This feature is significantly useful in the robotics 

and manufacturing industry, where it is crucial for usability test settings to be as close as possible 

to the real ones. Second, implementing novel features in physical robots for usability tests is 

time-consuming and requires a great deal of work (Dautenhahn, 2018). Also, interacting with 

autonomous machines can be particularly dangerous in some situations, or even impossible in 

others (e.g., Guo et al., 2021). By using simulation software in VR, it is possible to overcome 

issues related to the hardware, generate usability test settings, or even get immersed in 

physically unreachable environments in a much faster, more efficient, safer, and cheaper way 

(Dianatfar et al., 2021; Duguleana et al., 2011). Third, VR allows interactions with any virtual 

object exploiting human physical and embodied mechanisms. This calls to action human 

spatiality, which is the innate ability to act in physical space and thus facilitate any interaction 

with the virtual replica of physical objects. (Villani et al., 2018). 

1.2 Methodological Challenge in user Performance and Workload 

Evaluation 

When studying interactions between humans and robots, it is good practice to assess the human 

stress and workload for avoiding mental overload and the related psychophysical consequences 

(Fong and Nourbakhsh, 2004; Vidulich and Tsang, 2012). A broad body of literature in the work 

sector has demonstrated how workload and performance are strictly related, and how high 

workload levels are associated with mental fatigue, frustration, errors, and distraction (Galy  

et al., 2012; Young et al., 2015), which can have important consequences in HRI. Ideally, a 

proper measure of workload should avoid breaks in presence, should be highly sensitive and be 

unobtrusive (Wierwille and Eggemeier, 1993; Cain et al., 2017). However, because of its 

abstract nature, measuring workload is still a challenging task. 
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The most widely used methods for inferring workload are physiological metrics, 

questionnaires, and performance measures. Particularly, physiological indexes allow to quantify 

the psychophysical state of a user with high temporal accuracy. Heart Rate Variability (HRV), 

EEG or eye tracking are just a few examples of objective metrics that have been related to 

workload and other mental states. Nonetheless, they can show low sensitivity or differential 

diagnostic (Matthews et al., 2015). Questionnaires are between the most used measurement tools 

in the HRI field. One gold standard for measuring workload is the NASA Task Load Index 

(NASA-TLX, Hart and Staveland, 1988), which appears to be sensitive to task type and  

dual-tasking. However, self-report responses may be subject to biases, or they can miss facets 

of workload that are inaccessible to consciousness (Matthews et al., 2015). Also, when adopting 

questionnaires in a validation setting, it must be accounted the temporal gap between the 

experience and the assessment (Reinhardt et al., 2019). Finally, for performance measures one 

usually refers to task time and accuracy, which are well suited to continuous monitoring of 

workload and do not imply breaks in presence. Particularly for users executing tasks in virtual 

simulation settings, a continuous stream of implicit data can be recorded with high precision 

and at a high sample rate.  

Such factors can have important consequences in industrial robotics, and therefore, are 

particularly worth measuring, also in VR. In this respect, all VR hardware (i.e., headset, 

controllers, body trackers) continuously generates time series data about their position and 

rotation. Such data can be leveraged to compute, for example, the start time and duration of any 

interaction with a virtual object, the users’ movement velocity within a work setting, their 

position with respect to the digital replica of a robot or a machine, their task efficiency, or their 

work peace (Nenna et al., 2022; Nenna et al., 2023). All these metrics can report on the users’ 

behaviors within a VR-based industrial or work context, enhancing our understanding of how 

people interact with virtual environments. 

Remarkably, time series data on the VR controller position were further leveraged to gain 

insights into users’ workload (Reinhardt et al., 2019; 2020). More precisely, the authors 

computed the Entropy of Controller Movement (ECM), which was demonstrated to be 

significantly modulated by the users’ mental workload. While entropy measures have most 

likely been computed on gaze data and in desktop and mouse- or joystick-based settings within 

the human research areas (Goodrich et al., 2004; Reinhardt and Hurtienne, 2018; Stillman et al., 

2018; Wu et al., 2020; Diaz-Piedra et al., 2019; Chatzithanos et al., 2021), the evidence of the 

effectiveness of such a measure within virtual environments opens new possibilities for 

continuous and indirect workload monitoring in VR-based industrial robotics. 

1.3 Behavioral Entropy as a Measure of Workload 

The concept of entropy refers to the degree of irregularity, randomness, and disorder in a system. 

It is typically used to quantify the complexity of different structures or processes or to learn 

about the randomicity of data or component variations (Wehrl, 1978). While it was initially 

developed to describe physical phenomena, the concept of entropy can extend to different kinds 

of data, including time series data, thus applying to various phenomena and application areas. 

In the HCI and ergonomics fields, entropy has been employed to infer human workload, fatigue, 

or decisional processes by analyzing the unpredictability of specific movement trajectories. 

Nakayama, Boer, and colleagues (1999; 2000) first employed measures of entropy in the 

steering wheel of a vehicle to estimate drivers’ workload (i.e., steering entropy). Subsequently, 
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this concept was generalized to human activity at large, which is currently known as behavioral 

entropy. Some studies computed behavioral entropy on users’ movements via mouse  

(e.g., McKinstry et al., 2008; Reinhardt and Hurtienne, 2018; Stillman et al., 2018), or VR 

controllers (Reinhardt et al., 2019; 2020); some others also computed the entropy of eye 

movements as a measure of workload (e.g., Wu et al., 2020). 

In all such cases, when individuals interact with technology, they perform task-related 

movements whose complexity and accuracy can be influenced by the task demand (e.g., 

complexity, precision). As the task complexity or precision increases, users may experience 

greater cognitive and physical demands, resulting in more random and unpredictable movement 

trajectories. More specifically, Goodrich et al. (2004) proposed that, when operators face high 

workload or other factors causing degraded performance, they might select less efficient 

behaviors, anticipate less and react more, therefore resulting in more fragmented or exaggerated 

actions (i.e., reactive behaviors). Under lower workloads, instead, operators are likely to 

perform anticipatory behaviors, which are smoother with lower magnitudes and less frequent 

changes. As a result, examining the entropy of human movements can provide insights into the 

levels of users’ workloads. Goodrich et al. (2004) tested these hypotheses in seven users 

teleoperating a robot through direct or shared control, while additionally performing an 

arithmetic task. They concluded that behavioral entropy allowed to identify the most complex 

conditions of the teleoperation task. More recently, Chatzithanos et al. (2021) used behavioral 

entropy in a remote inspection scenario, whereby a sample of three operators teleoperated a 

robot to navigate an arena through a joypad. Different workload levels were created via  

dual- tasking and were directly related to the entropy values. On the measurement of behavioral 

entropy within immersive virtual environments, Reinhardt et al. (2019) measured the Entropy 

of Controller Movements (ECM) in twenty-two participants executing a simple rhythm game in 

VR. They found a clear relation with their workload, indicating ECM as a promising mental 

workload measurement even in VR. In a subsequent experiment, the same authors tested twenty 

students performing the e-crossing task in VR, and demonstrated positive relations between the 

task difficulty, mental workload reported at the NASA-TLX and ECM (Reinhardt et al., 2020). 

While the literature on behavioral entropy in immersive VR is not that extensive, ECM seems 

to have great potential as a highly sensitive and unobtrusive measure of workload in various VR 

scenarios. Nonetheless, to the best of our knowledge, literature assessing the effectiveness of 

ECM in more applied and realistic instances of VR-based environments (e.g., teleoperation 

platforms) is missing.  

1.4 Age-Related Factors in VR  

As described above, ECM represent a prosing technique for measuring workload in fields like 

VR-based smart manufacturing. However, the prevailing demographic diversity in experimental 

samples poses pertinent questions about the universal applicability of ECM across different age 

groups. The current literature predominantly features younger participants, underlining a gap in 

our understanding of how age influences the effectiveness of ECM as a measure of workload in 

VR settings. Moreover, a prevalent lack of technological literacy amongst older adults could 

impede VR's feasibility and applicability. Similarly, numerous barriers, including learning costs 

and usability, can potentially hinder their relationship with technology (Barnard et al., 2013). 

Studies on this matter, conducted by Adami and colleagues (2021) and Chen and Or (2017), 

exemplify the age-related challenges in leveraging VR, highlighting how older participants 
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often derive less benefit from VR-based training programs due to decreased acquired knowledge 

and elevated risk behavior and struggle with more errors and longer durations in VR 

environments, respectively. Conversely, research also offers instances of successful VR 

implementations among older subjects, demonstrating comparable levels of acceptance of VR 

applications between younger and older populations. The studies by Syed-Abdul et al. (2019) 

and Ijaz et al. (2019) exemplify how perceptions of utility and ease of use can elevate the 

willingness among older adults to adopt VR technologies, contributing to a reduction in stress 

levels and an enhancement in task performance and intention to use VR. The physical and 

intuitive interactivity offered by VR makes it a natural interface, which could actually be 

particularly beneficial for older individuals. Findings in this direction were by studies 

showcasing superior gestural performance in older adults (Carvalho et al., 2017). Nonetheless, 

the trajectory towards more natural, body-dependent interaction modalities is fraught with 

impediments, specifically for older workers in manufacturing systems who often exhibit 

deteriorations in physical performance, manual dexterity, movement speed, and motor 

flexibility (Ketcham et al., 2002; Pennathur et al., 2003; Verrel et al., 2012). The onset of 

physical declines can present significant obstacles when adopting modalities of gestural 

interactivity. These modalities often require a more refined level of visual-motor coordination 

than what is needed with more conventional devices, which could be potentially altered in older 

individuals, also altering the potential feasibility of measures such as ECM. In fact, applying 

ECM as a metric to assess cognitive load can also reflect the repercussions of these age-related 

motor changes. The observed higher levels of movement irregularity and dispersion may 

predominantly be a consequence of diminished motor control performance rather than a direct 

result of increased fatigue experienced by the users. This understanding is required as it 

underlines the importance of consider the impacts of motor control impairments from the effects 

of fatigue when assessing gestural interactivity, ensuring a more precise and comprehensive 

interpretation of user experience and interaction efficacy in diverse age groups and operational 

contexts.  

In conclusion, while the integration of ECM in VR-based interaction provides promising 

insights into workload measurement and interactivity, it is necessary to conduct a more 

comprehensive and more profound investigation of older individuals' diverse needs and 

capabilities within this domain. Conducting such an investigation would facilitate the 

development of more inclusive and adaptable environments in smart manufacturing. 

2. THE PRESENT STUDY 

With this study, we aim at covering the identified gaps and learn more about the effectiveness 

of ECM as a measure of workload in VR. We thus used a VR-based industrial robotics scenario 

(Nenna et al., 2022, 2023), and compared results obtained from participants under 30 years of 

age (young) with those over 50 years of age (senior), as illustrated in Figure 1. Specifically, a 

total of thirty participants - divided into two age groups - guided an industrial robotic arm 

through a pick-and-place task in VR by physically moving their arms, under low (single-task) 

and high (dual-task) mental demands. We also administered the NASA-TLX questionnaire to 

reference the participants’ perceived workload after both task conditions. 
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Figure 1. Illustration of the experimental design, utilizing a 2x2 mixed factorial model, where two 

distinct participant groups, categorized as young and senior, executed a pick-and-place task under 

varying conditions of mental demand—low (single-task) and high (dual-task) 

 

Our hypotheses can be outlines as follows. 

H1) We expect to observe elevated ECM values in the dual-task condition compared to the 

single-task condition, reflecting different workloads (Nenna et al., 2023). This hypothesis is 

based on existing literature, which illustrates a correlation between heightened task complexity 

and increased ECM, reflecting cognitive and physical demands (McKinstry et al., 2008; 

Reinhardt and Hurtienne, 2018; Stillman et al., 2018; Reinhardt et al., 2019; 2020). 

H2) We posit a generally higher ECM in the senior compared to the young group. This 

hypothesis is substantiated by extensive literature indicating that older individuals are prone to 

decline in physical performance and motor skills (Ketcham et al., 2002; Pennathur et al., 2003; 

Verrel et al., 2012), which might unveil less smooth motor paths when driving the robot via 

physical actions and also higher demands. Additionally, literature suggests how older users 

often encounter more difficulties leveraging VR interfaces, particularly when compared to their 

younger counterparts (Chen and Or, 2017; Adami et al., 2021), which might influence their 

ECM trends as well. 

3. METHODOLOGY 

3.1 Participants  

The experimental sample consisted of 15 individuals (9 females) composed the senior group, 

who reported being more than 50 years old (Mage= 57.1, SDage= 6.2), and 15 individuals  

(6 females) the young group, who reported being less than 30 years old (Mage= 27.8,  

SDage= 6.4). All participants signed informed consent. The inclusion criteria were the following: 
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absence of past or present neurological/psychiatric disorders, being right-handers, possessing 

normal or corrected-to-normal vision with contact lenses, and normal color vision. The local 

ethics committee approved the research methodology, and the study was conducted following 

the principles of the Declaration of Helsinki. One senior participant was excluded due to limited 

proficiency with technological devices, which caused extremely long training and a severe 

inability to perform the task. All participants reported to be inexperienced with VR and 

telerobotics, particularly the senior once. 

3.2 Technical Setup and Experimental Procedure 

Participants were provided with HTC VIVE Pro Eye and both its controllers. The virtual 

environment was programmed in Unity (version 2020.2.1f1) and was validated in previous 

studies (Nenna et al., 2022, 2023). All data was automatically saved on the internal storage of 

the local laboratory computer at the end of each experimental session.  

Before starting the experiment, participants conducted a training session based on the same 

tasks used in the experimental phase to familiarize themselves with the virtual environment and 

minimize individual differences related to the ability to use the virtual system. Afterward, during 

the experimental session, all subjects controlled a robotic arm in VR to execute a  

pick-and-place task under different demands (single- and dual-task) presented in random order. 

The young group completed 40 trials for each experimental condition. Differently, for the senior 

group, the number of trials was lowered to 20, as they showed longer training duration and 

greater difficulties in familiarizing with the tasks. This may be due to their lack of technological 

literacy (Wildenbos et al., 2018), which may pose a barrier to the repeated execution of  

VR-based tasks for older adults.  

In the single-task, participants were called to physically drive the robot to pick a bolt from 

the workstation and place it into a blue box. Figure 2 depicts one complete task trial, which was 

split into two task phases: the Pick phase, which required higher movement precision to 

accurately align the robot effector with the bolt, and the Place phase, which required less 

movement precision as the box where to release the bolt is provided with a larger area. Given 

that the two task phases demanded different levels of precision of the movement trajectories, 

we computed the ECM within each of them independently. Oppositely to the single-task, in the 

dual-task participants additionally performed an arithmetic task to create a higher level of task 

demand. Specifically, they were presented with a series of digits randomly ranging between 1 

and 10 every 2sec, with a jitter of 0.3sec. They were thus asked to sum the numbers all the way 

through the trial, and then report the result of the mental calculations on a virtual numeric 

keyboard once the trial was completed. Such paradigm was already validated in previous 

investigations (Nenna et al., 2022, 2023). 

For guiding the robot, participants approached their right hand to the robot effector and then 

grasped it by pressing the grip button on the controller. Therefore, they dragged the robot to the 

desired position by physically moving their own arm within the virtual space, producing a 

movement trajectory. To enable the picking or placing operations, they then pressed the pad 

button on the left controller and the robot automatically went down on the workstation to either 

pick or place the bolt. Once the bolt entered the box, a new bolt and box randomly appeared on 

the workstation, and a new trial started. 
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3.3 Measurements 

The levels of perceived mental workload were measured through the NASA-TLX questionnaire 

(Hart and Staveland, 1988) after the single- and the dual-task. The global workload score was 

calculated by averaging the scores in its six sub-scales (mental demand, physical demand, 

temporal demand, frustration, effort, and performance). 

For the computation of behavioral entropy, and more specifically ECM, we opted for 

individually addressing the pick and place phases trajectories, as they require different levels of 

movement precision which might impact the entropy values. Therefore, we isolated the 

movement trajectories performed during the pick and the place action. We only included trials 

exempt from movement disruptions (e.g., the participant lost the robot grip and returned to grasp 

the robot again, causing fragmented trajectories). In this way, all actions under examination 

were considered smooth, continuous, and uninterrupted.  

For the entropy computation, we then choose to determine sample entropy using the method 

of Richman and Moorman (2000). This method best fits the randomness intrinsic to systems 

behaving in real-world or complex environments and has been demonstrated to be the preferred 

method in applied research for mental workload assessments, also in VR scenarios (Reinhardt 

et al., 2019). Sample entropy can be defined as the negative logarithm of the probability that if 

two sets of data points of length m are similar, they will remain similar at m+1 (Richman and 

Moorman, 2000). Therefore, if areas in a trajectory that appear similar at one length are no 

longer similar at a greater length, greater dispersion and complexity are observed in a trajectory, 

which increases the sample entropy (Hehman et al., 2015). For its computation, we converted 

the data to normalized time and shifted the absolute controller positions on the three axes (x, y, 

z) to always start from zero (0, 0, 0) in each trial. Based on the overview of statistical tools for 

calculating sample entropy of Chen and colleagues (2019), we used the function sample_entropy 

in Rstudio (R Core Team, 2022) from the package pracma (Borchers, 2023), which allows 

setting specific parameters like the embedding dimension m (length of sequences to be 

compared for similarity) and the tolerance r (the threshold for determining similarity between 

windows). By following the approaches of Hehman et al. (2015) and Reinhardt et al. (2019), we 

set m=2 and r=0.2; thus, we compared windows with a length of 2, and each sequence was 

determined to be similar if it was within a tolerance of 0.2 multiplied by the standard deviation 

of the data. We finally calculated the ECM on the three axes (ECM-X, ECM-Y, ECM-Z) and 

the ECM-total by averaging the three individual ECMs (Reinhardt et al., 2019). 
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Figure 2. Depiction of one trial of the pick-and-place task, divided into two task phases (i.e., pick and 

place) 

3.4 Statistical Analysis 

All data were analyzed through Generalized Linear Models (GLMs from lme4 package, Bates 

et al., 2014), with Participant as a random effect. We computed a model for each ECM 

calculation (ECM-X, ECM-Y, ECM-Z, ECM-total) over the factors Task (single-task,  

dual-task) and Age (young, senior). For the analysis of the responses to the NASA-TLX 

questionnaire, we additionally included the factor Item (mental demand, temporal demand, 

physical demand, performance, effort, frustration) to further explore possible differences within 

each of the questionnaire sub-scales. Specifically, each model was chosen after first fitting the 

data through the function descdist() of the package fitdistrplus (Delignette-Muller and Dutang, 

2015), which allowed choosing the appropriate model setting based on data distribution. Post 

hoc contrasts were performed on each significant interaction with the application of the 

Bonferroni correction for multiple comparisons (Bonferroni, 1936). 

4. RESULTS 

The analysis of the NASA-TLX revealed a main effect for Task (X2 = 121.58, p < 0.001) and 

Item X2 = 81.26, p < 0.001). Significant interactions were observed between Task and Item  

(X2 = 41.78, p < 0.001) and Item and Age (X2 = 16.57, p < 0.01). No significant main effect was 

found for Age (p = 0.19). 
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Table 1. Descriptive statistics of the NASA-TLX questionnaire scores 

Table 2. Descriptive statistics of the ECMs 

 

Post-hoc tests on the Task-Item interaction showed significantly higher levels of mental 

demand (p<.0001), effort (p < 0.0001), and frustration (p < 0.001) in the dual- compared to the 

single-task. Differently, no significant contrasts were found for the Age-Item interaction. 

Descriptive statistics are resumed in Table 1. For the analysis of behavioral entropy, we resumed 

the descriptive statistics in Table 2, the results of the GLMs in Table 3, and all the post-hoc 

contrasts are depicted in Figure 3. 

Table 3. Results of the GLMs performed in the pick and place phases on each ECM measure 

 

Dimension 

Young Single-task 

M ± SD 

Young Dual-task 

M ± SD 

Senior Single-task 

M ± SD 

Senior Dual-task 

M ± SD 

Global score 

Mental demand  

Physical demand 
Temporal demand 

Performance  

Effort 

Frustration 

5.79 ± 4.85 

2.67 ± 1.35 

8.40 ± 5.47 
7.27 ± 3.47 

4.33 ± 4.75 

8.27 ± 5.18 

2.73 ± 2.76 

10.30 ± 5.28 

13.80 ± 4.25 

11.9 ± 4.48 
7.00 ± 3.40 

7.93 ± 5.64 

13.9 ± 3.83 

7.47 ± 5.01 

5.54 ± 4.87 

4.14 ± 4.44 

5.21 ± 4.02 
7.14 ± 4.75 

4.43 ± 3.39 

9.71 ± 6.70 

2.57 ± 1.40 

11.5 ± 5.89 

15.6 ± 2.71 

8.14 ± 5.63  
11.2 ± 5.58  

9.36 ± 5.49 

16.8 ± 2.94 

8.14 ± 5.95 

Task  

phase 
Axis 

Young Single-task 

M ± SD 

Young Dual-task 

M ± SD 

Senior Single-task 

M ± SD 

Senior Dual task 

M ± SD 

Pick 

ECM-x 

ECM-y 

ECM-z 

ECM-tot 

0.026 ± 0.013 

0.199 ± 0.099 

0.093 ± 0.084 

0.106 ± 0.048 

0.017 ± 0.015 

0.137 ± 0.086 

0.080 ± 0.041 

0.078 ± 0.028 

0.021 ± 0.026 

0.112 ± 0.089 

0.052 ± 0.060 

0.062 ± 0.040 

0.010 ± 0.008 

0.104 ± 0.085 

0.033 ± 0.037 

0.049 ± 0.034 

Place 

ECM-x 

ECM-y 
ECM-z 

ECM-tot 

0.044 ± 0.038 

0.216 ± 0.144 
0.064 ± 0.065 

0.108 ± 0.059 

0.045 ± 0.042 

0.205 ± 0.145 
0.068 ± 0.072 

0.106 ± 0.058 

0.023 ± 0.029 

0.145 ± 0.100 
0.037 ± 0.050 

0.068 ± 0.042 

0.019 ± 0.025 

0.111 ± 0.090 
0.028 ± 0.048 

0.053 ± 0.038 

Axis Task phase Task Age Task * Age 

ECM-x 
Pick  

Place 

 

  

 X2 = 66.66   *** 

X2 = 0.04      ns 

 X2 = 1.62        ns 

 X2 = 28.53   *** 

X2 = 4.03      * 

 X2 = 3.07     ns 

ECM-y 
Pick 

Place 

X2 = 1.47      ns 

X2 = 7.61      ** 

X2 = 7.79      ** 

 X2 = 13.22   *** 

X2 = 1.33     ns 

 X2 = 10.53   ** 

ECM-z 
Pick 

Place 

X2 = 7.27      ** 

X2 = .008       ns 

 X2 = 15.44   *** 

X2 = 36.49   *** 

X2 = 0.28     ns 

X2 = 8.76     ** 

ECM-tot 
Pick 

Place 

X2 = 15.73   *** 

      X2 = 5.52       * 

 X2 = 17.38   *** 

X2 = 22.85   *** 

X2 = 0.05      ns 

 X2 = 18.58   *** 
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Figure 2. Averaged behavioral entropy in each task phase (pick, place) and task condition (dual-task, 

single-task), divided by age (senior, young). The dots on the boxplots indicate each participant’s 
averaged entropy. The half violins show the data distribution. The stars indicate the significance levels of 

the post hoc tests (*p ≤ .05; **p ≤ .01; ***p ≤ .001) 

5. DISCUSSION 

In this study, we applied the concept of behavioral entropy to the trajectory of VR controller 

movements, exploring its effectiveness in measuring human workload within a VR-based 

robotic teleoperation scenario. We further explored possible differences between young and 

senior users, who are prone to decreasing smoothness of movements (Seidler et al., 2002), which 

might affect the effectiveness of ECM as a measure of workload. We thus defined different 

mental demands through the dual-task methodology, asking participants to physically drive a 

robotic arm once as a single task, and once concurrently with an arithmetic task  

(dual-task). As indicated by the NASA-TLX questionnaire, our dual-task manipulation 

effectively induced different workload levels through the task. Specifically, regardless of 

participants’ age, the dual-task elicited significantly higher mental demand, effort, and 

frustration than the single-task. Interestingly, both young and senior participants self-reported 

similar workload levels, suggesting no age-dependent differences in perceived workload. 

However, unexpectedly, our findings on the ECM deviate from what previously observed 

(i.e., Chatzithanos et al., 2021; Goodrich et al., 2004; Reinhardt et al., 2019). Specifically, we 

first hypothesized (H1) higher ECM in the most demanding task condition (i.e., dual-task). 
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Contrary to our hypotheses, our observations revealed divergent trends across the different age 

groups. Our data about the senior group unveiled elevated ECM values in the single-task 

condition compared to the dual-task condition. ECM-x predominantly evidenced this tendency 

during the pick phase of the experiment. Concurrently, this observation was corroborated by the 

ECM-total, ECM-y, and ECM-z during the place phase, highlighting a coherent pattern across 

different ECM measurements. These collective findings explain an inverse relationship between 

the entropy of movement trajectories and the complexity of the experimental task, differently 

from what was previously evidenced in different VR scenarios (Reinhardt et al., 2019). On this 

matter, we argue that the secondary task may have intrusively interfered with the primary pick-

and-place, influencing seniors’ motor trajectories. Specifically, in the dual-task, participants 

summed a series of numbers throughout each pick-and-place action and were always instructed 

to be as fast and accurately as possible in both tasks. However, the faster they placed the bolt 

into the box, the fewer mental calculations they had to compute. Differently, in the single-task, 

they were free to act impulsively while following the instruction of being both fast and accurate. 

This may have led to more conscious, regular, and smooth motor trajectories in the dual-task to 

correctly pick and then place the bolt as fast as possible, and more impulsive and dispersive 

trajectories in the single-task.  

Conversely, the younger group exhibited no significant difference in ECM across various 

task conditions. Despite observing variations in mental workload, as evidenced by the  

self-report measurements in our VR-based telerobotic framework, such distinctions were not 

identifiable when utilizing ECM measurements. On this regard: previous research, which 

demonstrated the efficacy of behavioral entropy in detecting varying levels of workload 

resulting from dual-tasking, was conducted in desktop environments using either a mouse or 

joypad (Chatzithanos et al., 2021; Goodrich et al., 2004). However, to the best of our knowledge, 

no study investigated the effectiveness of behavioral entropy in VR contexts leveraging dual-

tasking. In their VR-based experiments on behavioral entropy, Reinhardt and colleagues (2019, 

2020) always used some inhibition tasks to increase the levels of demand on the user, while no 

instances of ECM under VR dual-tasking were ever provided. It is thus possible that the 

presence of a secondary task changes the nature of the primary task, particularly when young 

users physical motion with higher degrees of freedom is involved, like in our VR contexts. This 

underlines the necessity of a better understanding of behavioral entropy sensitivity in VR, by 

also considering the impact of secondary tasks on human motion trajectories.  

As a second hypothesis (H2), we expected the senior group to exhibit higher ECM values, 

potentially mirroring their age-related modifications in movement trajectories (Seidler et al., 

2002). In contrast, our data shown a consistently elevated behavioral entropy in young 

participants compared to senior participants, particularly prominent in the place phase. This 

observation contrasts our initial expectations, leaving us unable to conclusively determine 

whether the reduced ECM in senior participants derived from a lack of age-related motor 

impairments or a differing behavioral approach to task execution relative to younger users. It is 

to be noted that this acknowledgment should not be interpreted as indicative of disparities in 

perceived workload; both young and senior participants recorded analogous levels of workload 

on the NASA-TLX. Hence, it is plausible that other external factors, such as unfamiliarity with 

VR environments and lower technological literacy, significantly influenced their motor 

behavior. From this perspective, senior users, presumably interacting with virtual environments 

for the first time, might have opted for more smoothed and cautious maneuvers to operate the 

virtual robot, reflecting their tentative approach. Contrastingly, the younger group, generally 

more acclimated to VR technologies and, in some instances, with prior exposure to advanced 
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technological interfaces, adapted swiftly to the VR environment. Consequently, their comfort 

and familiarity possibly allowed them to exhibit more impulsive and dispersive actions, 

culminating in elevated behavioral entropy.  

6. CONCLUSIONS 

In this study, we explored the feasibility of behavioral entropy to assess human workload in  

VR-based robotic teleoperations, considering potential differences between young and senior 

users. By employing a dual-task methodology, we defined conditions of low and high mental 

demands, requiring participants to operate a robotic arm both independently and concurrently 

with an arithmetic task. 

Deviating from findings in existing literature, our results exhibited an increase in ECM 

values under conditions of low mental demand for the senior group, and no observable 

difference among young participants. Furthermore, we noted a generally higher ECM in 

younger participants compared to the senior ones.  

While our results contribute to shed light on the feasibility of behavioral entropy across aging 

in the VR context, we must acknowledge certain limitations of our study. For instance, we did 

not analyze thoroughly the behavioral aspects related to our participants’ movements. By 

incorporating such biomechanical metrics, we could deepen our understanding of the groups' 

diverse motor strategies when physically driving the robot via VR controllers. Also, the chosen 

dual task paradigm might have affected the users’ motor strategies, and consequently, their 

ECM. Further studies might explore how various tasks shape the ECM. 

Overall, behavioral entropy, and ECM in VR, represent valuable unobtrusive and easily 

computable measures to trace the dispersion of human motion trajectories in digital 

environments. However, new questions were raised about its effectiveness in reflecting users’ 

workload in VR. Future research should delve into these questions, embracing a holistic 

evaluation approach to understand better the factors that may influence human motion strategies 

in VR and the degree to which behavioral entropy can inform users’ workloads across varied 

task scenarios. 

ACKNOWLEDGEMENT 

We thank Davide Gobbo for his support on the development of the virtual environment. This 

study was carried out within the scope of the project "use-inspired basic research", for which 

the Department of General Psychology of the University of Padova has been recognized as 

"Dipartimento di eccellenza" by the Italian Ministry of University and Research. 

 

 



ANALYZING ENTROPY OF CONTROLLER MOVEMENTS AND MENTAL WORKLOAD  
IN YOUNG AND SENIOR USERS: AN APPLIED CASE FROM INDUSTRIAL TELEROBOTICS 

143 

REFERENCES 

Adami, P. et al. (2021). Effectiveness of VR-based training on improving construction workers’ 

knowledge, skills, and safety behavior in robotic teleoperation. Advanced Engineering Informatics, 

Vol. 50, 101431. 

Barnard, Y., Bradley, M. D., Hodgson, F. and Lloyd, A. D. (2013). Learning to use new technologies by 

older adults: Perceived difficulties, experimentation behaviour and usability. Computers in human 

behavior, Vol. 29, No. 4, pp. 1715-1724. 

Bates, D., Mächler, M., Bolker, B. and Walker, S. (2014). Fitting linear mixed-effects models using lme4. 

Journal of Statistical Software, Vol. 67, No. 1, pp. 1-48. https://doi.org/10.18637/jss.v067.i01 

Boer, E. R. (2000). Behavioral entropy as an index of workload. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting. Los Angeles, CA, USA, Vol. 44, No. 17, pp. 125-128. 

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto 

Superiore di Scienze Economiche e Commericiali di Firenze (8th ed.), Seeber. 

Borchers, H. W. (2023). Pracma: Practical Numerical Math Functions (2.4.4). https://CRAN.R-

project.org/package=pracma 

Cain, C. L. et al. (2017). A mixed methods study of emotional exhaustion: Energizing and depleting work 

within an innovative healthcare team. Journal of Interprofessional Care, Vol. 31, No. 6, pp. 714-724. 

Carvalho, D. et al. (2017). Age group differences in performance using distinct input modalities: A target 

acquisition performance evaluation. 2017 24º Encontro Português de Computação Gráfica e Interação 

(EPCGI), pp. 1-8. 

Chatzithanos, P., Nikolaou, G., Stolkin, R. and Chiou, M. (2021). Fessonia: A method for real-time 

estimation of human operator workload using behavioural entropy. 2021 IEEE International 

Conference on Systems, Man, and Cybernetics (SMC), pp. 1325-1331. 

Chen, C. et al. (2019). A comprehensive comparison and overview of R packages for calculating sample 

entropy. Biology Methods and Protocols, Vol. 4, No. 1, bpz016. 

Chen, J. and Or, C. (2017). Assessing the use of immersive virtual reality, mouse and touchscreen in 

pointing and dragging-and-dropping tasks among young, middle-aged and older adults. Applied 

Ergonomics, Vol. 65, pp. 437-448. 

Coronado, E. et al. (2022). Evaluating quality in human-robot interaction: A systematic search and 

classification of performance and human-centered factors, measures and metrics towards an industry 

5.0. Journal of Manufacturing Systems, Vol. 63, pp. 392-410. 

Dautenhahn, K. (2018). Some brief thoughts on the past and future of human-robot interaction. ACM 

Transactions on Human-Robot Interaction (THRI), Vol. 7, No. 1, pp. 1-3. 

Delignette-Muller, M. L. and Dutang, C. (2015). fitdistrplus: An R package for fitting distributions. 

Journal of Statistical Software, Vol. 64, pp. 1-34. 

Dianatfar, M., Latokartano, J. and Lanz, M. (2021). Review on existing VR/AR solutions in  

human–robot collaboration. Procedia CIRP, Vol. 97, pp. 407-411. 

Diaz-Piedra, C. et al. (2019). The effects of flight complexity on gaze entropy: An experimental study with 

fighter pilots. Applied Ergonomics, Vol. 77, pp. 92-99. 

Duguleana, M., Barbuceanu, F. G. and Mogan, G. (2011). Evaluating human-robot interaction during a 
manipulation experiment conducted in immersive virtual reality. In R. Shumaker (eds) Virtual and 

Mixed Reality - New Trends. VMR 2011. Lecture Notes in Computer Science, vol 6773. Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22021-0_19 

Fong, T. and Nourbakhsh, I. R. (2004, October). Peer-to-Peer Human-Robot Interaction for Space 

Exploration (AAAI Technical Report No. 5, pp. 87-90). 

Galy, E., Cariou, M. and Mélan, C. (2012). What is the relationship between mental workload factors and 

cognitive load types? International Journal of Psychophysiology, Vol. 83, No. 3, pp. 269-275. 



IADIS International Journal on Computer Science and Information Systems 

144 

Goodrich, M. A. et al. (2004). Behavioral entropy in human-robot interaction (Report). BRIGHAM 

YOUNG UNIV, PROVO, UT. https://apps.dtic.mil/sti/pdfs/ADA446467.pdf 

Guo, Y., Freer, D., Deligianni, F. and Yang, G. Z. (2021). Eye-tracking for performance evaluation and 

workload estimation in space telerobotic training. IEEE Transactions on Human-Machine Systems, 

Vol. 52, No. 1, pp. 1-11. 

Hart, S. G. and Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of 

empirical and theoretical research. Advances in psychology, Vol. 52, pp. 139-183. 

Havard, V., Jeanne, B., Lacomblez, M. and Baudry, D. (2019). Digital twin and virtual reality:  
A co-simulation environment for design and assessment of industrial workstations. Production  

& Manufacturing Research, Vol. 7, No. 1, pp. 472-489. 

Hehman, E., Stolier, R. M. and Freeman, J. B. (2015). Advanced mouse-tracking analytic techniques for 

enhancing psychological science. Group Processes & Intergroup Relations, Vol. 18, No. 3,  

pp. 384-401. 

Ijaz, K., Ahmadpour, N., Naismith, S. L. and Calvo, R. A. (2019). An immersive virtual reality platform 

for assessing spatial navigation memory in predementia screening: feasibility and usability study. 

JMIR mental health, Vol. 6, No. 9, e13887. 

Ketcham, C. J., Seidler, R. D., Van Gemmert, A. W. and Stelmach, G. E. (2002). Age-related kinematic 

differences as influenced by task difficulty, target size, and movement amplitude. The Journals of 

Gerontology Series B: Psychological Sciences and Social Sciences, Vol. 57, No. 1, pp. P54-P64. 

Matthews, G., Reinerman-Jones, L., Wohleber, R., Lin, J., Mercado, J., & Abich, J. (2015). Workload is 

multidimensional, not unitary: what now? Proceedings of the Foundations of Augmented Cognition: 

9th International Conference, AC 2015, held as Part of HCI International 2015. Springer International 

Publishing, Los Angeles, CA, USA, pp. 44-55. 

McKinstry, C., Dale, R. and Spivey, M. J. (2008). Action dynamics reveal parallel competition in decision 

making. Psychological Science, Vol. 19, No. 1, pp. 22-24. 

Nakayama, O., Futami, T., Nakamura, T. and Boer, E. R. (1999). Development of a steering entropy 

method for evaluating driver workload. SAE Transactions, Vol. 108, pp. 1686-1695. 

Nenna, F., Orso, V., Zanardi, D. and Gamberini, L. (2022). The virtualization of human–robot interactions: 

A user-centric workload assessment. Virtual Reality, 1-19. 

Nenna, F., Zanardi, D. and Gamberini, L. (2023). Enhanced Interactivity in VR-based Telerobotics:  

An Eye-tracking Investigation of Human Performance and Workload. International Journal of  

Human-Computer Studies, 103079. https://doi.org/10.1016/j.ijhcs.2023.103079 

Panagou, S., Neumann, W. P. and Fruggiero, F. (2023). A scoping review of human robot interaction 

research towards Industry 5.0 human-centric workplaces. International Journal of Production 

Research. https://doi.org/10.1080/00207543.2023.2172473 

Pennathur, A., Contreras, L. R., Arcaute, K. and Dowling, W. (2003). Manual dexterity of older Mexican 
American adults: A cross-sectional pilot experimental investigation. International Journal of 

Industrial Ergonomics, Vol. 32, No. 6, pp. 419-431. 

Reinhardt, D. and Hurtienne, J. (2018). Cursor entropy reveals decision fatigue. Proceedings of the 23rd 

International Conference on Intelligent User Interfaces Companion. Article No. 31, pp. 1-2. 

Reinhardt, D., Haesler, S., Hurtienne, J. and Wienrich, C. (2019). Entropy of controller movements reflects 

mental workload in virtual reality. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces 

(VR), pp. 802-808. 

Reinhardt, D., Hurtienne, J. and Wienrich, C. (2020). Measuring Mental Effort via Entropy in VR. 
Proceedings of the 25th International Conference on Intelligent User Interfaces Companion,  

pp. 43-44). 

Richman, J. S. and Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy 

and sample entropy. American journal of physiology-heart and circulatory physiology, Vol. 278,  

No. 6, pp. H2039–H2049. 



ANALYZING ENTROPY OF CONTROLLER MOVEMENTS AND MENTAL WORKLOAD  
IN YOUNG AND SENIOR USERS: AN APPLIED CASE FROM INDUSTRIAL TELEROBOTICS 

145 

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.  

Seidler, R. D., Alberts, J. L. and Stelmach, G. E. (2002) Changes in multi-joint performance with age. 

Motor control, Vol. 6, No. 1, pp. 19-31. 

Syed-Abdul, S. et al. (2019). Virtual reality among the elderly: A usefulness and acceptance study from 

Taiwan. BMC geriatrics, Vol. 19, No. 1, pp. 1-10. 

Stillman, P. E., Shen, X. and Ferguson, M. J. (2018). How mouse-tracking can advance social cognitive 

theory. Trends in cognitive sciences, Vol. 22, No. 6, pp. 531-543. 

Van der Valk, H. et al. (2020). A Taxonomy of Digital Twins. 26th Americas Conference on Information 

Systems (AMCIS), Salt Lake City, USA. 

Verrel, J., Lövdén, M. and Lindenberger, U. (2012). Normal aging reduces motor synergies in manual 

pointing. Neurobiology of Aging, Vol. 33, Issue 1, pp. 200.e1-200.e10. 

Vidulich, M. A. and Tsang, P. S. (2012). Mental workload and situation awareness. Handbook of human 

factors and ergonomics, pp. 243-273. 

Villani, V., Capelli, B. and Sabattini, L. (2018). Use of virtual reality for the evaluation of human-robot 

interaction systems in complex scenarios. 2018 27th IEEE International Symposium on Robot and 

Human Interactive Communication (RO-MAN), pp. 422-427. 

Wehrl, A. (1978). General properties of entropy. Reviews of Modern Physics, Vol. 50, No. 2. 

Wierwille, W. W. and Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a 

test and evaluation environment. Human factors, Vol. 35, No. 2, pp. 263-281. 

Wildenbos, G. A., Peute, L. and Jaspers, M. (2018). Aging barriers influencing mobile health usability for 

older adults: A literature based framework (MOLD-US). International Journal of Medical Informatics, 

Vol. 114, pp. 66-75. 

Wu, C. et al. (2020). Eye-tracking metrics predict perceived workload in robotic surgical skills training. 

Human factors, Vol. 62, No. 8, pp. 1365-1386. 

Young, M. S., Brookhuis, K. A., Wickens, C. D. and Hancock, P. A. (2015). State of science: Mental 

workload in ergonomics. Ergonomics, Vol. 58, No. 1, pp. 1-17. 

 

 


