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ABSTRACT 

We previously proposed a method for estimating pleasant and unpleasant emotions with high accuracy 

using only total hemoglobin data measured with a lightweight functional near infrared spectroscopy 

device. In this study, we used the method to evaluate the accuracy of estimating 20 types of emotions 

selected as uniformly distributed emotions in Russell’s circumplex model. We first divided the 20 types 

of emotions into four groups, corresponding to the four quadrants of Russell’s circumplex model and 

evaluated the estimation accuracy of each quadrant. The results indicate that the activation quadrant was 

estimated with high accuracy when the emotion was strongly aroused, with 76.7% recall for the  

pleasant–activation quadrant and 72.2% recall for the unpleasant–activation quadrant. We then evaluated 

the estimation accuracy of the 20 emotions individually. The results indicate that “excited” and “lethargic” 

were estimated with high accuracy, with 73.3% recall for “excited” and 61.5% recall for “lethargic,” and 

recall of “excited” improved to 80% when the emotion was strongly aroused. The results of this study 

indicate that the more strongly emotions included in activation quadrant in Russell’s circumplex model are 

aroused, the more accurately they can be classified. “Excited” and “lethargic” could be estimated with high 

accuracy regardless of the degree of emotional arousal. 
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1. INTRODUCTION 

If the emotions evoked by people in various situations in their daily lives can be estimated at a 

high classification rate, they can be applied to a variety of purposes. For example, they can be 

used to improve human computer interaction. This can be achieved by identifying the emotions 
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people experience when using computers and accordingly optimizing computer behavior. They 

can also be used to identify people’s unconscious evaluations of products and services. If we 

can identify what emotions people were experiencing while watching a TV commercial, we can 

improve its content. As more emotions are estimated, the range of applications expands. Russell 

proposed a model in which various human emotions are arranged in a circle in  

a two-dimensional space with two axes: pleasant and unpleasant, and activation and deactivation 

(Russell, 2003). 

Functional near infrared spectroscopy (fNIRS), which measures the increase or decrease in 

hemoglobin (Hb) in blood of the brain based on the absorption rate of NIR light, has been used 

to estimate pleasant and unpleasant emotions in humans (Fukui, 2021, Yanagisawa, 2015). 

There is also a method using functional magnetic resonance imaging (fMRI), which measures 

the increase or decrease in Hb by the change in the magnetic force of deoxygenated Hb. 

Although these methods can estimate pleasant and unpleasant emotions, they cannot estimate 

more nuanced emotions as defined using Russell's circumplex model. 

There is a method that uses electroencephalography (EEG) sensors to estimate more than 

two emotions: pleasant and unpleasant. Yuen (2009) computed six statistical features from EEG 

data and used a neural network to identify five emotions (anger, sad, surprise, happy, and 

neutral) with a 95% classification rate. Murugappan (2010) used the "db4" wavelet function to 

derive modified energy-based features from EEG data and identified five emotions (disgust, 

happy, surprise, fear, and neutral) with an 83.26% classification rate using a k-nearest neighbor 

(kNN) model. Islam (2021) converted one-dimensional EEG data into  

Pearson's-correlation-coefficient-featured images of channel correlation of EEG sub-bands and 

used a convolutional neural network trained on these images to recognize three levels of valence 

and arousal (low/middle/high) with an accuracy of over 70%. 

However, the EEG sensors used in these studies are equipped with 32 to 62 channels, making 

it difficult to measure EEG in daily life. Also, EEG signals measured at various locations on the 

scalp are usually contaminated with a large amount of noise. For example, potential changes 

caused by eye and muscle movements are included in the EEG data as noise. Several methods 

have been proposed for removing noise in EEG data, but it is difficult to remove it completely. 

We previously proposed a method for estimating emotions using a lightweight fNIRS device 

(Fukui, 2021). Since fNIRS measurement is less affected by noise than EEG measurement, it is 

more suitable for measuring brain activity of people in their daily lives. On the basis of the 

results of a previous study (Fukui, 2021), we evaluated the classification rate of the kNN model, 

which estimates 20 emotions that are selected based on Russell's circumplex model, by  

cross-validation (Fukui, 2022). To examine the impact of the activation–deactivation axis in 

Russell’s circumplex model on estimation accuracy, we evaluated the classification rate of the 

kNN model, which estimates emotions in the four quadrants of Russell’s circumplex model 

(pleasant–activation, pleasant–deactivation, unpleasant–activation, and  

unpleasant–deactivation). 
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2. EMOTION ESTIMATION BY FNIRS  

2.1 Definition of Emotions 

On the basis of Russell's circumplex model (Russell, 1980, 2003), we selected a total of 20 

emotions shown in Figure 1, five in each of the four quadrants of pleasant–activation,  

pleasant–deactivation, unpleasant–activation, and unpleasant–deactivation. These emotions 

were selected to have moderate variations in the degree of valence (pleasant–unpleasant) and 

arousal (activation–deactivation) within each quadrant. The list of selected emotions is shown 

in Table 1. These 20 emotions were used as research targets in our study. 
 

 

Figure 1. Russell’s circumplex model 

Table 1. Emotions selected for our study 

Quadrants Emotions 

Pleasant-Activation excited, delighted, grad, happy, pleased 

Pleasant-Deactivation sleepy, calm, relaxed, content, serene 

Unpleasant-Activation angry, afraid, annoyed, distressed, frustrated 

Unpleasant-Deactivation miserable, sad, gloomy, bored, lethargic 

2.2 Measurement Method 

Figure 2 shows the method we used for measuring brain activity during image viewing using 

HOT-1000 (Zhang, 2005, Nozawa, 2016), a lightweight fNIRS device manufactured by NeU 

Co1. Figure 3 shows the appearance of the HOT-1000 and Table 2 lists its specifications. The 

participant wears HOT-1000 on his head and views the images on the display. By measuring 

total-Hb while the participant is viewing the image, we investigated the relationship between 

the emotion evoked by the participant and brain activity. 

 
1 http://neu-brains.site/en/ 
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Figure 2. Measurement method 

 

 

Figure 3. HOT-1000 

Table 2. Specifications of HOT-1000 

Specification item Value 

Number of channels 2ch (position adjustable) 

Light source LED 

Communication protocol Bluetooth Low Energy 

Weight 125 g 

Power supply AAA alkaline batteries x 2 / USB 

Operating time 1.5 hours 

 

There are two types of data that can be measured with HOT-1000. One is the total-Hb 

measured at a depth of about 1 cm from the scalp (S), and the other is the total-Hb measured at 

a depth of about 3 cm from the scalp (D). During normal brain activity, the increase in total-Hb 

is not observed near the scalp but only deep in the brain. Therefore, the total-Hb calculated by 

subtracting S from D can be considered to indicate brain activity (B). However, the amount of 

change in total-Hb near the scalp and deep in the brain are always affected by heartbeat and 

other factors as well as brain activity, so it is necessary to eliminate these factors. 

First, the baselines of Si and Di waveform data are corrected after removing pin and step 

noise. Next, α, which represents the degree that heartbeat and other factors affect brain activity, 

is calculated using the following five formulas. The brain-activity waveform data (Bi) are then 

derived by subtracting α times Si from Di. In these formulas, i represents the elapsed time from 

the start of the brain-activity measurement. The measurement of brain activity begins when 

HOT-1000 is placed on the participant’s head. 
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𝐵𝑖 = 𝐷𝑖 − 𝛼 ∙ 𝑆𝑖 

(1) 𝛼 = 1 

(2) 𝛼 =
𝐻𝑖

ℎ𝑖
 

(3) 𝛼 =
∑ 𝑑𝑖
𝑇2
𝑖=𝑇0

∑ 𝑠𝑖
𝑇2
𝑖=𝑇0

 

(4) 𝛼 =
∑ 𝑑𝑖
𝑇1
𝑖=𝑇0

∑ 𝑠𝑖
𝑇1
𝑖=𝑇0

 

(5) 𝛼 = 𝐶𝑜𝑟𝑟(𝑑𝑖 , 𝑠𝑖) 
 

The H and h in Formula (2) represent the heartbeat components of D and S, respectively. 

The heartbeat components are calculated using a band-pass filter from 0.7 to 2.0 Hz, which 

indicates the frequency of the heartbeat. The d and s in Formulas (3) through (5) represent the 

values of D and S, respectively, in which the heartbeat component has been removed. The T0 in 

Formulas (3) and (4) represents the start time of the rest period (see Chapter 3 for details). The 

T2 in Formula (3) represents the end time of the image display. The T1 in Formula (4) represents 

the end time of the rest period. The Corr function in Formula (5) calculates the correlation 

coefficient between di and si in the last 5 s. 

The Bi derived using Formula (1) indicates the brain activity calculated simply from the 

difference between di and si without removing any effect of heartbeat and other factors. Formula 

(2) calculates the ratio of the heartbeat components of D and S to remove the effect of heartbeat. 

Formula (3) calculates the ratio of the integral values of di and si in the image-display period 

including the rest period to remove the effects of heartbeat and other factors (such as body 

movement). Formula (4) calculates the ratio of the integral values in Formula (3) from the rest 

period only. The reason the correlation coefficients between di and si for the past 5 s are 

calculated in Formula (5) is to derive the brain activity using the characteristic that the 

correlation between total-Hb near the scalp and deep in the brain becomes higher when there is 

no brain activity and lower when there is brain activity. 

Finally, for each of the five types of brain-activity waveform data derived from the five 

formulas, the seven features shown in Table 3 are calculated. A total of 35 features are used to 

estimate 20 emotions. We used the kNN model, which is a machine-learning model that can 

obtain a better classification rate even with a small amount of training data. 

Table 3. Features 

ID Feature 

F1 Mean 

F2 Standard deviation 

F3 Median 

F4 Maximum value 

F5 Time required to reach maximum value 

F6 Maximum change in time window (5 s) 

F7 Rising slope (1 s from start) 
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3. EMOTION-ESTIMATION EXPERIMENT 

We conducted an experiment using HOT-1000 to measure brain activity when a person viewed 

20 images that evoked 20 different emotions. A total of 20 participants, who were asked to 

cooperate voluntarily, participated in this experiment. Twelve were in their 30s (8 men and 4 

women) and 8 were in their 40s (6 men and 2 women). This experiment was approved by the 

Ethical Review Working Committee of the Research and Development Group, Hitachi, Ltd 

(Approval No. 20160905-0144). 

An overview of the measurement procedure is shown in Figure 4. In the first 5 min, we 

explained the methods of the experiment, received informed consent, and attached HOT-1000 

to the participants. The 20 images and their descriptions were then displayed to the participants 

in 2 sessions of 10 images each. Each image-display session was followed by a 1-min rest 

period. Before presenting the ten images to the participants, one neutral image (Figure 5) that 

was not used for analysis was displayed to the participants to suppress the response of brain 

activity to the first image displayed. A total of 11 images were displayed in a single “image 

display” session. The ten images displayed to the participants following the neutral image were 

arranged randomly. Finally, a questionnaire was administered to the participants to determine 

whether the images evoked the desired emotions. The reason the images were displayed in two 

separate sessions was to eliminate the effect of the order in which the images were displayed on 

the results. The ten images displayed to half the participants in the first image-display session 

were displayed to the other half in the second image-display session and vice versa. 

 

 

Figure 4. Measurement procedure 

 

Figure 5. Neutral image 

The image-display procedure is shown in Figure 6. First, a 30-s rest period was set up to 

calm brain activity. During the rest period, only the character "+", which is about 2 cm in length 

and width, was displayed in the center of the screen, and the participants were told to gaze at it. 

Next, the description of the image to be displayed was shown for 7 s. By displaying the 

description of the image immediately before the image display, the target brain activity was 

stimulated. Finally, an image was displayed to the participants for 10 s to evoke the target 

emotion. This procedure was repeated 11 times using 1 neutral image and 10 different 

experimental images. 
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Figure 6. Image-display procedure 

 

Figure 7. Example of description and image 

Figure 7 shows an example of the descriptions displayed to the participants and those 

displayed following the descriptions. The 20 images used in the experiment were purchased 

from Getty Images. The method of selecting the 20 images was as follows. First, for each of the 

20 emotions (see Table 1), 5 evaluators (all Japanese nationals) selected one candidate image 

that evoked the emotion through keyword searches on Getty Images2. Next, the five evaluators 

voted to select one image that would strongly evoke that particular emotion. Two evaluators 

were experts in the field of product and service evaluation (one man and one woman in their 

40s). The other three were the researchers (men in their 40s) who have been engaged in fNIRS 

research for more than two years. 

The content of the questionnaire given to the participants at the end of the experiment is 

shown in Figure 8. The participants were asked whether the emotion described in the description 

matched the content of the images. The visual analogue scale (VAS) values, which were 

obtained by normalizing the line lengths of the questionnaire responses to take values from 0 to 

10 based on the left edge, were used as the teacher data. The 80 records with a VAS value of 

less than 5 (data that did not match the target emotion) were excluded from the analysis because 

the emotion evoked was unknown. The remaining 320 records were used for the analysis.  

In general, a minimum of 50 records is required for training, and this experiment met that 

criterion. It is preferable to train 10 times the amount of data as the number of features, but we 

were able to obtain more than 90% of the recommended data, although it was slightly less than 

the 350 recommended records for the 35 features in this study. 
 

 

Figure 8. Questionnaire content 

 
2 https://www.gettyimages.com/ 
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4. EXPERIMENTAL RESULTS 

On the basis on the above experimental data, we trained 4 different kNN models for each of 
quadrants and 20 different kNN models for each of the emotions shown in Table 1. The k in the 
kNN models was chosen to be 3, which is the most accurate among various k values. The models 
were evaluated using 10-fold cross-validation using the metrics of Matthews correlation 
coefficient (MCC), precision, recall, and accuracy.  

The 10-fold cross-validation is a validation method with which the training data are 
randomly divided into ten groups; nine groups are trained and the remaining group is validated, 
and repeated ten times until all groups are validated. MCC does not depend on data bias. 
Precision is used to evaluate whether the estimated result from the classification model is correct 
when the result is positive. Recall is used to evaluate whether the estimated result from the 
classification model is correct when the correct emotion is positive. Accuracy is used to evaluate 
whether the estimated result from the classification model is correct for all estimated results. 

The formulas for calculating each evaluation metric are described below: TP (true positive) 
represents the amount of data when the result estimated from the classification model is positive 
and correct; FP (false positive) represents the amount of data when the result estimated from the 
classification model is positive and incorrect; TN (true negative) represents the amount of data 
when the result estimated from the classification model is negative and correct; FN (false 
negative) represents the amount of data when the result estimated from the classification model 
is negative and incorrect. 

 

・𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
 

・𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

・𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

・𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 
Table 4 to Table 7 show the evaluation results of the kNN models for each quadrant in Table 

1 when the VAS thresholds were changed from 5 to 9. The values in the N column indicate the 
number of records that exceed the VAS threshold. If there is a large bias in the amount of correct 
data (corresponding to the target emotion) and the amount of incorrect data (not corresponding 
to the target emotion), accuracy will be large. Therefore, the baseline value, which is obtained 
by dividing the greater amount of correct or incorrect data by the total data, is also described in 
the table. The baseline value represents the accuracy of a meaningless classification model that 
predicts all data as correct or incorrect and used as a metric to evaluate the validity of accuracy. 

Table 4. Classification results of k-NN models for pleasant-activation quadrant 

VAS threshold MCC Precision Recall Accuracy (baseline) N 

5 or more 0.213 0.632 0.145 75.6 (74.1) 83 
6 or more 0.224 0.517 0.211 78.1 (77.8) 71 
7 or more 0.286 0.56 0.241 82.8 (81.9) 58 
8 or more 0.487 0.667 0.444 90.9 (85.9) 45 
9 or more 0.689 0.676 0.767 94.4 (90.6) 30 
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Table 5. Classification results of k-NN models for pleasant-deactivation quadrant 

VAS threshold MCC Precision Recall Accuracy (baseline) N 

5 or more 0.116 0.407 0.237 67.8 (70.9) 93 

6 or more 0.32 0.7 0.25 77.5 (73.8) 84 

7 or more 0.406 0.697 0.343 84.4 (79.1) 67 

8 or more 0.47 0.667 0.431 90.9 (84.1) 51 

9 or more 0.498 0.538 0.538 96.3 (91.9) 26 

 

Table 6. Classification results of k-NN models for unpleasant-activation quadrant 

VAS threshold MCC Precision Recall Accuracy (baseline) N 

5 or more 0.165 0.367 0.269 75 (79.1) 67 

6 or more 0.424 0.739 0.315 86.6 (83.1) 54 

7 or more 0.493 0.833 0.341 90 (86.3) 44 

8 or more 0.626 0.8 0.533 95.6 (90.6) 30 

9 or more 0.685 0.684 0.722 93.1 (94.4) 18 

 

Table 7. Classification results of k-NN models for unpleasant-deactivation quadrant 

VAS threshold MCC Precision Recall Accuracy (baseline) N 

5 or more 0.218 0.515 0.221 76.3 (75.9) 77 

6 or more 0.229 0.457 0.254 79.4 (80.3) 63 

7 or more 0.373 0.607 0.327 85.6 (83.8) 52 

8 or more 0.477 0.543 0.528 93.4 (88.8) 36 

9 or more 0.485 0.5 0.545 96.6 (93.1) 22 

 

For VAS thresholds of 5 or more, the recall of each model ranged from 0.145 to 0.269. This 

is almost the same as the 0.25 recall of randomly selecting one of the four quadrants. However, 

as the VAS threshold increased, the recall of each model increased. In particular, the recall of 

the two quadrants in the activation direction greatly improved, reaching 76.7% for the  

pleasant–activation quadrant and 72.2% for the unpleasant–activation quadrant when the VAS 

threshold was set at 9. However, the recall of the two quadrants in the deactivation direction 

improved only to a small extent: 53.8% for the pleasant–deactivation quadrant and 54.5% for 

the unpleasant–deactivation quadrant when the VAS threshold was set at 9. This may be due to 

the fact that emotions in the activation direction have a greater impact on changes in total-Hb 

than emotions in the deactivation direction. 

To confirm that these results were not biased toward any particular participant or image, a 

test of uniform distribution using the chi-square method was conducted. The data were randomly 

grouped so that the expected frequency was greater than 5, since it is known that an 

approximation to the chi-square distribution becomes poorer when the expected frequency is 

less than 5. 

Figure 9 shows the number of records per participant for pleasant–activation emotions with 

a VAS threshold of 9 or more. The test of uniform distribution of this graph revealed a chi-

square value of 3.668 and a p-value of 0.453, rejecting the null hypothesis that the amount of 

data is biased toward any particular participant. 
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Figure 10 shows the number of records per image for pleasant–activation emotions with a 

VAS threshold of 9 or more. The test of uniform distribution of this graph revealed a chi-square 

value of 2.335 and a p-value of 0.674, rejecting the null hypothesis that the number of data is 

biased toward any particular image. 

 

 

Figure 9. Number of pleasant-activation records per participant 

 

 

Figure 10. Number of pleasant-activation records per image 

 

Figure 11 shows the number of records per participant for pleasant–deactivation emotions 

with a VAS threshold of 9 or more. The test of uniform distribution of this graph revealed  

a chi-square value of 3.616 and a p-value of 0.460, rejecting the null hypothesis that the amount 

of data is biased toward any particular participant. 

Figure 12 shows the number of records per image for pleasant–activation emotions with a 

VAS threshold of 9 or more. The test of uniform distribution of this graph revealed a chi-square 

value of 2.462 and a p-value of 0.651, rejecting the null hypothesis that the amount of data is 

biased toward any particular image. 
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Figure 11. Number of pleasant-deactivation records per participant 

 

 

Figure 12. Number of pleasant-deactivation records per image 

 

Figure 13 shows the number of records per participant for unpleasant–activation emotions 

with a VAS threshold of 9 or more. The test of uniform distribution of this graph revealed  

a chi-square value of 2.334 and a p-value of 0.311, rejecting the null hypothesis that the amount 

of data is biased toward any particular participant. 

Figure 14 shows the number of records per image for unpleasant–activation emotions with 

a VAS threshold of 9 or more. The test of uniform distribution of this graph revealed  

a chi-square value of 1.001 and a p-value of 0.606, rejecting the null hypothesis that the amount 

of data is biased toward any particular image. 

 

 

Figure 13. Number of unpleasant-activation records per participant 

 

1

0

1

0

3

2

5

0 0 0 0 0

1 1

4

2

3

0 0

3

0

1

2

3

4

5

6

N
u

m
b

er
 o

f 
re

co
rd

s

Participants

4

8

4

6

4

0

2

4

6

8

10

N
u

m
b

er
 o

f 
re

co
rd

s

Images

2

0 0 0

1

0

5

0

2

1

0 0 0 0

1 1

3

0

1 1

0

1

2

3

4

5

6

N
u

m
b

er
 o

f 
re

co
rd

s

Participants



IADIS International Journal on Computer Science and Information Systems 

60 

 

Figure 14. Number of unpleasant-activation records per image 

 

Figure 15 shows the number of records per participant for unpleasant–deactivation emotions 

with a VAS threshold of 9 or more. The test of uniform distribution of this graph revealed  

a chi-square value of 1.999 and a p-value of 0.573, rejecting the null hypothesis that the amount 

of data is biased toward any particular participant. 

Figure 16 shows the number of records per image for unpleasant–deactivation emotions with 

a VAS threshold of 9 or more. The test of uniform distribution of this graph revealed  

a chi-square value of 0.908 and a p-value of 0.823, rejecting the null hypothesis that the amount 

of data is biased toward any particular image. 

The results of these tests confirm that in all four quadrants, the data with a VAS threshold 

of 9 or more were not biased toward any particular participant or image. 

 

 

Figure 15. Number of unpleasant-deactivation records per participant 

 

Figure 16. Number of unpleasant-deactivation records per image 
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Table 8 shows the evaluation results of the kNN models for 20 emotions in Table 1 when 

the VAS threshold is greater than 5. The values in the N column indicate the number of records 

corresponding to each emotion. The results indicate that the "excited" kNN model’s MCC was 

0.695, precision was 68.8%, recall was 73.3%, and accuracy was 97.2% (baseline was 95.3%). 

The "lethargic" kNN model’s MCC was 0.656, precision was 72.7%, recall was 61.5%, and 

accuracy was 97.5% (baseline was 95.9%). Both models had high MCC with recall exceeding 

60% and accuracy exceeding the baseline. All the other kNN models showed lower accuracy 

than the baseline and their recall was less than 50%. 

"Excited" is placed as a highly active emotion in the "pleasant" direction in Russel's 

circumplex model, and "lethargic" is placed as a less active emotion in the "unpleasant" 

direction in that model. It is possible that the degree of activation in Russel's circumplex model 

is reflected in the amount of total-Hb.  

Table 8. Classification results of k-NN models for individual emotions 

Emotion MCC Precision Recall Accuracy (baseline) N 

excited 0.695 0.688 0.733 97.2 (95.3) 15 

lethargic 0.656 0.727 0.615 97.5 (95.9) 13 

calm 0.319 0.333 0.400 91.3 (93.8) 20 

frustrated 0.255 0.278 0.313 92.5 (95.0) 16 

afraid 0.234 0.250 0.273 94.7 (96.6) 11 

gloomy 0.211 0.273 0.214 94.1 (95.6) 14 

serene 0.154 0.211 0.200 90.3 (93.8) 19 

sad 0.156 0.182 0.235 90.3 (94.7) 17 

distressed 0.137 0.200 0.143 93.8 (95.6) 14 

content 0.132 0.200 0.158 91.3 (94.1) 20 

annoyed 0.118 0.130 0.214 90.3 (95.6) 14 

grad 0.103 0.182 0.111 92.2 (94.4) 18 

relaxed 0.099 0.150 0.158 89.7 (94.1) 19 

sleepy 0.097 0.143 0.133 92.2 (95.3) 15 

miserable 0.080 0.111 0.143 91.3 (95.6) 14 

pleased 0.065 0.100 0.133 90.3 (95.3) 15 

happy 0.063 0.111 0.118 90.3 (94.7) 17 

delighted 0.053 0.105 0.111 89.7 (94.4) 18 

angry 0.000 0.000 0.000 91.6 (96.3) 12 

bored -0.013 0.048 0.053 88.1 (94.1) 19 

 

Tables 9 and 10 show the classification results when the VAS thresholds were changed from 

6 to 9 for “excited” and “lethargic”, respectively. For “excited,” when the VAS threshold 

exceeded 8, recall improved to 0.8. There was no improvement in the recall for “lethargic” by 

changing the VAS threshold. Similar to the results of the four-quadrant evaluation, the recall of 

deactivation-emotion estimation does not improve with changes in the VAS threshold, and it is 

thought that the recall conversely decreases as the amount of data decreases. 

These results indicate that our method can estimate brain activity when "excited" or " 

lethargic" is evoked with a classification rate of more than 60%. The results also indicate that 

“excited” with a VAS of more than 8 can be classified with a classification rate of 80%. It may 

be possible to classify the brain activity of people who feel strongly “excited” with a high 

classification rate. 
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Table 9. Classification results of k-NN model for “excited”  

VAS threshold MCC Precision Recall Accuracy (baseline) N 

5 or more 0.695 0.688 0.733 97.2 (95.3) 15 

6 or more 0.673 0.667 0.714 96.7 (94.9) 14 

7 or more 0.648 0.667 0.667 96.4 (94.6) 12 

8 or more 0.787 0.8 0.8 97.5 (93.8) 10 

9 or more 0.714 0.667 0.8 96.9 (94.8) 5 

Table 10. Classification results of k-NN model for “lethargic” 

VAS threshold MCC Precision Recall Accuracy (baseline) N 

5 or more 0.656 0.727 0.615 97.5 (95.9) 13 

6 or more 0.264 0.4 0.2 96.0 (96.3) 10 

7 or more 0.431 0.6 0.333 96.4 (95.9) 9 

8 or more 0.28 0.286 0.333 94.4 (96.3) 6 

9 or more 0.478 0.5 0.5 95.8 (95.8) 4 

5. CONCLUSION 

To estimate various emotions in daily life, we conducted an experiment to estimate 20 emotions 

that are selected based on Russell’s circumplex model using HOT-1000, which is a lightweight 

fNIRS device. The 35 features representing brain activity were first calculated from the  

total-Hb data measured using HOT-1000. Using those 35 features, we then trained kNN models 

to predict various emotions and evaluated the classification rate of those emotions by 10-fold 

cross validation.  

The 20 emotions were first divided into 5 groups of 5 each, corresponding to the 4 quadrants 

of Russell’s circumplex model, and their estimation accuracy was evaluated. The results indicate 

that the recall of all kNN models for each quadrant improved as the VAS threshold increased. 

The recall of kNN models for the two quadrants in the activation direction greatly improved, 

with recall of the kNN model for the pleasant–activation quadrant improving from 14.5 to 76.7% 

and recall of the kNN model for the unpleasant–activation quadrant improving from 26.9 to 

72.2% when the VAS threshold was set at 9. The emotions in the activation quadrant may have 

a stronger effect on brain activity with higher degrees of arousal. 

We then evaluated the estimation accuracy of each of the 20 emotions. The recall of “excited” 

was 73.3% and the recall of “lethargic” was 61.5% when the VAS threshold was greater than 5. 

The recall of all other emotions were less than 50%. As shown in Figure 1, “excited” was the 

most active emotion in the pleasant–activation quadrant, while “lethargic” was the most inactive 

emotion in the unpleasant–deactivation quadrant of the Russell’s model. The recall of “excited” 

tended to improve as the VAS threshold increased, with a recall of 80% when the VAS threshold 

was more than 8. However, the recall of the kNN model for “lethargic” did not improve when 

the VAS threshold increased. These results also indicate that the degree of activation or 

deactivation in Russell’s circumplex model affects brain activity.  

Previous studies have shown that EEG is effective in predicting various human emotions. 

However, the EEG sensors used in these studies are equipped with 32 to 62 channels, making it 

difficult to measure EEG in daily life. Also, EEG signals measured at various locations on the 

scalp are usually contaminated with a large amount of noise. Therefore, we attempted to 

estimate emotions using a lightweight device that can measure brain activity in daily life and 
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measure fNIRS data, which is robust against noise. The results of this study indicate that the 

more strongly emotions included in activation quadrant in Russell’s circumplex model are 

aroused, the more accurately they can be classified. “Excited” and “lethargic” could be 

estimated with high accuracy regardless of the degree of emotional arousal in daily lives. 

However, the number of participants and amount of data collected were not sufficient, so 

continued data collection is necessary for future work. 
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