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ABSTRACT 

While fine-tuning a transfer learning model alleviates the need for a vast amount of training data, it still 

comes with a few challenges. One of them is the range of image dimensions that the input layer of a model 

accepts. This issue is of interest, especially in tasks that require the use of a transfer learning model. In 

scene classification, for instance, images could come in varying sizes that could be too large/small to be 

fed into the first layer of the architecture. While resizing could be used to trim images to a required shape, 

that is usually not possible for images with tiny dimensions, for example, in the case of the EuroSAT 

dataset. This paper proposes an Xception model-based framework that accepts images of arbitrary size and 

then resizes or interpolates them before extracting and enhancing the discriminative features using an 

adaptive dilation module. After applying the approach for scene classification problems and carrying out 

a number of experiments and simulations, we achieved 98.55% accuracy on the EuroSAT dataset, 99.22% 

on UCM, 96.15% on AID and 96.04% on the SIRI-WHU dataset, respectively. We also monitored the 

micro-average and macro-average ROC curve scores for all the datasets to further evaluate the proposed 

model’s effectiveness. 
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1. INTRODUCTION 

Public access to high-resolution remote sensing images has become a reality thanks to the 
technological advancements recorded in recent years (Helber et al., 2019). Access to satellite 
images for commercial and research purposes has fuelled interest and innovation in remote 
sensing and associated fields (Balarabe and Jordanov, 2021). This availability, in turn, triggered 
an avalanche of applications in domains such as agriculture, environment monitoring, disaster 
risk analysis, climate change, urban development, surveillance, land mapping, and land use and 
land cover classification (LULC) (Bi et al., 2020; Z. Li et al., 2020; Balarabe and Jordanov, 
2021; Broni-Bediako et al., 2021). Interestingly, most of these datasets used for the research 
and training scene classification systems have images with varying resolutions and dimensions. 
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For example, the EuroSAT dataset (Helber et al., 2019) has images of 64x64 pixels, while the 
AID dataset (Xia et al., 2017) has images with dimensions up to 600x600 pixels. Generally, the 
accuracy of image classification models mostly depends on image representations such as image 
size, colour, shape, texture, and other properties (Bi et al., 2020). More recently, researchers 
have proven that deep learning classifiers pre-trained on natural images can be repurposed for 
the task of scene classification (Hu et al., 2015; Bi et al., 2020). However, no one-size-fits-all 
transfer learning model can work with all the scene classification datasets (Liu and Huang, 
2018). The quality of the discriminative features extracted by a transfer learning model could 
depend on the input data size because the feature maps are generated from the raw image data 
and fed into the classification layer for inference (Bi et al., 2020). Depending on the dataset 
image dimensions, resizing or scaling up is often needed to reduce or increase the size of the 
images to an appropriate level that can produce feature maps containing enough discriminative 
information. For datasets with relatively larger samples, such as the AID dataset (Xia et al., 
2017), the images are usually resized to a moderately smaller dimension without throwing away 
any vital information. In other datasets, the images are either fed into the CNNs models in their 
original form or resized to reduce the model training time (Broni-Bediako et al., 2021). Other 
datasets, notably the EuroSAT (Helber et al., 2019), have images with a tiny dimension of 64x64 
pixels, which cannot fit into the first layer of some transfer learning models.  

 
(a) 

 
(b) 

 
(c) 

Figure 1. Images of three different datasets: a) EuroSAT; b) UCM; and c) AID 

To experiment on this dataset with transfer learning models, such as the Xception (Chollet, 

2017), the images must reach at least the minimum size that the input layer of the architectures 

accepts. We believe that this model, the most advanced evolution of the Inception variants, has 

not received its fair share of attention from computer vision researchers. This paper investigates 

its effectiveness and efficiency in scene classification problems. In this work, we repurposed a 

pre-trained Xception model (Chollet, 2017) to perform scene classification tasks on the 

EuroSAT, UCM, AID and SIRI-WHU datasets. For the EuroSAT dataset, we employed the 
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LANCZOS image interpolation algorithm to scale up the images of the EuroSAT dataset from 

64x64 to 71x71 pixels, which is the minimum that the image input layer of the Xception accepts. 

The UCM and SIRI-WHU images were left in their original form, while the samples of the AID 

dataset were resized to 256x256 pixels. In each case, the proposed framework chooses an 

appropriate context magnifying module to improve the quality of the extracted features before 

feeding them into the final classification layer for inference.   

2. RELATED WORKS 

Several research articles have been published on scene classification tasks using the traditional 
convolutional neural networks as the core models, while others were implemented using 
repurposed transfer learning architectures (Yuan et al., 2020; Balarabe and Jordanov, 2021). As 
a rule of thumb, CNNs, traditional or pretrained, downsample images as they traverse a model 
from the input to the classification layer. This downsampling could cause the suppression of 
local discriminative information, impacting the overall performance (Z. Li et al., 2020). Some 
researchers proposed a feature fusion approach to address the challenge by combining two 
models into a single unit to improve classification efficiency (Wang and Yu, 2020). In contrast, 
others used inference aggregation to obtain the average classification results of different model 
streams (F. Li et al., 2020). Li et al. embedded context enhancement modules within the 
repurposed pre-trained models to extract more robust features for better discrimination and 
improved classification accuracy (Z. Li et al., 2020). In most standard CNNs, an image’s  
low-level and mid-level discriminative features tend to be lost as the depth of a model increases. 
Bi et al. developed a model that learns the feature representations in an image using a multiple 
instance learning framework that categorises labels by highlighting the semantics relevance of 
each category and generating a probability value for its prediction (Bi et al., 2020). Unlike in 
natural images, where the critical discriminative feature is the most dominant aspect, a scene 
classification image contains the discriminatory features of other images, which could lead to 
one scene being confused with another by a classifier (Alhichri et al., 2021). Alchiri et al. 
proposed a technique to address misclassifications by paying attention to sections of an image 
that uniquely identify it (Alhichri et al., 2021). 

Another challenge in remote sensing image classification is the discriminative information 
occlusion due to fused boundaries among objects in an image. Often, the discriminative features 
are mixed-up with the non-discriminative features. As a result, some authors developed a feature 
fusion framework that uses an entropy-based technique to fuse selected layers of some  
pre-trained models into a unified hierarchical scene classification framework (A. et al., 2018). 
Despite the successes recorded by transfer learning models in scene classification, within-class 
variability and between-class similarity still need further attention (Balarabe and Jordanov, 
2021). Xie et al. in (Xie et al., 2019) highlighted that indiscriminate resizing of images could 
degrade the part of an image containing the information vital for its classification. As a result, 
the authors proposed a framework that accepts arbitrary image size and effectively extracts 
quality feature representation for improved classification. Wang et al. also developed a 
technique that extracts and combines local and global discriminative information in an image to 
increase the classification performance. The method proposed by the authors has two branches 
for feature extraction, connected by a structured key area localisation mechanism (SKAL) 
(Wang et al., 2020). 
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3. PROBLEM STATEMENT AND METHODOLOGY  

3.1 Problem Statement  

There are many publicly available scene classification datasets (F. Li et al., 2020), such as UCM, 

AID, SIRI-WHU, and OPTIMAL-31, each with its inherent uniqueness: meter(s) per pixel; image 

dimension; the number of samples per category; etc., to name just a few of the underlined 

differences among them. At the same time, there is a strong link between a CNNs classifier’s 

accuracy and the size and quality of the input images (Bi et al., 2020). The traditional CNNs 

and the pre-trained models use either local or global discriminative features for the classification 

unless engineered to combine the two groups in order to improve the output. Depending on 

image size, resizing or scaling up to an appropriate dimension is often needed to produce feature 

maps containing sufficient discriminative information. For datasets with large enough samples, 

such as the AID dataset (Xia et al., 2017), the images are usually scaled down to a relatively 

smaller dimension without losing the essential information. In other datasets, such as the UCM 

and SIRI-WHU, there is the choice of resizing the images or passing them into the CNNs models 

in their original form (Xie et al., 2019). Other datasets, for example, particularly the EuroSAT 

(Helber et al., 2019), have images with a small dimension of 64x64 pixels. To use this dataset 

with some transfer learning models, such as the Xception model (Chollet, 2017), the images 

must be interpolated to reach at least the minimum acceptable size for the model input layer. 

This paper investigates the impact of image interpolation and feature enhancement on the 

accuracy of the Xception model. Section 3.2 briefly describes the overall model architecture, 

section 3.3 highlights the datasets used, 3.4 explains the training strategy, and 3.5 summarises 

the metrics employed to evaluate the model. 

3.2 Model Architecture 

The overall model architecture (Figure 2) consists of four components: the image interpolation 

module, the feature extraction module, the feature magnification module, and other additional 

layers for performance enhancement. The backbone of the feature extraction component 

comprises the Xception model’s bottom layers, from the image input layer to the last 

convolutional layer. The dimension of the input image is first checked to ascertain whether 

interpolation is needed or not. If the image size is below 71x71, then the LANCZOS algorithm 

resizes it from its original dimension to 71x71 pixels; otherwise, it is forwarded to the feature 

extraction part of the framework. The reason for choosing LANCZOS is its ability to scale up an 

image without compromising its quality. Considering the impact that fused boundaries could 

have on a classifier’s performance, we added a dilation layer and a few fully connected layers 

to preserve the extracted features as they go further down the pipeline. We included dropout 

layers with values from 0.25 to 0.5 to mitigate the effect of overfitting before the softmax layer. 

In addition, each fully connected layer has an l2 regulariser with a 0.001 regularisation value. 

The output of the feature extraction component goes through one of the context magnifiers, 

depending on the size of the input from which these features have been extracted. Extractions 

from images with 71x71 dimensions are fed into a feature magnifier with a 2x2 dilation rate, 

and for a larger image, a 4x4 dilation rate is used. Then they are fed into the 

GlobalAveragePooling 2D layer, which processes the spatial information therein. Although 

LeakyReLU has been proposed recently in several deep learning-based applications (Goceri, 
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2021) to overcome the biasing issue caused by ReLU, we used the ReLU due to its efficiency 

in the structure of the proposed network with our datasets. The primary motivation behind 

choosing this model for this research work is that it is lightweight compared to some frequent 

transfer learning models, such as VGG-Net, ResNet and GoogleNet. Also, from the articles we 

have reviewed, it is evident that researchers have neglected this pre-trained architecture despite 

its efficiency and ease of use. 

 

 

Figure 2. The overall architecture of the proposed model (FC – fully connected, L2 – regularisation 

function, ReLU – transfer function; Softmax – output transfer function) 

3.3 Datasets  

EuroSAT dataset was released in 2019 by (Helber et al., 2019). It consists of different classes of 

land use and land cover (LULC) images extracted across 34 European countries using  

Sentinel-2 satellite images containing 13 categories of 2000 to 3000 samples. Annual crops, 

forests, herbaceous vegetation, residential, and sea lakes have 3000 scene representations. In 

contrast, highway, industrial, permanent crop, and river have 2500, and pasture has the smallest 

number (200 instances), making 27000 64x64 pixels images for the entire dataset.  

The UCM dataset (Yang and Newsam, 2010) has 21 categories containing 2100 images of 

different land use and cover types, with a uniform size of 256x256 pixels. The images in this 

dataset have a resolution of approximately 0.3m.  

AID Dataset (Xia et al., 2017) is one of the most extensive scene classification datasets, with 

30 categories containing images with 600x600 pixels. This dataset includes the following 

categories: airport, baseball field, bare land, bridge, beach, centre, commercial, church, dense 
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residential, farmland, desert, industrial, forest, meadow, mountain, medium residential, 

parking, playground, park, pond, railway station, port, river, resort, sparse residential school, 

square storage tanks, viaduct, stadium, and football field. Each category comprises 240 to 420 

images.  

SIRI-WHU Dataset (Zhao et al., 2016) is a dataset of 12 categories of scene classification 

images of 200x200 pixels, with a 2m spatial resolution. It has 2,400 images, evenly distributed 

across its 12 classes. This dataset includes the following classes of scene images extracted from 

Google Earth across China: agriculture, commercial, harbor, idle land, industrial, meadow, 

overpass, park, pond, residential, river, and water. 

3.4 Training Strategy 

We used an adaptive training strategy to train the proposed model on the EuroSAT, UCM,  

SIRI-WHU and AID datasets. For the EuroSAT dataset, the main difference is in the dilation rate 

used to enhance the quality of the extracted features. After scaling up the images of the EuroSAT 

dataset from 64x64 pixels to 71x71 pixels, some data augmentation techniques were used to 

bolster the training dataset size from 21600 to 151200 samples, 20% of which was reserved for 

validation and the remaining 20% from the initial split for testing. For the second part of the 

experiment, which involves the UCM, SIRI-WHU and the AID datasets, no image interpolation 

was used since the dimensions of these datasets’ images satisfy the requirement of the image 

input layer of the backbone model. The images in the UCM and SIRI-WHU datasets were left 

in their original dimension of 256x256 and 200x200 pixels, while the AID dataset images were 

resized to 256x256 pixels. The model was trained for 350 epochs using a batch size of 32 Adam 

optimiser with a learning rate of 0.0001 and decay value of 10-e5. Also, an early stopping with 

a patience value fixed at 300 epochs was added to monitor the model’s training progress and 

avoid overfitting. For the UCM, SIRI-WHU and AID images, the framework chooses the dilation 

rate of 4x4, which works better on images with resolutions bigger than the EuroSAT dataset’s 

images. All experiments were carried out using Keras and TensorFlow in the Google Colab Pro 

environment.  

3.5 Evaluation Strategy 

The proposed model’s performance has been evaluated using some of the most popular deep 

learning performance evaluation metrics by following the performance evaluation strategy used 

by the baseline models for ease of comparison. In addition to the confusion matrix, precision, 

recall, and F1 score, we also incorporated the balance accuracy metric to evaluate our model 

further, having split the datasets randomly into the train, validation and test subsets as in ( Wang 

et al., 2019; Zheng, Yuan and Lu, 2019; Z. Li et al., 2020). We also monitored the micro-average 

and macro-average ROC curve scores for all the datasets to further evaluate the proposed 

model’s effectiveness. 
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4. EXPERIMENTAL RESULTS 

Table 1 compares the results from the first experiment on the EuroSAT dataset with the other 

two methods. The result produced by our model is competitive with what has been published 

by (Helber et al., 2019). 

Table 1. Performance comparison between our model and other approaches on the EuroSAT dataset 

Model OA% Epochs Training Time Backbone Source 
EuroSAT  98.57 - - ResNet -50 (Helber et al., 2019) 
SLGE-CNN  99.76 600 9.6GPU days EfficientNet (Broni-Bediako et 

al., 2021) 
Ours 98.55 400 1h 15min Xception  

 

Figure 3. Confusion matrix for the EuroSAT dataset 



IADIS International Journal on Computer Science and Information Systems 

8 

  

(a) (b) 

Figure 4. Model train/validation accuracy and loss on the EuroSAT dataset 

ResNet-50, which has nearly 3 million more parameters than the Xception, produced the best 
result in the baseline paper. However, the marginal difference of 0.02% between the 
performance of our model and the state-of-the-arts means the proposed architecture would 
demand much fewer computing resources than ResNet-50. Therefore, the tradeoff is between 
the margin of 0.02% in classification accuracy and the extra computing power needed to manage 
an additional 3 million parameters. The SLGE-CNN architecture (Broni-Bediako et al., 2021) is 
1.21% more accurate than our method. However, it took 9.6 GPU days for SLGE-CNN to 
achieve 600 training epochs compared to the 1h 15mins and 400 training cycles we used to train 
the framework proposed in this paper. Two classes with very high outer-class similarity affected 
the performance of our method, as can be observed in Figure 3. Out of the test set, 13 images 
belonging to the herbaceous vegetation class were misclassified as instances of the permanent 
crop class, and 11 images of the permanent crop class were misclassified as herbaceous 
vegetation. These misclassifications stemmed from the high spatial similarity between the two 
categories. Figures 4(a) and (b) give the model training accuracy and validation loss for the 
dataset, which reflect the percentage accuracy and loss and the number of iterations.  

Table 2. Performance comparison between our model and other approaches on the UCM dataset 

Model OA% Epochs Training Time Backbone Source 

MSCP-Net 96.56±0.18 - - VGG-Net (He, Fang and Li, 

2018) 

EuroSAT  94.38  - GoogleNet-50 (Helber et al., 

2019) 

ARCNet 93.10±0.55 50 - VGG-Net (Wang et al., 2019) 

CNN+FV 93.9 - - VGG-Net (Zheng, Yuan and 

Lu, 2019) 

MIDC-Net_CS 92.95±0.17 - - Dense-Net (Bi et al., 2020) 

CNN+MIL  99.26 90  VGG-Net (Li, Z. et al., 2020) 

Ours 99.22 400 80 min 47 sec Xception  

 

Table 2 shows that our model performed remarkably well on the UCM dataset compared to 

other techniques. The VGG-Net, the backbone used in most baseline models in Table 2, has 

nearly 120 million more parameters than the Xception, making it more computationally costly 

to run than the proposed architecture’s backbone. Our approach outperformed all the models in 

the table despite having only one dilation layer. For example, the CNN+MIL (Z. Li et al., 2020) 

incorporated a context enhancement module that uses many layers with varying dilation rates 
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and a summing function to concatenate all the features into a single block and feeds it into a 

multiple instant learning module. However, the proposed architecture used only one dilation 

layer and outperformed the MI-CNN single model presented in (Z. Li et al., 2020) regarding the 

accuracy and parameter utilisation. This performance proves that the Xception is as effective as 

other transfer learning models and even better in some areas. Our model classified the UCM 

dataset with very high accuracy, recording only 3 misclassifications, as shown in Figure 5. 

 
Figure 5. Confusion matrix for the UCM dataset 

  
                                        (a)                                                                                      (b) 

Figure 6. Model train/validation accuracy and loss on the UCM dataset 
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Table 3. Performance comparison between our model and other approaches on the AID dataset 

 

Figure 7. Confusion matrix for the AID dataset 

 

Model OA% Epochs Training 

Time 

Backbone Sources 

MSCP-Net 96.56±0.18 - - VGG-Net (He, N, et al., 2018) 

EuroSAT 

Paper 

94.38  - GoogleNet-50 (Helber et al., 

2019) 

ARCNet 93.10±0.55 50 - VGG-Net (Wang et al., 2019) 

CNN+FV 93.9 - - VGG-Net (Zheng, Yuan and 

Lu, 2019) 

MIDC-Net_CS 92.95±0.17 - - Dense-Net (Bi et al., 2020) 

Ours 96.15 400 3hrs 57min Xception  
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                                               (a)                                                                                   (b) 

Figure 8. Model train/validation accuracy and loss on the AID dataset 

We resized the images of the AID dataset from 600x600 pixels to 256x256 to utilise memory 

by reducing the resources needed to process the images at 600x600 pixels and since keeping the 

images at that size does not affect the quality of the features extracted by the backbone model. 

The proposed model performed remarkably well on the AID dataset, producing competitive 

results with the state-of-the-art significantly better than many baseline papers. Table 3 shows 

the performance of our approach on the AID dataset compared to other state-of-the-arts. The 

VGG-Net is the predominantly used pre-trained backbone for feature extraction, as shown in the 

table. The Xception model is more lightweight, despite having more layers than the VGG-Net. 

The latter has more parameters than the former and has more efficient parameter utilisation. 

Looking at the result published by (He, Fang and Li, 2018), it is evident that MSCP-Net is 

slightly more accurate than the proposed model; however, it is at the expense of 120 additional 

million parameters and much bigger images. Overall, our model produced a result on this dataset 

that is competitive and even better than many of the state-of-the-art methods, as shown in Table 

3. The general performance of the model, in terms of training accuracy and loss, is given in 

Figures 8(a) and (b), which show the impact of the anti-overfitting techniques we employed.  

Table 4. Performance comparison between our model and other approaches on the SIRI-WHU dataset 

Model OA% Epochs Training Time Backbone Source 

MSAA-Net 95.2±0.65 10,000 - CNN (L. Li et al., 2020) 

ResNet-18 92.23±0.9 - - ResNet-18 (L. Li et al., 2020) 

MCNN 93.75±1.3 10,000 - CNN (Liu, Zhong and 

Qin, 2018) 

Fine Tuned 

ResNet-50 

94.03 - - ResNet-50 (Shabbir et al., 

2021) 

Ours 96.04 400 54 mins Xception  

 

We experimented further on the SIRI-WHU dataset to establish the efficacy of the proposed 

model as an expansion of our earlier work (Balarabe and Jordanov, 2022). On this dataset, as 

shown in Table 4, our framework classified the images with high accuracy in much fewer epochs 

than MSAA-Net and MCNN. Both MSAA-Net and MCNN models were built using standard 

CNNs, thus could be more lightweight than what we propose in this paper. However, 

considering the number of epochs taken to arrive at 95.20% and 97.73% accuracy, our model is 

arguably more efficient and accurate. The other techniques shown in the table were built on a 

ResNet-50 framework, as indicated. These approaches are more computationally costly to run 

compared to an Xception-based framework due to the considerable difference in the number of 
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parameters used by the two backbones. The performance of our model on this dataset also 

reflects its robustness against inner-class variability and outer-class similarity. The confusion 

matrix below shows that only 19 out of the 480 test samples were misclassified. 

 

Figure 10. Confusion matrix for the SIRI-WHU dataset 

 

  
                                          (a)                                                                                           (b) 

Figure 9. Model train/validation accuracy and loss on the SIRI-WHU dataset 

Table 5. Other Performance evaluation metrics on EuroSAT, UCM, AID and SIRI-WHU Datasets 

Dataset Precision Recall F1 Score Kappa Balance Accuracy 

EuroSAT 0.9852 0.9849 0.9851 0.9839 0.9849 

UCM 0.9935 0.9926 0.9931 0.9925 0.9926 

AID 0.9558 0.95689 0.9563 0.9601 0.9607 

SIRI-WHU-12 0.9641 0.9606 0.9607 0.9563 0.9609 
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Table 5 shows that the other performance metrics we monitored to evaluate this framework 

corroborate the overall test accuracy result. Figure 9(a) gives the model train and validation 

accuracy plot, while 9(b) shows the training and validation loss. In each case, the impact of the 

measures carefully applied to checkmate overfitting is evident in slight differences between the 

train and validation accuracy and train and validation loss, which are within the acceptable limit. 

         
(a)                                       (b)                                                 (c) 

                                                   
                   (d) 

Figure 11. Micro-average and macro-average ROC curve for (a): the EuroSAT, (b): the UCM,  

(c) the AID and (d) the SIRI-WHU datasets 

As an extension of our earlier work (Balarabe and Jordanov, 2022), we added ROC curve 

plots to gain more insight (at all classification thresholds) into the performance of our 

framework. Figures 11(a), (b), (c), and (d) show the ROC curve plots for the EuroSAT, UCM, 

AID and SIRI-WHU datasets, respectively. In each plot, the micro and macro-ROC curve 

average values are given. Since we consider a multiclass problem with random data split (see 

the confusion matrices), the micro-average, which computes the average ROC curve results by 

aggregating the contribution of each class and taking the average, gives a better idea of the 

proposed model’s stability. Each experiment’s area under the ROC curve value stands between 

98% and 100%. These results show that the slight imbalance in data distribution does not affect 

our model. 

5. CONCLUSION 

This paper proposes a framework for classifying remote sensing images using a hitherto unused 

pre-trained model. We experimented on the EuroSAT dataset, one of the most extensive publicly 

available datasets for scene classification. It has images with the smallest dimension among the 

remote sensing (RS) datasets. We scaled up the dataset images from 64x64 pixels to 71x71 

pixels using the LANCZOS image interpolation algorithm to meet the minimum input size 

requirement of the backbone model. In the second experiment, the performance of the proposed 

approach on some of the most popular satellite image classification datasets (UCM, SIRI-WHU 

and AID) was further evaluated. Our framework produced competitive results with  

state-of-the-art, better accuracy and computational efficiency for some of our comparisons. The 
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performance of the proposed model shows that Xception can also be efficiently utilised for tasks 

of satellite image classification. It also shows that a careful selection of dilation rate and 

hyperparameters can significantly reduce the impact of misclassification by CNNs classifiers. 

Despite the computational efficiency of the proposed framework, we believe there is still room 

for improvements concerning reducing the training time and increasing the accuracy. As part of 

future work, we intend to enhance the model by incorporating an ensemble approach using 

Xception and EfficientNet, which will help to achieve these objectives.  
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