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ABSTRACT 

Collison detection is a wide-ranging real-world application. It is one of the key components used in 
gaming, simulation and animation. Efficient algorithms are required for collision detection as it is 
repeatedly executed throughout the course of an application. Moreover, due to its computationally 
intensive nature researchers are investigating ways to reduce its execution time. This paper furthers those 
research works by devising a parallel CPU-GPU implementation of both broad and narrow phase collision 
detection with heterogenous workload sharing. An important aspect of co-scheduling is to determine an 

optimal CPU-GPU partition ratio. We also showcase a successive approximation approach for CPU-GPU 
implementation of collision detection. The paper demonstrates that the framework is not only applicable 
to CPU/GPU systems but to other system configuration obtaining a peak performance improvement in the 
range of 18%. 
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1. INTRODUCTION 

Collision detection techniques allows various gaming and simulation applications to determine 

when some objects will or have collided. This is key for maintaining realism as ignoring object 

interaction leads to undesired scenarios and visual glitches. Collision detection allows for a 
response to occur due to an event such as when a game player is hit with projectile or when to 

recalculate the movement on a rigid body. Collision detection algorithms are computationally 

expensive and their complexity or cost increase with higher number of objects (in a game scene) 

and/or with an increase in the complexity of the shape of the objects. There have been various 
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studies on collision detection methods as it is applicable to many fields. Moore and Wilhelms 

(1988) investigated collision detection and response for computer animation applications.  

Ng et al. (2012) focused on the optimization of collision detection method on mobile devices 

for a specific genre of games. Collision detection is a diverse field itself where the suitability of 
various algorithms can be tried depending on the application and the available computational 

resources. However, there is generally a commonality between all the implementations of 

collision detection. Efficient implementations of collision detection use a two-phase approach 

i.e. a broad phase followed by a narrow phase (Nguyen 2007). We have implemented  

a broad-phase collision detection on CPU-GPU based platforms (Tayyub and Khan 2019). In 

this paper, we extend that work by providing a complete collision detection and its CPU-GPU 

implementation by providing the details of both broad and narrow phase collision detection. 

Furthermore, we extend our workload partition approach to system configurations outside 

CPU/CPU such as a discrete GPU with an integrated GPU (IGPU). 

Parallel implementations of various on-line algorithms are becoming increasingly popular 

as multicore processors including GPUs (Graphis Processing Units) are readily available in 
various devices and computing platforms. The traditional GPU model of executing a program 

considers the CPU as host and only interacts with parallel programs in terms of launching and 

synchronizing data transfers and kernel launches. Co-operative scheduling between GPU and 

CPU is the way to further increase performance. The use of this traditional model on a 

heterogeneous CPU/GPU platform is inefficient as it ignores the computational power of  

multi-core CPUs. The usage of cooperative GPU and CPU scheduling has been investigated and 

found to result in notable improvement when compared with GPU only execution (Pandit and 

Govindarajan 2014, Lee et al. 2015). A crucial information for cooperative execution is to get 

an optimal workload partition between the CPU and GPU. Our research makes the following 

contributions: 

• Presents a successive approximation approach to estimate an optimal partition that is 

applicable to any application where offline profiles can be created or where the parallel 
kernels are executed multiple times over the course of application, and thus initial profiling 

cost can be amortized.  

• Increasing the efficiency of a broad and narrow phase GPU parallel collision detection by 

porting it to a CPU/GPU cooperative workload sharing as well as some other CPU-GPU 

configurations. 

• Proving the efficacy of partitioning the collision detection across multiple CPU-GPU 

platforms for a real-world application benchmark.  

Collision detection is a well-studied technique (Jiménez et al. 2001) and our focus in this 

paper is on the CPU-GPU partitioning and implementation of a combined broad and narrow 

phase parts of the algorithm. As collision detection computation is to be divided between GPU 

and CPU, OpenCL is selected for implementation. OpenCL (Open Computing Language) is an 
open-source framework that enables parallel computing for various heterogeneous platforms 

involving GPU, CPU and FPGA (Stone et al. 2010). Application programs are written as 

OpenCL kernels, and compiled for any heterogeneous platform. Bullet (2019) is an open source 

physics library that provides an experimental OpenCL GPU support. Bullet also includes 

parallel collision detection in OpenCL, providing both narrow-phase and broad-phase kernels. 

In this paper, we employ these kernels as the base for collision detection workload sharing 

between a CPU and the GPU. 
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Broad-phase collision detection algorithm is fast, and it culls away most of the possible 

collision pairs using a simpler rejection test (Mirtich 1997).  The narrow-phase takes a closer 

look at the pairs left after the culling process of broad-phase processing. It employs a more 

precise technique to determine the colliding pairs. These two phases act at different points and 
the algorithm choices are generally made independently. Broad-phase collision detection 

techniques generally share a commonality in calculation by employing a bounding volume 

method to check for object collision. A bounded volume check may be of the form of an  

axis-aligned bounding box (AABB), a bounding sphere or an oriented bounding box (OBB) 

(Coming and Staadt 2006). The broad-phase algorithm checks the occurrence of collision 

between two objects by first encompassing the objects in a simple silhouette or shape and then 

by identifying any overlap between the two silhouettes. 

In the case of AABB, the bounding box is defined as the smallest cuboid which contains the 

object and its edges are parallel to the coordinate axes (Huang 2012). The condition of parallel 

to the coordinate axis is imposed to allow a static calculation to determine the overlap between 

bounded boxes (see equation 1). When the object rotates, the assigned axis aligned box must be 
large enough to handle all cases of the object or it must be re-calculated in real-time. Bounded 

spheres work similarly, however, it is a minimal size sphere around the object instead of a 

cuboid. It requires a slightly more complex algorithm for collision check. An OBB may use a 

cuboid as its silhouette but it is not under the condition of being axis-aligned. A very tight-fitting 

bounding box can be created, but with higher complexity that may result in a degraded 

performance as compared to AABB (Ng et al. 2012). The collision detection presented in this 

paper employs the AABB technique for collision check. The first step is to determine the axis 

aligned bounded box for each object. Axis aligned bounded boxes is applicable to both 3-D and 

2-D objects. Figure 1(a) shows the bounded box for a 2-D car object. The vertices of the bounded 

box correspond to coordinates of (Xmin, Ymin), (Xmax, Ymin), (Xmin, Ymax) and (Xmax, Ymax). It is an 

axis aligned box as the edges that make the box are aligned with X and Y axis. The interval 

coordinates Xmin, Ymin, Xmax and Ymax create the condition test when determining the collision 
between two objects. Figure 1(b) demonstrates a possible collision detection of two objects. For 

this scenario, equation 1 will result in a True condition for the occurrence of a collision. This 

equation can be expanded to include Zmin and Zmax for 3-D objects. Equation (1) and Figure 1(b) 

demonstrate the simplicity of the AABB check. They also indicate the limitation, where a 

collision check will result in equation (1) being True.  However, the two objects have not 

actually collided. 

(𝑋𝑚𝑖𝑛1 ≤  𝑋𝑚𝑎𝑥2) ∩ (𝑋𝑚𝑖𝑛2 ≤  𝑋𝑚𝑎𝑥1)  ∩ (𝑌𝑚𝑖𝑛1 𝑌𝑚𝑎𝑥2)  ∩ (𝑌𝑚𝑖𝑛2 ≤  𝑌𝑚𝑎𝑥1)                  (1) 

Moreover, one should not perform an AABB overlap test between all the objects in the 

world. In a scene with, N objects, the complexity of the algorithm will be 𝑂(𝑁2) (Huang 2012). 
This is not a feasible implementation, and it may lead to numerous broad-phase collision checks. 

Various schemes have been proposed to reduce the number of overlap tests that may be required 

to create a more linear time complexity. Main schemes include sweep and prune (SAP), bounded 

volume hierarchy (BVH) and spatial subdivision (Coming and Staadt 2012, Ng et al. 2012, 

Zahmann 2002). 
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Figure 1. (a) Creating an AABB 

 

Figure 1. (b) Determining a collision occurrence 

Sweep and prune is an algorithm that reduces the number of overlap checks by projecting 

the objects on a single axis. The objects AABB min/max values on that corresponding axis are 

obtained and sorted. Two data arrays (Sweep and Pairs) are populated as the sorted list is iterated 

over and shown in Figure 2. During iteration when an object’s min value is reached it is pushed 

onto data structure Sweep and when the object’s max value occurs it is removed from data 

structure Sweep. Objects that exist in data structure Sweep simultaneously form pairs that are 

pushed on data structure Pairs. At the end of iteration, the overlap test (1) is only performed on 

those pairs present in data structure Pairs. SAP takes advantage of temporal coherence (objects 
do not change drastically between frames). As such on the next iteration the list does not need 

to be created from scratch rather object values are updated quickly using insertion sort. (Tracy 

et al. 2009). 

 

 

Figure 2. Sweep and prune (SAP) 

Bounded volume hierarchy is a tree hierarchy that organizes a set of bounded volume objects 

into larger bounded volumes that can encompass one or more objects (Figure 3). The objects 

become leaf nodes on the tree structure while the larger bounded volumes become 

corresponding parent nodes. This method reduces the number of overlap tests as objects whose 

parent structures do not overlap do not need to be considered. (Ericson 2004). After the broad 
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phase collision detection scheme has computed a list of potential collision pairs. A more 

complex and accurate algorithm is utilized in the second phase (narrow phase) to confirm or 

discard individual collision pairs from the list. Like broad phase there is more than one algorithm 

presented in literature. The two most notable algorithms are Gilbert-Johnson-Keerthi Algorithm 
(GJK) and Separating Axis Theorem (SAT). 

GJK algorithm is based on the following principle. If object A and B comprised of two sets 

of position vectors A and B respectively. The Minkowski sum and difference are defined as 

(A+B) and as (A–B) respectively. The most important property of Minkowski difference in 

respect to collision detection is that when two objects collide, their corresponding Minkowski 

difference must contain the origin. Furthermore, the minimum distance between the origin and 

the Minkowski difference is equivalent to the minimum distance between the objects (A and B). 

However, direct computation of Minkowski difference is non-trivial and thus GJK is an 

algorithm that can only be implemented iteratively where solution converges to the minimum 

distance between the origin and Minkowski difference. For its precise implementation, real-time 

collision detection by Ericson (2004) can be consulted. 

 

Figure 3. Bounded volume hierarchy (BVH) 

Our focus is on the parallel implementation of spatial subdivision for the broad phase part 

of collision detection as well as the separating axis theorem for narrow phase collision detection. 

As such these algorithms and resulting implementation are given more attention to and are 

described in detail here in sections 2 and 3 respectively. In this paper, we refer to world as the 

abstract view that encompasses all the objects of an application, which are to be considered for 
collision detection. For the sake of completion, a brief overview of object rotation is provided 

as narrow phase algorithms do not require an axis aligned silhouette or object. Typically, object 

rotation is performed through Euler angles or quaternions. During creation of test environment 

(section 4) objects are distributed across the world and randomly rotated according to Euler 

angles to provide a more accurate representation of real scenarios. Euler angles are intuitive and 

can be computed through basic matrix multiplication, however it suffers from a scenario called 

“gimbal lock” (Chapala et al. 2016). There are three Euler angles (Roll, Pitch, Yaw) 

corresponding to the rotation angles across the three-coordinate axis (see Figure 4). Three 

rotation matrices (𝑅𝑥𝑅𝑦𝑅𝑧) are formed from the Euler angles. A single rotation matrix is then 

computed as multiplication of all three matrices. We will arbitrarily define the rotation order as 

𝑅 =  𝑅𝑥𝑅𝑦𝑅𝑧. Then to rotate point 𝑃 = [𝑋, 𝑌, 𝑍} according to rotation matrix R is simply the 

calculation of  𝑃′ = 𝑅 ∗ 𝑃. 
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2. SPATIAL SUBDIVISION - BROAD PHASE COLLISION 

DETECTION 

Spatial subdivision techniques can be implemented in different forms (Teschner et al. 2003). 

Our implementation here can be classified in the form of a spatial hashing uniform grid. 

Optimizations of spatial hashing has been described by Teschner et al. and others (2005). The 

world, in a uniform grid based spatial subdivision, is divided into equal grid blocks. Where a 

grid block is at least as big as the largest axis aligned bounded box. It will reduce the time 

complexity as for each object, the overlap check needs only to be performed against objects 

whose centroid lie within the same grid block and which are directly adjacent to each other. 

Figure 5 explains how a world may be spatially subdivided in a 2D world. For 3D 

implementation, the same concept can be applied, however the number of adjacent cells for an 

object will increase. Uniform grid provides accelerated collision detection but suffers for objects 
varying in sizes. Due to the condition that the grid block is at least as big as the biggest object, 

and with one large object and multiple smaller objects, many overlap tests will occur as the 

probability of having smaller objects in adjacent cells increases due to large grid block. This 

issue can be resolved by having a hierarchical or octree grid (Wong et al. 2014). 

 

Figure 4. Euler rotation 

The parallel implementation of collision detection found in Bullet (2019) is close to the GPU 

GEMS methodology (Nguyen 2007) that can be used for comparison. Figure 6 shows the main 

steps of the parallel spatial subdivision algorithm for GPU implementation. The algorithm is 

broken down into four steps that occur in a sequential order with each individual step occurring 

in parallel. 

        

               Figure 5. 2-D grid subdivision                       Figure 6.  Flow of parallel spatial subdivision 

Tabulate Hash 
Table 

Radix Sort Cell Start
Finding the 

Overlapping 
Object Pairs
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2.1 Tabulation of Hash Table and Radix Sort 

The first step in this process is to transfer the data for all axis aligned bounded boxes to the 

GPU. With the AABB data, the grid location for which each AABB centroid lies is calculated. 

Using the centroid location and the grid dimensions, equation (2) is used to tabulate the hash 

function. In the parallel implementation, each work item is responsible for determining the hash 

for an individual object. Each hash value represents a unique grid block in the world.  

𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑𝑝𝑜𝑠_𝑧 ∗ 𝑔𝑟𝑖𝑑𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑦 ∗ 𝑔𝑟𝑖𝑑𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑥 +  𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑𝑝𝑜𝑠_𝑦 ∗ 𝑔𝑟𝑖𝑑𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑥 +

𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑𝑝𝑜𝑠_𝑥                                                                                                                          (2) 

GPU implementation of sorting algorithms are not specific to collision detection. There are 

several GPU-based sorting algorithms with some particularly on radix sort (Delorme et al. 2013, 
Nguyen 2007, Satish et al. 2009), which also provide performance profiling for the GPU 

implementation of parallel radix sort. The radix sort used in this application is to re-order the 

hash table such that the hash values for each object are in order. Figure 7 shows the effect of 

applying radix sort to hash table. 

 

              

Figure 7. Radix sort for hash table                  Figure 8. Cell start array from the sorted hash table 



IADIS International Journal on Computer Science and Information Systems 

32 

2.2 Cell Start 

In this stage of the spatial subdivision collision detection, a look up table is initialized to a 

default value of -1. Using the sorted hash table, it then maps each possible hash value to its 

starting index location. For instance, the hash value of 1300 occurs twice first at index (N-2) 

and then at (N-1) as shown in Figure 8. Therefore, in Cell Start Array (right) index 1300 

corresponds to a value of (N-2). If there is no object that lies within that hash the default value 

of -1 will remain. 

The parallel implementation of this process loads up memory locations such that each work 
item (GPU thread) can compare its current index hash value with the hash value of the next 

(neighboring) index. In this way, if the hash values are the same the work item will complete. 

However, when the hash values are different then the next neighboring index is the start position 

for the corresponding hash value and can be set in the cell start array. 

2.3 Overlapping Object Pairs 

In the final stage, overlapping object pairs are determined. GPU work items are created such 

that each item is assigned an object, whose hash value is calculated by equation (2). The hash 

values for the adjacent grid locations are also calculated. These values enable the work item to 

use the cell start array and sorted hash table to traverse through the objects within its 

neighborhood and adjacent to each work-item assigned object. The AABB overlap test of 

equation (1) is performed repeatedly with the surrounding objects. In case of collision, the 

corresponding collision pair is added to the collision list. Each collision pair results in the saving 

of both overlapping objects. 

3. SEPARATING-AXIS THEOREM - NARROW PHASE 

COLLISION DETECTION  

The collision pairs calculated from the overlapping object pairs kernel are sent to the narrow 

phase algorithm for collision confirmation i.e. either to be confirmed or removed. In this way, 

this process determines the final collision pair list. GJK has been a narrow phase algorithm 

mentioned earlier, but it is not easily parallelizable. Therefore, separating-axis theorem (SAT) 

is used for its implementation.  

Visually, one can view SAT as the equivalent of finding a plane that can separate the two 

objects. This plane is referred to as the separating plane as depicted in Figure 9. Therefore, if a 

separating plane exists then the objects are not colliding and consequently when a separating 

plane cannot be found then the objects must be colliding. However, mathematically the 
separating plane is not of direct interest but rather the axis that is normal to the separating plane 

called the separating-axis. This is because an axis can be determined to be a separating-axis 

through a trivial mathematical formulation. To determine if an axis is a separating-axis, the two 

objects are first projected onto that target axis. The resulting projection of both objects on that 

axis will either overlap or not overlap. If the projections overlap that axis is not a separating 

axis. If the projection does not overlap, then the axis is a separating-axis and confirms the objects 
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with no collision. Projections can be calculated by simply taking the dot product with respect to 

the target axis. 

Theoretically, there can be an infinite number of axis to check to determine if a  

separating-axis exists as the axis need not to be the coordinate axis. However, two 3-D disjoint 
convex polytope can be separated by the planes parallel to the faces of the object or by a plane 

parallel to any edge. Therefore, limiting the amount of checks in practice. For example, for two 

object-oriented bounding box (OBB) there are 15 potential separating axes. Three unique axes 

forming the faces of each object and the cross product of these axis with each other  

(3 + 3 + 3*3). For two OBBs defining: 𝑊𝑁 , 𝐻𝑁, 𝐷𝑁 as half dimension values of the object N; 

𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧 as the unit vector that form the edges of object N; 𝐶 as the vector that is formed 

between the centroids of the two objects; and 𝐿 as the axis. Equation (3) can be utilized to 

determine if 𝐿 is a separating axis. If Boolean equation (3) results as TRUE, then 𝐿 is a 

separating axis. On the other hand, if it  results in a FALSE condition, then 𝐿 is not a separating 

axis. (Gottschalk et al. 1996). 

||𝐶 ∙ 𝐿|| > |𝑊𝐴𝐴𝑥 ∙ 𝐿| + |𝐻𝐴𝐴𝑦 ∙ 𝐿| + |𝐷𝐴𝐴𝑧 ∙ 𝐿| + |𝑊𝐵𝐵𝑥 ∙ 𝐿| + |𝐻𝐵𝐵𝑦 ∙ 𝐿| + |𝐷𝐴𝐵𝑧 ∙ 𝐿|               (3) 

This operation occurs in parallel by a kernel that creates a thread for each collision pair sent 

from the broad phase implementation. Each thread is tasked with determining if a separating 

axis exists between the two objects that make up the collision pair. If a separating axis is found 

it means the two objects are not colliding and the collision pair is removed from the list. On the 

other hand, if a separating axis is not found the collision is confirmed and will be present in the 
final collision pair list.      

 

Figure 9. Separating axis theorem (SAT) 

4. CPU-GPU IMPLEMENTATION 

In this section, we outline and present the creation of a CPU-GPU implementation of the parallel 

subdivision and SAT collision detection algorithms.  Figure 10 depicts the high-level GPU only 

implementation for the combined broad and narrow phase collision detection scheme outlined 
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earlier. The time intervals encompassing TGPU1, TGPU2, TGPU3 and TBUS3 allow overlapping data 

transfers with execution. For simplicity, the role of CPU choreographing the data transfers and 

kernel execution is omitted. It can be observed that CPU resources are wasted as it does not 

perform any meaningful execution. Pabst et al presented a parallel subdivision-based collision 
detection for rigid and deformable surfaces and its CPU-GPU implementation (Pabst et al. 

2010)]. They enabled CPU to do some overlapping tasks of collision detection with little inter 

CPU-GPU communication.  We employ CPU to assist the GPU in taxing computation directly 

through workload sharing. Table 1 depicts the execution time of main kernels for various 

workloads. The profiling results point out location and timing of hotspots. It is evident that 

finding the overlapping pairs is a big contributor to lower execution time. The execution time 

for overlapping object pairs kernel for any workload setting consumes around 90% or more of 

the total execution time. 

 

 

Figure 10. GPU-only implementation 

4.1 Kernel Splitting 

By splitting the overlapping pairs kernel, CPU and GPU are effectively assigned objects to 

determine the collision pairs. A CPU requires all the information about the state of the world to 

participate in a kernel execution. The world information is located at three structures: sorted 

hash table, cell start array and object data for all the objects. The third (data) structure is already 

placed in the main memory from where it originates. The other two structures are calculated by 

the GPU and therefore must be transferred before the CPU kernel execution. With all these data 

structures available, the CPU can be assigned a subset of objects to determine which other 

objects they collide with. To enable the CPU-GPU to work together in a heterogeneous 

environment, we argue to adapt the execution profile as shown in Figure 11. The main difference 

between the workload sharing and our past broad phase only implementation (Tayyub and Khan 
2019) is that now the additional narrow phase part is executed immediately after finding the 

overlapping pairs. The narrow phase is encompassed in the kernel labeled SAT test whose 

functionality is described in section 3. We have determined that by performing the SAT kernel 

even on a CPU is relatively fast. As such rather than a costly transferring of the CPU output 

from the broad phase scheme to the GPU and allowing the GPU to perform SAT on all potential 

pairs. Both GPU and CPU are responsible for running SAT on their respective broad phase 

collision pair outputs. The additional time needed is accounted for by adapting the target 

execution times. 

Ideally:    𝑇𝐶𝑃𝑈1 + 𝑇𝐶𝑃𝑈2 =  (𝑇𝐺𝑃𝑈1 + 𝑇𝐺𝑃𝑈2 + 𝑇𝐺𝑃𝑈3 + 𝑇𝐵𝑈𝑆3) − (𝑇𝐵𝑈𝑆1 + 𝑇𝐵𝑈𝑆2)                     (4) 

As the results demonstrate (in section 5) that allowing the computation power of the CPU to 

contribute for 𝑇𝐶𝑃𝑈1 and 𝑇𝐶𝑃𝑈2 reduces the overall application execution time. The total execution 

time for the GPU only implementation and heterogeneous implementation are defined in 
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equations 5 and 6 respectively. T1 is omitted in both equations as it is simply an offset and same 

for both implementations. 

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐺𝑃𝑈𝑜𝑛𝑙𝑦 =  𝑇𝐺𝑃𝑈1 +  𝑇𝐺𝑃𝑈2 + 𝑇𝐺𝑃𝑈3 + 𝑇𝐵𝑈𝑆3                                                            (5) 

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐶𝑃𝑈

𝐺𝑃𝑈

= max(max(𝑇𝐺𝑃𝑈1, 𝑇𝐵𝑈𝑆1) + 𝑇𝐵𝑈𝑆2 + 𝑇𝐶𝑃𝑈1 + 𝑇𝐶𝑃𝑈2 ,  𝑇𝐺𝑃𝑈1 +

                                                                                                          𝑇𝐺𝑃𝑈2 + 𝑇𝐺𝑃𝑈3 + 𝑇𝐵𝑈𝑆3)                          (6) 

4.2 CPU-GPU Output Data Merging 

CPU-GPU co-scheduling is met with a challenge of overcoming the inter CPU-GPU data 

transfer overhead. For kernels with discontinuous output data, the output buffers for CPU and 

GPU cannot be merged easily. Lee et. al (2015) use a custom kernel parser for keeping its ability 

to recreate, which memory addresses were modified and removes all the other operations. Using 

the parsed kernel, it can merge the GPU output data into main memory without using a copy 

buffer. Pandit and Govindarajan (2014) use the copy buffer technique. It keeps a copy of the 

original buffer to determine which data points the CPU has updated and merges those points 

into the GPU buffer. 

For collision detection, the output data can be considered continuous, where each element 

holds a collision pair when indexing the final output collision pair buffer. Therefore, merging 

the collision pairs from CPU-GPU devices should not cause any overhead. To accomplish it, a 
collision pair wrapper class is created around the final two independent buffers that contain the 

collision pairs computed by CPU and GPU. The wrapper class is aware of the number of total 

collision pairs computed. When accessing final collision-pair data, the class is indexed to 

determine the buffer to return the pair from. 

 

 

Figure 11. CPU-GPU kernel workload sharing 

4.3 Workload Scheduling 

To estimate an optimal workload split between the CPU and GPU, we present a successive 

approximation approach. We define, r as the ratio used to determine the amount of work given 

to the CPU. We define the upper threshold (rup) that represents the fastest execution time (Tup) 

for which r is the largest (faster CPU). Similarly, the lower threshold (rdwn) represents the fastest 

execution time (Tdwn) for which r is the lowest (faster GPU) and current ratio (rcur) is the 

midpoint between upper and lower threshold ratios with a corresponding execution time defined 

as Tcur. 

𝐶𝑃𝑈𝑤𝑜𝑟𝑘 = 𝑟 ∗ 𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑘                                                                                                            (7) 

𝐺𝑃𝑈𝑤𝑜𝑟𝑘 = (1 − 𝑟) ∗ 𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑘                                                                                            (8) 
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Figure 12 provides a process of our successive approximation approach. It begins by 

initializing the parameters by running an iteration of the kernel at rup = 1, rdwn = 0 and rcur = 0.5. 

For every iteration, total execution time is profiled. The maximum of the two execution times 

Tup and Tdwn are selected and compared with Tcur. If Tup is chosen and Tcur < Tup then rup = rcur and 
rdwn is unchanged. Similarly, if Tdwn is chosen and     Tcur < Tdwn then rdwn = rcur and rup is unchanged. 

The new value of rcur becomes the midpoint between rup and rdwn. An iteration is then executed 

with the new ratio. This process continues till either the new ratio results in worse performance 

than both rup and rdwn or the number of user defined iterations end. At the end of this process, 

our algorithm chooses the ratio that resulted in the best performance to execute remaining kernel 

instances. 

 

Figure 12. Successive approximation approach 

5. EXPERIMENTAL RESULTS 

The workload scheduling (section 4) and collision detection algorithm (section 3) are partitioned 

by employing the CPU as a co-processor to the GPU. However, there is nothing about both the 

successive approximation approach and the collision detection scheme that is inherently 

CPU/GPU specific. It can be extended to multiple platforms and since the framework was 

written in OpenCL it does not require additional steps to run on other platforms. As such another 
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common scenario is that a computer system is comprised of a CPU and a discrete GPU 

connected through a PCI-e bus where the CPU already contains an integrated GPU (IGPU). This 

is done as discrete GPUs are generally high orders of magnitude faster than the IGPU. Typically, 

once a user installs a discrete GPU, the IGPU is disabled and never used. However, this is a 
waste of silicon space as it contains a considerable amount of compute power and regardless of 

the usage, it exists. To test both the successive approximation approach and workload sharing 

collision detection scheme under various scenarios, two systems outlined in Table 1 are utilized. 

For system# 2 the IGPU scenario is omitted as the Intel Xenon E5-2620 does not contain an 

IGPU.  

Table 1. System configurations 

System # CPU IGPU GPU (discrete) 

1 Intel Core i5-9600K Intel UHD Graphics 630 AMD RX 570 

2 2 x Intel Xeon E5-2620 N/A NVIDIA Tesla K20 

 

For software test configuration a world dimension with a grid-size of 200 x 200 x 200 is 

created with each object dimension set to 1 x 1 x 1, which also defines the grid cell size. For 

heterogeneous implementation, an offline profile is first created for various workload tests. The 

allowed iterations for the successive approximation are capped to ten. Each benchmark is 
executed ten times and all results presented are the average of these ten runs.  

Table 2 summarizes the profiling results when executing the collision detection on GPU 

alone. Values are presented as a percentage of total execution time. Finding overlapping pairs 

consumes ~90% or more of total execution time. Thus, it was the focus for workload splitting 

presented in section 4. 

Table 2. Profiling results from GPU only execution (% of total execution time) / System# 1 

Objects 

(million) 

Hash 

Tabulation 

Radix 

Sort 

Cell 

Start 

Find Overlapping 

Pairs 

SAT 

Test 

Transfer 

Collision Pairs 

0.25 1.4 0.5 4.7 89.3 1.9 2.2 

0.5 4.1 0.4 4.8 88.5 1.1 1.0 

1 1.3 0.2 1.5 95.7 0.7 0.6 

2 2.0 0.1 0.8 96.4 0.3 0.3 

 

Figures 13 and 14 depict the total execution time for both systems under various 

configurations. For single device computation the results are consistent across all the workloads 
and according to the expectation. GPU is the fastest followed by IGPU (integrated GPU) in the 

case of system# 1. With CPU (for parallel implementations) is the slowest compute device in 

both cases.  When workload sharing, all the configurations are faster than executing the 

application on GPU alone. However, performance improvement is varying depending on the 

workload size. Furthermore, best suitable configuration is also different depending on system 

and workload size. We speculate these changes relate to the drastic differences in clock speed 

and core count between compute devices. Thus, creating tradeoffs that make them unsuitable 

for different workload sizes. The performance results of workload sharing compared to GPU 

only execution is summarized and depicted in Figure 15.  
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6. CONCLUSIONS 

We have achieved a considerable performance increase for our efficient CPU-GPU 

implementation of collision detection across multiple system and workload configurations.  

A peak performance increase of approximately 18% is achieved on system# 1 with a GPU/IGPU 

configuration for a 0.5 million object workload.  However, under smaller workloads (0.25 

million objects) system# 1 exhibits better performance with a GPU/CPU configuration (~15% 

compared with ~8%). This is most likely due to the Intel UHD not being fully saturated at small 

workloads allowing the much higher clock speed and lower latency of the Intel Core i5 to be 
better suited. For system# 1 configurations, performance degrades after their respective 

performance peaks. However, it still maintains a better performance as compared to GPU only 

execution. Moreover, the GPU/IGPU configuration degrades less rapidly than the GPU/CPU 

configuration. For system# 2 the average performance increase is less than that of both 

configurations of system# 1. However, it maintains a marginal increase over GPU only 

execution for most workload settings. Unlike system# 1, the configurations for system #2; the 

trend is that performance increases slightly with the workload increases. It can be due to the 

inherent tradeoff of having two very powerful multi-core CPUs (2xIntel Xenon) compared to 
one faster CPU (Intel Core i5). 

 

 
Figure 13. Total execution time for various configurations (System# 1) 

 

Figure 14. Total execution time for various configurations (System# 2) 

In this paper, we took an interesting and real-world application of collision detection and 

showcase a highly parallel GPU/CPU broad and narrow phase collision detection CPU-GPU 

implementation. We have also presented a methodology to determine an optimal workload 
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partition ratio that is applicable to multiple system configurations. The efficacy of the 

partitioning method was proven for the collision detection algorithm resulting in significant 

performance increases over GPU only execution.   

 

 

Figure 15. Performance increase with successive approximation approach 

ACKNOWLEDGEMENT 

This research is partly supported by NSERC Canada, an equipment Grant from CMC 

Microsystems Canada and FEAS Ryerson Univ. Dean’s Research Grant. 

REFERENCES 

Bullet Real-Time Physics Simulation, 2019. Home of Bullet and PyBullet: Physics Simulation for Games, 
Visual Effects, Robotics and Reinforcement Learning. Available: https://pybullet.org/wordpress/ 
(Accessed: 7 December 2019). 

Chapala, S. R., et al, 2016. Determination of coordinate transformations in UAVS. Proceedings Second 

International Conference on Cognitive Computing and Information Processing, pp. 1–5. 

Coming, D. S. and Staadt, O. G., 2006. Kinetic Sweep and Prune for Multi-Body Continuous Motion.  
In Computers and Graphics. Vol. 30, No. 3, pp. 439–449. 

Delorme, M. C., et al, 2013. Parallel Radix Sort on the AMD Fusion Accelerated Processing Unit. 
Proceedings 2nd Int. Conf. Parallel Processing, Lyon, France, pp. 339–348. 

Ericson, C., 2004. Real-Time Collision Detection. CRC Press, Inc., Boca Raton, FL, USA. 

Gottschalk, S., et al, 1996. OBB-Tree: a hierarchical structure for rapid interference detection. Proceedings 
ACM SIGGRAPH, pp. 171–180. 

Huang, R., 2012. Optimizing Collision Detection in 3D Games with Model Attribute and Bounding Boxes. 
Proceedings IEEE Symp. Electrical and Electronics Engineering. Kuala Lumpur, Malaysia,  
pp. 589–591. 

Jiménez, P., et al, 2001. 3D Collision Detection: A Survey. In Computers and Graphics. Vol. 25 No. 2, 
pp. 269–285. 

Lee J., et al, 2015. SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration. 

In ACM Transactions on Computer Systems, Vol. 33, No. 3, pp. 9:1–27.  

0

5

10

15

20

0 0.5 1 1.5 2 2.5

P
er

fo
rm

an
ce

 In
cr

ea
se

 
(%

)

Number of Objects (million)

GPU/IGPU GPU/CPU System# 1 

System# 2 



IADIS International Journal on Computer Science and Information Systems 

40 

Mirtich, B., 1997. Efficient Algorithms for Two-Phase Collision Detection. In Practical Motion Planning 
in Robotics: Current Approaches and Future Directions (Eds. Gupta K. and del Pobil A.P.) John Wiley 
and Sons Canada.  pp. 203–223. 

Moore, M. and Wilhelms, J., 1988. Collision Detection and Response for Computer Animation. 

Proceedings ACM 15th Annual Conf. on Computer Graphics and Interactive Techniques. Atlanta, 
Georgia USA, pp. 289–298. 

Ng K. W., et al, 2012. Collision Detection Optimization on Mobile Device for Shoot'em up Game. 
Proceedings Int. Conf. Computer and Information Science. Kuala Lumpur, Malaysia, pp. 464–468. 

Nguyen, H. (ed) 2007. GPU GEMS 3, Chapter 32, Broad-Phase Collision Detection with CUDA. Addison 
Wesley Professional: https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch32.html 
(Accessed: 7 December 2019).  

Pabst, S., et al, 2010. Fast and Scalable CPU/GPU Collision Detection for Rigid and Deformable Surfaces. 

In Computer Graphics Forum, Vol.  29, No. 5, pp. 1605-1612. 

Pandit, P. and Govindarajan, R., 2014. Fluidic Kernels: Cooperative Execution of OpenCL Programs on 
Multiple Heterogeneous Devices. Proceedings ACM Int. Symp. Code Generation and Optimization, 
Orlando, FL, USA, pp. 273–283. 

Satish, N., et al, 2009. Designing Efficient Sorting Algorithms for Manycore GPUs. Proceedings IEEE 
Int. Symp. on Parallel and Distributed Processing, Rome, Italy, pp. 1–10. 

Stone, J. E., et al, 2010. OpenCL: A Parallel Programming Standard for Heterogeneous Computing 
Systems. In Computing in Science and Engineering, Vol. 12, No. 3, pp. 66–73. 

Tayyub, M. and Khan, G. N., 2019. Heterogeneous CPU-GPU Implementation of Collision Detection. 
Proceedings 16th International Conference on Applied Computing, Cagliari, Italy, pp. 71–78. 

Teschner, M., et al, 2003. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 

Proceedings Vision, Modeling and Visualization, pp. 47–54. 

Teschner, M., et al, 2005. Collision Detection for Deformable Objects. In Computer Graphics Forum.  
Vol. 24, No. 1, pp. 61–81. 

Tracy, D. J., et al, 2009. Efficient Large-Scale Sweep and Prune Methods with AABB Insertion and 
Removal. In IEEE Virtual Reality Conference, Lafayette, LA, 2009, pp. 191–198. 

Wong, T. H., et al, 2014. An Adaptive Octree Grid for GPU-Based Collision Detection of Deformable 
Objects. In The Visual Computer, Vol. 30, Issue 6-8, pp. 729–738. 

Zahmann, G., 2002. Minimal Hierarchical Collision Detection. Proceedings ACM Symp. Virtual Reality 
Software and Technology, Hong Kong, pp. 121–128. 

 


