
IADIS International Journal on Computer Science and Information Systems

Vol. 14, No. 2, pp. 25-40
ISSN: 1646-3692

25

HETEROGENEOUS DESIGN AND EFFICIENT

CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

Mohid Tayyub and Gul N. Khan.
Electrical, Computer and Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto ON

M5B2K3 Canada

ABSTRACT

Collison detection is a wide-ranging real-world application. It is one of the key components used in
gaming, simulation and animation. Efficient algorithms are required for collision detection as it is
repeatedly executed throughout the course of an application. Moreover, due to its computationally
intensive nature researchers are investigating ways to reduce its execution time. This paper furthers those
research works by devising a parallel CPU-GPU implementation of both broad and narrow phase collision
detection with heterogenous workload sharing. An important aspect of co-scheduling is to determine an

optimal CPU-GPU partition ratio. We also showcase a successive approximation approach for CPU-GPU
implementation of collision detection. The paper demonstrates that the framework is not only applicable
to CPU/GPU systems but to other system configuration obtaining a peak performance improvement in the
range of 18%.

KEYWORDS

CPU-GPU Systems, Efficient CPU-GPU Implementation, Fast Collision Detection, Gaming and
Animation, Heterogeneous Computing

1. INTRODUCTION

Collision detection techniques allows various gaming and simulation applications to determine

when some objects will or have collided. This is key for maintaining realism as ignoring object

interaction leads to undesired scenarios and visual glitches. Collision detection allows for a
response to occur due to an event such as when a game player is hit with projectile or when to

recalculate the movement on a rigid body. Collision detection algorithms are computationally

expensive and their complexity or cost increase with higher number of objects (in a game scene)

and/or with an increase in the complexity of the shape of the objects. There have been various

IADIS International Journal on Computer Science and Information Systems

26

studies on collision detection methods as it is applicable to many fields. Moore and Wilhelms

(1988) investigated collision detection and response for computer animation applications.

Ng et al. (2012) focused on the optimization of collision detection method on mobile devices

for a specific genre of games. Collision detection is a diverse field itself where the suitability of
various algorithms can be tried depending on the application and the available computational

resources. However, there is generally a commonality between all the implementations of

collision detection. Efficient implementations of collision detection use a two-phase approach

i.e. a broad phase followed by a narrow phase (Nguyen 2007). We have implemented

a broad-phase collision detection on CPU-GPU based platforms (Tayyub and Khan 2019). In

this paper, we extend that work by providing a complete collision detection and its CPU-GPU

implementation by providing the details of both broad and narrow phase collision detection.

Furthermore, we extend our workload partition approach to system configurations outside

CPU/CPU such as a discrete GPU with an integrated GPU (IGPU).

Parallel implementations of various on-line algorithms are becoming increasingly popular

as multicore processors including GPUs (Graphis Processing Units) are readily available in
various devices and computing platforms. The traditional GPU model of executing a program

considers the CPU as host and only interacts with parallel programs in terms of launching and

synchronizing data transfers and kernel launches. Co-operative scheduling between GPU and

CPU is the way to further increase performance. The use of this traditional model on a

heterogeneous CPU/GPU platform is inefficient as it ignores the computational power of

multi-core CPUs. The usage of cooperative GPU and CPU scheduling has been investigated and

found to result in notable improvement when compared with GPU only execution (Pandit and

Govindarajan 2014, Lee et al. 2015). A crucial information for cooperative execution is to get

an optimal workload partition between the CPU and GPU. Our research makes the following

contributions:

• Presents a successive approximation approach to estimate an optimal partition that is

applicable to any application where offline profiles can be created or where the parallel
kernels are executed multiple times over the course of application, and thus initial profiling

cost can be amortized.

• Increasing the efficiency of a broad and narrow phase GPU parallel collision detection by

porting it to a CPU/GPU cooperative workload sharing as well as some other CPU-GPU

configurations.

• Proving the efficacy of partitioning the collision detection across multiple CPU-GPU

platforms for a real-world application benchmark.

Collision detection is a well-studied technique (Jiménez et al. 2001) and our focus in this

paper is on the CPU-GPU partitioning and implementation of a combined broad and narrow

phase parts of the algorithm. As collision detection computation is to be divided between GPU

and CPU, OpenCL is selected for implementation. OpenCL (Open Computing Language) is an
open-source framework that enables parallel computing for various heterogeneous platforms

involving GPU, CPU and FPGA (Stone et al. 2010). Application programs are written as

OpenCL kernels, and compiled for any heterogeneous platform. Bullet (2019) is an open source

physics library that provides an experimental OpenCL GPU support. Bullet also includes

parallel collision detection in OpenCL, providing both narrow-phase and broad-phase kernels.

In this paper, we employ these kernels as the base for collision detection workload sharing

between a CPU and the GPU.

HETEROGENEOUS DESIGN AND EFFICIENT CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

27

Broad-phase collision detection algorithm is fast, and it culls away most of the possible

collision pairs using a simpler rejection test (Mirtich 1997). The narrow-phase takes a closer

look at the pairs left after the culling process of broad-phase processing. It employs a more

precise technique to determine the colliding pairs. These two phases act at different points and
the algorithm choices are generally made independently. Broad-phase collision detection

techniques generally share a commonality in calculation by employing a bounding volume

method to check for object collision. A bounded volume check may be of the form of an

axis-aligned bounding box (AABB), a bounding sphere or an oriented bounding box (OBB)

(Coming and Staadt 2006). The broad-phase algorithm checks the occurrence of collision

between two objects by first encompassing the objects in a simple silhouette or shape and then

by identifying any overlap between the two silhouettes.

In the case of AABB, the bounding box is defined as the smallest cuboid which contains the

object and its edges are parallel to the coordinate axes (Huang 2012). The condition of parallel

to the coordinate axis is imposed to allow a static calculation to determine the overlap between

bounded boxes (see equation 1). When the object rotates, the assigned axis aligned box must be
large enough to handle all cases of the object or it must be re-calculated in real-time. Bounded

spheres work similarly, however, it is a minimal size sphere around the object instead of a

cuboid. It requires a slightly more complex algorithm for collision check. An OBB may use a

cuboid as its silhouette but it is not under the condition of being axis-aligned. A very tight-fitting

bounding box can be created, but with higher complexity that may result in a degraded

performance as compared to AABB (Ng et al. 2012). The collision detection presented in this

paper employs the AABB technique for collision check. The first step is to determine the axis

aligned bounded box for each object. Axis aligned bounded boxes is applicable to both 3-D and

2-D objects. Figure 1(a) shows the bounded box for a 2-D car object. The vertices of the bounded

box correspond to coordinates of (Xmin, Ymin), (Xmax, Ymin), (Xmin, Ymax) and (Xmax, Ymax). It is an

axis aligned box as the edges that make the box are aligned with X and Y axis. The interval

coordinates Xmin, Ymin, Xmax and Ymax create the condition test when determining the collision
between two objects. Figure 1(b) demonstrates a possible collision detection of two objects. For

this scenario, equation 1 will result in a True condition for the occurrence of a collision. This

equation can be expanded to include Zmin and Zmax for 3-D objects. Equation (1) and Figure 1(b)

demonstrate the simplicity of the AABB check. They also indicate the limitation, where a

collision check will result in equation (1) being True. However, the two objects have not

actually collided.

(𝑋𝑚𝑖𝑛1 ≤ 𝑋𝑚𝑎𝑥2) ∩ (𝑋𝑚𝑖𝑛2 ≤ 𝑋𝑚𝑎𝑥1) ∩ (𝑌𝑚𝑖𝑛1 𝑌𝑚𝑎𝑥2) ∩ (𝑌𝑚𝑖𝑛2 ≤ 𝑌𝑚𝑎𝑥1) (1)

Moreover, one should not perform an AABB overlap test between all the objects in the

world. In a scene with, N objects, the complexity of the algorithm will be 𝑂(𝑁2) (Huang 2012).
This is not a feasible implementation, and it may lead to numerous broad-phase collision checks.

Various schemes have been proposed to reduce the number of overlap tests that may be required

to create a more linear time complexity. Main schemes include sweep and prune (SAP), bounded

volume hierarchy (BVH) and spatial subdivision (Coming and Staadt 2012, Ng et al. 2012,

Zahmann 2002).

IADIS International Journal on Computer Science and Information Systems

28

Figure 1. (a) Creating an AABB

Figure 1. (b) Determining a collision occurrence

Sweep and prune is an algorithm that reduces the number of overlap checks by projecting

the objects on a single axis. The objects AABB min/max values on that corresponding axis are

obtained and sorted. Two data arrays (Sweep and Pairs) are populated as the sorted list is iterated

over and shown in Figure 2. During iteration when an object’s min value is reached it is pushed

onto data structure Sweep and when the object’s max value occurs it is removed from data

structure Sweep. Objects that exist in data structure Sweep simultaneously form pairs that are

pushed on data structure Pairs. At the end of iteration, the overlap test (1) is only performed on

those pairs present in data structure Pairs. SAP takes advantage of temporal coherence (objects
do not change drastically between frames). As such on the next iteration the list does not need

to be created from scratch rather object values are updated quickly using insertion sort. (Tracy

et al. 2009).

Figure 2. Sweep and prune (SAP)

Bounded volume hierarchy is a tree hierarchy that organizes a set of bounded volume objects

into larger bounded volumes that can encompass one or more objects (Figure 3). The objects

become leaf nodes on the tree structure while the larger bounded volumes become

corresponding parent nodes. This method reduces the number of overlap tests as objects whose

parent structures do not overlap do not need to be considered. (Ericson 2004). After the broad

HETEROGENEOUS DESIGN AND EFFICIENT CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

29

phase collision detection scheme has computed a list of potential collision pairs. A more

complex and accurate algorithm is utilized in the second phase (narrow phase) to confirm or

discard individual collision pairs from the list. Like broad phase there is more than one algorithm

presented in literature. The two most notable algorithms are Gilbert-Johnson-Keerthi Algorithm
(GJK) and Separating Axis Theorem (SAT).

GJK algorithm is based on the following principle. If object A and B comprised of two sets

of position vectors A and B respectively. The Minkowski sum and difference are defined as

(A+B) and as (A–B) respectively. The most important property of Minkowski difference in

respect to collision detection is that when two objects collide, their corresponding Minkowski

difference must contain the origin. Furthermore, the minimum distance between the origin and

the Minkowski difference is equivalent to the minimum distance between the objects (A and B).

However, direct computation of Minkowski difference is non-trivial and thus GJK is an

algorithm that can only be implemented iteratively where solution converges to the minimum

distance between the origin and Minkowski difference. For its precise implementation, real-time

collision detection by Ericson (2004) can be consulted.

Figure 3. Bounded volume hierarchy (BVH)

Our focus is on the parallel implementation of spatial subdivision for the broad phase part

of collision detection as well as the separating axis theorem for narrow phase collision detection.

As such these algorithms and resulting implementation are given more attention to and are

described in detail here in sections 2 and 3 respectively. In this paper, we refer to world as the

abstract view that encompasses all the objects of an application, which are to be considered for
collision detection. For the sake of completion, a brief overview of object rotation is provided

as narrow phase algorithms do not require an axis aligned silhouette or object. Typically, object

rotation is performed through Euler angles or quaternions. During creation of test environment

(section 4) objects are distributed across the world and randomly rotated according to Euler

angles to provide a more accurate representation of real scenarios. Euler angles are intuitive and

can be computed through basic matrix multiplication, however it suffers from a scenario called

“gimbal lock” (Chapala et al. 2016). There are three Euler angles (Roll, Pitch, Yaw)

corresponding to the rotation angles across the three-coordinate axis (see Figure 4). Three

rotation matrices (𝑅𝑥𝑅𝑦𝑅𝑧) are formed from the Euler angles. A single rotation matrix is then

computed as multiplication of all three matrices. We will arbitrarily define the rotation order as

𝑅 = 𝑅𝑥𝑅𝑦𝑅𝑧. Then to rotate point 𝑃 = [𝑋, 𝑌, 𝑍} according to rotation matrix R is simply the

calculation of 𝑃′ = 𝑅 ∗ 𝑃.

IADIS International Journal on Computer Science and Information Systems

30

2. SPATIAL SUBDIVISION - BROAD PHASE COLLISION

DETECTION

Spatial subdivision techniques can be implemented in different forms (Teschner et al. 2003).

Our implementation here can be classified in the form of a spatial hashing uniform grid.

Optimizations of spatial hashing has been described by Teschner et al. and others (2005). The

world, in a uniform grid based spatial subdivision, is divided into equal grid blocks. Where a

grid block is at least as big as the largest axis aligned bounded box. It will reduce the time

complexity as for each object, the overlap check needs only to be performed against objects

whose centroid lie within the same grid block and which are directly adjacent to each other.

Figure 5 explains how a world may be spatially subdivided in a 2D world. For 3D

implementation, the same concept can be applied, however the number of adjacent cells for an

object will increase. Uniform grid provides accelerated collision detection but suffers for objects
varying in sizes. Due to the condition that the grid block is at least as big as the biggest object,

and with one large object and multiple smaller objects, many overlap tests will occur as the

probability of having smaller objects in adjacent cells increases due to large grid block. This

issue can be resolved by having a hierarchical or octree grid (Wong et al. 2014).

Figure 4. Euler rotation

The parallel implementation of collision detection found in Bullet (2019) is close to the GPU

GEMS methodology (Nguyen 2007) that can be used for comparison. Figure 6 shows the main

steps of the parallel spatial subdivision algorithm for GPU implementation. The algorithm is

broken down into four steps that occur in a sequential order with each individual step occurring

in parallel.

 Figure 5. 2-D grid subdivision Figure 6. Flow of parallel spatial subdivision

Tabulate Hash
Table

Radix Sort Cell Start
Finding the

Overlapping
Object Pairs

HETEROGENEOUS DESIGN AND EFFICIENT CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

31

2.1 Tabulation of Hash Table and Radix Sort

The first step in this process is to transfer the data for all axis aligned bounded boxes to the

GPU. With the AABB data, the grid location for which each AABB centroid lies is calculated.

Using the centroid location and the grid dimensions, equation (2) is used to tabulate the hash

function. In the parallel implementation, each work item is responsible for determining the hash

for an individual object. Each hash value represents a unique grid block in the world.

𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑𝑝𝑜𝑠_𝑧 ∗ 𝑔𝑟𝑖𝑑𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑦 ∗ 𝑔𝑟𝑖𝑑𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑥 + 𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑𝑝𝑜𝑠_𝑦 ∗ 𝑔𝑟𝑖𝑑𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑥 +

𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑𝑝𝑜𝑠_𝑥 (2)

GPU implementation of sorting algorithms are not specific to collision detection. There are

several GPU-based sorting algorithms with some particularly on radix sort (Delorme et al. 2013,
Nguyen 2007, Satish et al. 2009), which also provide performance profiling for the GPU

implementation of parallel radix sort. The radix sort used in this application is to re-order the

hash table such that the hash values for each object are in order. Figure 7 shows the effect of

applying radix sort to hash table.

Figure 7. Radix sort for hash table Figure 8. Cell start array from the sorted hash table

IADIS International Journal on Computer Science and Information Systems

32

2.2 Cell Start

In this stage of the spatial subdivision collision detection, a look up table is initialized to a

default value of -1. Using the sorted hash table, it then maps each possible hash value to its

starting index location. For instance, the hash value of 1300 occurs twice first at index (N-2)

and then at (N-1) as shown in Figure 8. Therefore, in Cell Start Array (right) index 1300

corresponds to a value of (N-2). If there is no object that lies within that hash the default value

of -1 will remain.

The parallel implementation of this process loads up memory locations such that each work
item (GPU thread) can compare its current index hash value with the hash value of the next

(neighboring) index. In this way, if the hash values are the same the work item will complete.

However, when the hash values are different then the next neighboring index is the start position

for the corresponding hash value and can be set in the cell start array.

2.3 Overlapping Object Pairs

In the final stage, overlapping object pairs are determined. GPU work items are created such

that each item is assigned an object, whose hash value is calculated by equation (2). The hash

values for the adjacent grid locations are also calculated. These values enable the work item to

use the cell start array and sorted hash table to traverse through the objects within its

neighborhood and adjacent to each work-item assigned object. The AABB overlap test of

equation (1) is performed repeatedly with the surrounding objects. In case of collision, the

corresponding collision pair is added to the collision list. Each collision pair results in the saving

of both overlapping objects.

3. SEPARATING-AXIS THEOREM - NARROW PHASE

COLLISION DETECTION

The collision pairs calculated from the overlapping object pairs kernel are sent to the narrow

phase algorithm for collision confirmation i.e. either to be confirmed or removed. In this way,

this process determines the final collision pair list. GJK has been a narrow phase algorithm

mentioned earlier, but it is not easily parallelizable. Therefore, separating-axis theorem (SAT)

is used for its implementation.

Visually, one can view SAT as the equivalent of finding a plane that can separate the two

objects. This plane is referred to as the separating plane as depicted in Figure 9. Therefore, if a

separating plane exists then the objects are not colliding and consequently when a separating

plane cannot be found then the objects must be colliding. However, mathematically the
separating plane is not of direct interest but rather the axis that is normal to the separating plane

called the separating-axis. This is because an axis can be determined to be a separating-axis

through a trivial mathematical formulation. To determine if an axis is a separating-axis, the two

objects are first projected onto that target axis. The resulting projection of both objects on that

axis will either overlap or not overlap. If the projections overlap that axis is not a separating

axis. If the projection does not overlap, then the axis is a separating-axis and confirms the objects

HETEROGENEOUS DESIGN AND EFFICIENT CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

33

with no collision. Projections can be calculated by simply taking the dot product with respect to

the target axis.

Theoretically, there can be an infinite number of axis to check to determine if a

separating-axis exists as the axis need not to be the coordinate axis. However, two 3-D disjoint
convex polytope can be separated by the planes parallel to the faces of the object or by a plane

parallel to any edge. Therefore, limiting the amount of checks in practice. For example, for two

object-oriented bounding box (OBB) there are 15 potential separating axes. Three unique axes

forming the faces of each object and the cross product of these axis with each other

(3 + 3 + 3*3). For two OBBs defining: 𝑊𝑁 , 𝐻𝑁, 𝐷𝑁 as half dimension values of the object N;

𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧 as the unit vector that form the edges of object N; 𝐶 as the vector that is formed

between the centroids of the two objects; and 𝐿 as the axis. Equation (3) can be utilized to

determine if 𝐿 is a separating axis. If Boolean equation (3) results as TRUE, then 𝐿 is a

separating axis. On the other hand, if it results in a FALSE condition, then 𝐿 is not a separating

axis. (Gottschalk et al. 1996).

||𝐶 ∙ 𝐿|| > |𝑊𝐴𝐴𝑥 ∙ 𝐿| + |𝐻𝐴𝐴𝑦 ∙ 𝐿| + |𝐷𝐴𝐴𝑧 ∙ 𝐿| + |𝑊𝐵𝐵𝑥 ∙ 𝐿| + |𝐻𝐵𝐵𝑦 ∙ 𝐿| + |𝐷𝐴𝐵𝑧 ∙ 𝐿| (3)

This operation occurs in parallel by a kernel that creates a thread for each collision pair sent

from the broad phase implementation. Each thread is tasked with determining if a separating

axis exists between the two objects that make up the collision pair. If a separating axis is found

it means the two objects are not colliding and the collision pair is removed from the list. On the

other hand, if a separating axis is not found the collision is confirmed and will be present in the
final collision pair list.

Figure 9. Separating axis theorem (SAT)

4. CPU-GPU IMPLEMENTATION

In this section, we outline and present the creation of a CPU-GPU implementation of the parallel

subdivision and SAT collision detection algorithms. Figure 10 depicts the high-level GPU only

implementation for the combined broad and narrow phase collision detection scheme outlined

IADIS International Journal on Computer Science and Information Systems

34

earlier. The time intervals encompassing TGPU1, TGPU2, TGPU3 and TBUS3 allow overlapping data

transfers with execution. For simplicity, the role of CPU choreographing the data transfers and

kernel execution is omitted. It can be observed that CPU resources are wasted as it does not

perform any meaningful execution. Pabst et al presented a parallel subdivision-based collision
detection for rigid and deformable surfaces and its CPU-GPU implementation (Pabst et al.

2010)]. They enabled CPU to do some overlapping tasks of collision detection with little inter

CPU-GPU communication. We employ CPU to assist the GPU in taxing computation directly

through workload sharing. Table 1 depicts the execution time of main kernels for various

workloads. The profiling results point out location and timing of hotspots. It is evident that

finding the overlapping pairs is a big contributor to lower execution time. The execution time

for overlapping object pairs kernel for any workload setting consumes around 90% or more of

the total execution time.

Figure 10. GPU-only implementation

4.1 Kernel Splitting

By splitting the overlapping pairs kernel, CPU and GPU are effectively assigned objects to

determine the collision pairs. A CPU requires all the information about the state of the world to

participate in a kernel execution. The world information is located at three structures: sorted

hash table, cell start array and object data for all the objects. The third (data) structure is already

placed in the main memory from where it originates. The other two structures are calculated by

the GPU and therefore must be transferred before the CPU kernel execution. With all these data

structures available, the CPU can be assigned a subset of objects to determine which other

objects they collide with. To enable the CPU-GPU to work together in a heterogeneous

environment, we argue to adapt the execution profile as shown in Figure 11. The main difference

between the workload sharing and our past broad phase only implementation (Tayyub and Khan
2019) is that now the additional narrow phase part is executed immediately after finding the

overlapping pairs. The narrow phase is encompassed in the kernel labeled SAT test whose

functionality is described in section 3. We have determined that by performing the SAT kernel

even on a CPU is relatively fast. As such rather than a costly transferring of the CPU output

from the broad phase scheme to the GPU and allowing the GPU to perform SAT on all potential

pairs. Both GPU and CPU are responsible for running SAT on their respective broad phase

collision pair outputs. The additional time needed is accounted for by adapting the target

execution times.

Ideally: 𝑇𝐶𝑃𝑈1 + 𝑇𝐶𝑃𝑈2 = (𝑇𝐺𝑃𝑈1 + 𝑇𝐺𝑃𝑈2 + 𝑇𝐺𝑃𝑈3 + 𝑇𝐵𝑈𝑆3) − (𝑇𝐵𝑈𝑆1 + 𝑇𝐵𝑈𝑆2) (4)

As the results demonstrate (in section 5) that allowing the computation power of the CPU to

contribute for 𝑇𝐶𝑃𝑈1 and 𝑇𝐶𝑃𝑈2 reduces the overall application execution time. The total execution

time for the GPU only implementation and heterogeneous implementation are defined in

HETEROGENEOUS DESIGN AND EFFICIENT CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

35

equations 5 and 6 respectively. T1 is omitted in both equations as it is simply an offset and same

for both implementations.

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐺𝑃𝑈𝑜𝑛𝑙𝑦 = 𝑇𝐺𝑃𝑈1 + 𝑇𝐺𝑃𝑈2 + 𝑇𝐺𝑃𝑈3 + 𝑇𝐵𝑈𝑆3 (5)

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝐶𝑃𝑈

𝐺𝑃𝑈

= max(max(𝑇𝐺𝑃𝑈1, 𝑇𝐵𝑈𝑆1) + 𝑇𝐵𝑈𝑆2 + 𝑇𝐶𝑃𝑈1 + 𝑇𝐶𝑃𝑈2 , 𝑇𝐺𝑃𝑈1 +

 𝑇𝐺𝑃𝑈2 + 𝑇𝐺𝑃𝑈3 + 𝑇𝐵𝑈𝑆3) (6)

4.2 CPU-GPU Output Data Merging

CPU-GPU co-scheduling is met with a challenge of overcoming the inter CPU-GPU data

transfer overhead. For kernels with discontinuous output data, the output buffers for CPU and

GPU cannot be merged easily. Lee et. al (2015) use a custom kernel parser for keeping its ability

to recreate, which memory addresses were modified and removes all the other operations. Using

the parsed kernel, it can merge the GPU output data into main memory without using a copy

buffer. Pandit and Govindarajan (2014) use the copy buffer technique. It keeps a copy of the

original buffer to determine which data points the CPU has updated and merges those points

into the GPU buffer.

For collision detection, the output data can be considered continuous, where each element

holds a collision pair when indexing the final output collision pair buffer. Therefore, merging

the collision pairs from CPU-GPU devices should not cause any overhead. To accomplish it, a
collision pair wrapper class is created around the final two independent buffers that contain the

collision pairs computed by CPU and GPU. The wrapper class is aware of the number of total

collision pairs computed. When accessing final collision-pair data, the class is indexed to

determine the buffer to return the pair from.

Figure 11. CPU-GPU kernel workload sharing

4.3 Workload Scheduling

To estimate an optimal workload split between the CPU and GPU, we present a successive

approximation approach. We define, r as the ratio used to determine the amount of work given

to the CPU. We define the upper threshold (rup) that represents the fastest execution time (Tup)

for which r is the largest (faster CPU). Similarly, the lower threshold (rdwn) represents the fastest

execution time (Tdwn) for which r is the lowest (faster GPU) and current ratio (rcur) is the

midpoint between upper and lower threshold ratios with a corresponding execution time defined

as Tcur.

𝐶𝑃𝑈𝑤𝑜𝑟𝑘 = 𝑟 ∗ 𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑘 (7)

𝐺𝑃𝑈𝑤𝑜𝑟𝑘 = (1 − 𝑟) ∗ 𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑘 (8)

IADIS International Journal on Computer Science and Information Systems

36

Figure 12 provides a process of our successive approximation approach. It begins by

initializing the parameters by running an iteration of the kernel at rup = 1, rdwn = 0 and rcur = 0.5.

For every iteration, total execution time is profiled. The maximum of the two execution times

Tup and Tdwn are selected and compared with Tcur. If Tup is chosen and Tcur < Tup then rup = rcur and
rdwn is unchanged. Similarly, if Tdwn is chosen and Tcur < Tdwn then rdwn = rcur and rup is unchanged.

The new value of rcur becomes the midpoint between rup and rdwn. An iteration is then executed

with the new ratio. This process continues till either the new ratio results in worse performance

than both rup and rdwn or the number of user defined iterations end. At the end of this process,

our algorithm chooses the ratio that resulted in the best performance to execute remaining kernel

instances.

Figure 12. Successive approximation approach

5. EXPERIMENTAL RESULTS

The workload scheduling (section 4) and collision detection algorithm (section 3) are partitioned

by employing the CPU as a co-processor to the GPU. However, there is nothing about both the

successive approximation approach and the collision detection scheme that is inherently

CPU/GPU specific. It can be extended to multiple platforms and since the framework was

written in OpenCL it does not require additional steps to run on other platforms. As such another

HETEROGENEOUS DESIGN AND EFFICIENT CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

37

common scenario is that a computer system is comprised of a CPU and a discrete GPU

connected through a PCI-e bus where the CPU already contains an integrated GPU (IGPU). This

is done as discrete GPUs are generally high orders of magnitude faster than the IGPU. Typically,

once a user installs a discrete GPU, the IGPU is disabled and never used. However, this is a
waste of silicon space as it contains a considerable amount of compute power and regardless of

the usage, it exists. To test both the successive approximation approach and workload sharing

collision detection scheme under various scenarios, two systems outlined in Table 1 are utilized.

For system# 2 the IGPU scenario is omitted as the Intel Xenon E5-2620 does not contain an

IGPU.

Table 1. System configurations

System # CPU IGPU GPU (discrete)

1 Intel Core i5-9600K Intel UHD Graphics 630 AMD RX 570

2 2 x Intel Xeon E5-2620 N/A NVIDIA Tesla K20

For software test configuration a world dimension with a grid-size of 200 x 200 x 200 is

created with each object dimension set to 1 x 1 x 1, which also defines the grid cell size. For

heterogeneous implementation, an offline profile is first created for various workload tests. The

allowed iterations for the successive approximation are capped to ten. Each benchmark is
executed ten times and all results presented are the average of these ten runs.

Table 2 summarizes the profiling results when executing the collision detection on GPU

alone. Values are presented as a percentage of total execution time. Finding overlapping pairs

consumes ~90% or more of total execution time. Thus, it was the focus for workload splitting

presented in section 4.

Table 2. Profiling results from GPU only execution (% of total execution time) / System# 1

Objects

(million)

Hash

Tabulation

Radix

Sort

Cell

Start

Find Overlapping

Pairs

SAT

Test

Transfer

Collision Pairs

0.25 1.4 0.5 4.7 89.3 1.9 2.2

0.5 4.1 0.4 4.8 88.5 1.1 1.0

1 1.3 0.2 1.5 95.7 0.7 0.6

2 2.0 0.1 0.8 96.4 0.3 0.3

Figures 13 and 14 depict the total execution time for both systems under various

configurations. For single device computation the results are consistent across all the workloads
and according to the expectation. GPU is the fastest followed by IGPU (integrated GPU) in the

case of system# 1. With CPU (for parallel implementations) is the slowest compute device in

both cases. When workload sharing, all the configurations are faster than executing the

application on GPU alone. However, performance improvement is varying depending on the

workload size. Furthermore, best suitable configuration is also different depending on system

and workload size. We speculate these changes relate to the drastic differences in clock speed

and core count between compute devices. Thus, creating tradeoffs that make them unsuitable

for different workload sizes. The performance results of workload sharing compared to GPU

only execution is summarized and depicted in Figure 15.

IADIS International Journal on Computer Science and Information Systems

38

6. CONCLUSIONS

We have achieved a considerable performance increase for our efficient CPU-GPU

implementation of collision detection across multiple system and workload configurations.

A peak performance increase of approximately 18% is achieved on system# 1 with a GPU/IGPU

configuration for a 0.5 million object workload. However, under smaller workloads (0.25

million objects) system# 1 exhibits better performance with a GPU/CPU configuration (~15%

compared with ~8%). This is most likely due to the Intel UHD not being fully saturated at small

workloads allowing the much higher clock speed and lower latency of the Intel Core i5 to be
better suited. For system# 1 configurations, performance degrades after their respective

performance peaks. However, it still maintains a better performance as compared to GPU only

execution. Moreover, the GPU/IGPU configuration degrades less rapidly than the GPU/CPU

configuration. For system# 2 the average performance increase is less than that of both

configurations of system# 1. However, it maintains a marginal increase over GPU only

execution for most workload settings. Unlike system# 1, the configurations for system #2; the

trend is that performance increases slightly with the workload increases. It can be due to the

inherent tradeoff of having two very powerful multi-core CPUs (2xIntel Xenon) compared to
one faster CPU (Intel Core i5).

Figure 13. Total execution time for various configurations (System# 1)

Figure 14. Total execution time for various configurations (System# 2)

In this paper, we took an interesting and real-world application of collision detection and

showcase a highly parallel GPU/CPU broad and narrow phase collision detection CPU-GPU

implementation. We have also presented a methodology to determine an optimal workload

1

10

100

1000

0.25 0.5 1 2Ex
ex

u
ti

o
n

 T
im

e
(l

o
g)

Number of Objects (million)

GPU IGPU CPU GPU/CPU GPU/IGPU

1

10

100

1000

0.25 0.5 1 2Ex
ex

u
ti

o
n

 T
im

e
(l

o
g)

Number of Objects (million)

GPU/CPU GPU CPU

HETEROGENEOUS DESIGN AND EFFICIENT CPU-GPU IMPLEMENTATION OF COLLISION

DETECTION

39

partition ratio that is applicable to multiple system configurations. The efficacy of the

partitioning method was proven for the collision detection algorithm resulting in significant

performance increases over GPU only execution.

Figure 15. Performance increase with successive approximation approach

ACKNOWLEDGEMENT

This research is partly supported by NSERC Canada, an equipment Grant from CMC

Microsystems Canada and FEAS Ryerson Univ. Dean’s Research Grant.

REFERENCES

Bullet Real-Time Physics Simulation, 2019. Home of Bullet and PyBullet: Physics Simulation for Games,
Visual Effects, Robotics and Reinforcement Learning. Available: https://pybullet.org/wordpress/
(Accessed: 7 December 2019).

Chapala, S. R., et al, 2016. Determination of coordinate transformations in UAVS. Proceedings Second

International Conference on Cognitive Computing and Information Processing, pp. 1–5.

Coming, D. S. and Staadt, O. G., 2006. Kinetic Sweep and Prune for Multi-Body Continuous Motion.
In Computers and Graphics. Vol. 30, No. 3, pp. 439–449.

Delorme, M. C., et al, 2013. Parallel Radix Sort on the AMD Fusion Accelerated Processing Unit.
Proceedings 2nd Int. Conf. Parallel Processing, Lyon, France, pp. 339–348.

Ericson, C., 2004. Real-Time Collision Detection. CRC Press, Inc., Boca Raton, FL, USA.

Gottschalk, S., et al, 1996. OBB-Tree: a hierarchical structure for rapid interference detection. Proceedings
ACM SIGGRAPH, pp. 171–180.

Huang, R., 2012. Optimizing Collision Detection in 3D Games with Model Attribute and Bounding Boxes.
Proceedings IEEE Symp. Electrical and Electronics Engineering. Kuala Lumpur, Malaysia,
pp. 589–591.

Jiménez, P., et al, 2001. 3D Collision Detection: A Survey. In Computers and Graphics. Vol. 25 No. 2,
pp. 269–285.

Lee J., et al, 2015. SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration.

In ACM Transactions on Computer Systems, Vol. 33, No. 3, pp. 9:1–27.

0

5

10

15

20

0 0.5 1 1.5 2 2.5

P
er

fo
rm

an
ce

 In
cr

ea
se

(%

)

Number of Objects (million)

GPU/IGPU GPU/CPU System# 1

System# 2

IADIS International Journal on Computer Science and Information Systems

40

Mirtich, B., 1997. Efficient Algorithms for Two-Phase Collision Detection. In Practical Motion Planning
in Robotics: Current Approaches and Future Directions (Eds. Gupta K. and del Pobil A.P.) John Wiley
and Sons Canada. pp. 203–223.

Moore, M. and Wilhelms, J., 1988. Collision Detection and Response for Computer Animation.

Proceedings ACM 15th Annual Conf. on Computer Graphics and Interactive Techniques. Atlanta,
Georgia USA, pp. 289–298.

Ng K. W., et al, 2012. Collision Detection Optimization on Mobile Device for Shoot'em up Game.
Proceedings Int. Conf. Computer and Information Science. Kuala Lumpur, Malaysia, pp. 464–468.

Nguyen, H. (ed) 2007. GPU GEMS 3, Chapter 32, Broad-Phase Collision Detection with CUDA. Addison
Wesley Professional: https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch32.html
(Accessed: 7 December 2019).

Pabst, S., et al, 2010. Fast and Scalable CPU/GPU Collision Detection for Rigid and Deformable Surfaces.

In Computer Graphics Forum, Vol. 29, No. 5, pp. 1605-1612.

Pandit, P. and Govindarajan, R., 2014. Fluidic Kernels: Cooperative Execution of OpenCL Programs on
Multiple Heterogeneous Devices. Proceedings ACM Int. Symp. Code Generation and Optimization,
Orlando, FL, USA, pp. 273–283.

Satish, N., et al, 2009. Designing Efficient Sorting Algorithms for Manycore GPUs. Proceedings IEEE
Int. Symp. on Parallel and Distributed Processing, Rome, Italy, pp. 1–10.

Stone, J. E., et al, 2010. OpenCL: A Parallel Programming Standard for Heterogeneous Computing
Systems. In Computing in Science and Engineering, Vol. 12, No. 3, pp. 66–73.

Tayyub, M. and Khan, G. N., 2019. Heterogeneous CPU-GPU Implementation of Collision Detection.
Proceedings 16th International Conference on Applied Computing, Cagliari, Italy, pp. 71–78.

Teschner, M., et al, 2003. Optimized Spatial Hashing for Collision Detection of Deformable Objects.

Proceedings Vision, Modeling and Visualization, pp. 47–54.

Teschner, M., et al, 2005. Collision Detection for Deformable Objects. In Computer Graphics Forum.
Vol. 24, No. 1, pp. 61–81.

Tracy, D. J., et al, 2009. Efficient Large-Scale Sweep and Prune Methods with AABB Insertion and
Removal. In IEEE Virtual Reality Conference, Lafayette, LA, 2009, pp. 191–198.

Wong, T. H., et al, 2014. An Adaptive Octree Grid for GPU-Based Collision Detection of Deformable
Objects. In The Visual Computer, Vol. 30, Issue 6-8, pp. 729–738.

Zahmann, G., 2002. Minimal Hierarchical Collision Detection. Proceedings ACM Symp. Virtual Reality
Software and Technology, Hong Kong, pp. 121–128.

