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ABSTRACT 

For large-scale High Performance Computing centers with a wide range of different projects and 
heterogeneous infrastructures, efficiency is an important consideration. Understanding how compute jobs 
are scheduled is necessary for improving the job scheduling strategies in order to optimize cluster 
utilization and job wait times. This increases the importance of a reliable simulation capability, which in 
turn requires accuracy and comparability with historic workloads from the cluster. Not all job schedulers 
have a simulation capability, including the Portable Batch System (PBS) resource manager. Hence, PBS 
based centers have no direct way to simulate changes and optimizations before they are applied to the 

production system. We propose and discuss how to run job simulations for large-scale PBS based clusters 
with the Maui Scheduler. This also includes awareness of node downtimes, scheduled and unexpected. For 
validation purposes, we use historic workloads collected at the IT4Innovations supercomputing center. 
The viability of our approach is demonstrated by measuring the accuracy of the simulation results 
compared to the real workloads. In addition, we discuss how the change of the simulator’s time step 
resolution affects the accuracy as well as simulation times. We are confident that our approach is also 
transferable to enable job simulations for other computing centers using PBS.  
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1. INTRODUCTION 

For large-scale High Performance Computing (HPC) centers with a wide range of different 

projects and heterogeneous infrastructure, efficiency is an important consideration. Depending 

on the computing center and its objectives, efficiency comprises the optimization of the 

utilization of the available systems, or minimization of the wait times for users’ jobs. 

 



IADIS International Journal on Computer Science and Information Systems 

48 

HPC centers continually strive to improve efficiency. Unconfirmed changes and 

experiments involving live production systems are not justifiable due to an increased risk of 

undesirable performance effects, such as job congestion or starvation of jobs, unexpected job 

scheduling behavior for users, etc., or simply because of a lack of comparability as usage 
patterns of users change with projects. This problem has already been addressed by HPC job 

schedulers and resource managers by adding simulation capabilities (e.g. Slurm Simulator 

(Trofinoff, and Benini, 2015), Maui Scheduler (Adaptive Computing, 2014), LSF (IBM, 2016)). 

However, not all solutions used today offer a simulator, which is also the case for PBS 

Professional (Altair, 2018). It hence does not allow the analysis of changes to the job scheduler 

configuration or effects of node reservations before deployment to the live system. 

There exists a large range of simulation frameworks for HPC and grid systems. For research 

purposes, simulators like SimMatrix (Wang, 2014), GridSim (Buyya, and Murshed, 2002), 

SimGrid (Casanova, et al., 2014), and CQSim (Yang, X., et al., 2013) are widely used to study 

the effects of large-scale systems. Whilst SimMatrix demonstrated better resource usage than 

GridSim and SimGrid, and is capable of simulating Exascale level systems (Wang, et al., 2013), 
it was only validated against real systems of up to 4096 cores with artificial tasks. Another 

simulator is Alea (Klusáček, and Rudová, 2010), which is based on the GridSim toolkit. It is 

validated with real workloads (Klusáček, and Chlumský, 2016) for approximately 5,200 CPU 

cores, containing 102,657 jobs over a span of 4 months. CQSim enables plan based and energy 

aware simulations, and is validated with systems up to 164k CPU cores and 69k jobs. However, 

all of the above are only toolboxes, and require a manual implementation of the job scheduling 

algorithms to approximate an existing system. They are also not a suitable in situ replacement 

for the scheduling algorithms of HPC job management systems. 

The Slurm Simulator is an extension of the HPC scheduler Slurm, originally developed by 

A. Lucero (Lucero, 2011) and improved further by S. Trofinoff and M. Benini. As such, Slurm 

based systems have the advantage of making use of the simulation capabilities directly. The 

Slurm Simulator has been validated for large-scale simulations of real workloads from TACC 
(Simakov, et al., 2017) with 6,400 nodes over 12 weeks. 

For LSF based systems, simulations are so far only capable of predicting the start times of 

jobs. However, further plans to develop simulation capabilities have been announced (Ding and 

Li, 2017). The Cobalt Scheduler, developed by Argonne National Laboratory, comes with a 

simulator called Qsim (Argonne National Laboratory, 2018). It only is applicable within an 

existing Cobalt environment. 

The Maui Scheduler (MS in the following) has existed since the 1990s, and even though 

there is no active development anymore it is open source, mature and highly configurable. Its 

simulation capability has already been used to analyze HPC workloads (Jackson, et al., 2000). 

Optionally, it can also be applied as a meta-scheduler to replace the job scheduling components 

of HPC resource managers like PBS (Bode, et al., 2000) and TORQUE (Advanced Computing, 
2018). This allows the simulation and the job management system to use the same scheduling 

algorithms and configurations. 

We use the MS to complement PBS with the analysis of historic workloads of large-scale 

clusters. To show the viability of MS for larger systems we describe the configuration and 

changes to approximate the behavior of the PBS job scheduler for a non-trivial 2 PetaFLOP/s 

system. We furthermore discuss the results and problems we faced whilst using real workload 

data of that system. 
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The paper has two main sections. Section 2 describes how to approximate an existing PBS 

configuration using an additive job priority formula with MS. Section 3 discusses MS simulation 

results with a real workload from a large-scale PBS based cluster. Along with a summary of our 

results in section 4, we also point out current limitations. 

2. USING MS IN A PBS ENVIRONMENT 

PBS and MS are independent solutions with different configuration options and philosophies. 

Hence, there is no direct mapping of a PBS configuration to a MS equivalent. PBS supports 

various job-scheduling policies like First In First Out (FIFO), resource allocation rules, by 
resource consumption, by time slots, and by priority. MS on the other hand supports a wide 

range of job priority factors, e.g. job credentials, fairshare usage, requested resources, etc. 

Due to the wide range of possible configurations, we concentrate on a PBS setup, using the 

job priority formula as an additive term. We furthermore consider a PBS configuration without 

preemption, with strict ordering for priorities, neither round robin nor by queue selections, and 

no sorting of jobs or nodes. Without loss of generality, we are confident that for many other 

practical configurations of PBS an approximate MS setup exists. For example, MS supports 

FIFO based scheduling directly and offers Quality of Service (QoS) attributes to honor different 

resource categories in addition. 

In the following, we explain how to map the PBS job priority formula and workloads to MS. 

We also discuss how to simulate node and system downtimes with MS. 

2.1 PBS Job Scheduling Configuration for MS 

If PBS uses priority based scheduling, a formula describes the computation of the job execution 

priorities. This kind of job scheduling by PBS is freely configurable yet it follows the principles 

of job priorities, fairshare, eligible time and backfilling. In the following we describe such terms 

and how to map them to MS. 

2.1.1 Job Priorities 

As an example, the priority p of a job can be defined as shown in Equation 1 by using a job 

priority formula. The priority of the queue (class for MS) a job is submitted to is 𝑞, 𝑤 is the job 

wait time in seconds, and 𝑓 is the fairshare priority. Equation 2 shows an example of a fairshare 

priority definition. 
 

𝑝(𝑞, 𝑓, 𝑤) = 1,000 ∗ 𝑞 +
𝑓

1,000
+  

𝑤

864,000
  [1]  𝑓 = 106 ∗ (1 −

𝑢𝑝

𝑢𝑡
) [2] 

 

In the above example, the queue priority has a weight of 1,000 to dominate the other terms. 
The fairshare term is used to give users of a specific project (i.e. account for MS) a higher 
priority to users of another account in the same queue, if their usage of resources had been lower 

in the past. It considers the ratio of a project’s usage 𝑢𝑝 to the total usage 𝑢𝑡  and applies a 

weighting to set it as the second most prioritized term. The wait time term favors one job over 
others within the same queue and with the same fairshare value, should they have been waiting 
longer. The eligible time has the lowest weight in the formula and is noticeable only for long 
wait times with over 10 days (864,000 s). The weights are examples. PBS supports more 
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coefficients (Altair PBS Works, 2011), such as job priority and resource usage depending on 
the number of CPUs, memory, wall time, and CPU time. 

For MS, the closest equivalent to the job priority formula are the job priority factors 
(Supercluster R&D Group, 2002). They group into the categories: job credentials, fairshare 
usage, requested job resources, current service levels, target service levels, and consumed 
resources. There are further subcategories to access finer grained metrics, e.g. users or groups 
of the job credentials, and queue time of the current service level. 

MS considers all such (sub-)-categories as weighted additive terms. Using Equation 1 we 
can express an analogous priority setup in MS using the following priority categories and 
subcategories1: 
… 
Priority += CREDWEIGHT[864000] * CLASSWEIGHT[1000] * J->C->Priority[q] 

Priority += FSWEIGHT[8640000] * FSACCOUNTWEIGHT[1] * dAccountFS[f] 

Priority += SERVICEWEIGHT[1] * QUEUETIMEWEIGHT[1] * QUEUETIME[w] 

… 

Assigned coefficients and variables are in brackets. All other unused weights MS offers are 
set to zero. Variables J and C denote a job and its class. Differences of the current fairshare 

value to a target within the range of [0...100] are expressed as d*FS (in the example for accounts 

only). The initial value for Priority is zero and accumulated over all categories, to result in 
the final job priority. 

2.1.2 Queue Priorities and Constraints 

Real systems typically have different queues for various purposes, like offering express queues 
to give short jobs a higher priority in order to minimize wait times, or have dedicated service 
queues with the highest global priority. Use of those queues can be subject to constraints. 
Constraints can be limitations of the available nodes for a specific queue, job, or user. 

In MS, queue priorities are set via CLASSCFG[q] PRIORITY=X, with q specifying the queue 

name and X as its priority. Further attributes MAXNODE=A, MAXNODEPERJOB=B and 

MAXNODEPERUSER=C are available to limit the maximum number of available nodes globally 
(A), per job (B) or per user (C), respectively. 

2.1.3 Fairshare 

Fairsharing, if enabled, avoids the starvation of jobs of less active users caused by power users 
submitting large amounts of jobs. The fairshare configuration can be set in MS via 
*CFG[DEFAULT] FSTARGET=X for each partition, such as USERCFG or ACCOUNTCFG for user 

or account based fairshare, respectively. The target for the fairshare X is the usage in percent per 
partition. According to Equation 2, fairshare is among projects only, with a target of 100%. 
Thus, the MS equivalent would be ACCOUNTCFG[DEFAULT] FSTARGET=100. The variable f 
is the computed fairshare difference provided directly by MS. In MS, the computation of the 
fairshare difference can be parameterized by interval and decay factor (PBS’ half-life setting), 
fairshare policy, and depth. The closest MS configuration to the default PBS fairshare would 
be: 
 
FSPOLICY DEDICATEDPS # CPU time 

FSDEPTH  1  # 24 h half-life... 

FSINTERVAL 24:00:00 

FSDECAY  0.50 

 

                                                
1 The formulas are documented in the Maui Administrator’s Guide (Supercluster R&D Group, 2002) 
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It defines a 24h half-life, using dedicated processor seconds (DEDICATEDPS) as a resource 
usage indicator corresponding to PBS’ cput metric. Only one fairshare window (FSDEPTH 1) is 
considered. 

2.1.4 Backfilling 

In addition to priority based scheduling, resources for which no suitable scheduled reservation 

exists can be used for backfilling. This allows lower priority jobs to fill up idle resources as long 

as their reservations do not delay any higher priority jobs. In contrast to MS, PBS does not have 

different backfilling policies. We assume that FIRSTFIT (Jackson, et al., 2001) is the closest 

approximation. It dispatches jobs as they fit on the remaining resources without any exhaustive 

search. In addition, the number of jobs for backfilling can be limited, which is typically 

considered together with the reservation depth to limit the number of reservations. The tradeoff 

between more or less reservations with less or more backfilled jobs allows for conservative or 

aggressive backfilling (Srinivasan, et al, 2002), respectively. An example MS configuration 

would be: 
 
BACKFILLPOLICY FIRSTFIT 

BACKFILLDEPTH 3 # Select only 3 jobs for backfilling 

RESDEPTH 1 # Only one reservation per node (less conservative backfilling) 

 

This resembles a liberal backfilling setup of PBS with a small backfill depth (PBS’ 

backfill_depth). 

2.2 Using Historic PBS Workloads for MS 

A typical PBS based system does not provide simulation workloads in the form required for 
MS. We briefly describe the PBS data needed for simulations with MS. 

2.2.1 Trace Files 

MS uses two different trace files, one for the description of the cluster configuration (e.g. 
Resource.Trace) and one for the simulation workload (e.g. Workload.Trace). The 
documentation of their format is in the Maui Administrator’s Guide (Supercluster R&D Group, 
2002). 

A description of the cluster configuration is required for the simulator, so it is aware of 
available resources. The list of available nodes can be directly queried from PBS via the 
pbsnodes command. The most important data fields for the resource trace file are the node’s 
name, available resources, such as CPU cores, memory, etc., and a list of supported classes. 

The workload trace file requires information about submitted jobs, which PBS typically 
stores in an SQL database2. It contains various information of which the following are needed 
for the simulation: submission, start and end times of jobs, requested number of nodes, user 
provided wall time, selected queue, and the user, group and account IDs. This information is 
reliable as PBS creates it directly. However, there are rare events of PBS failures or changes 
applied to the job scheduler itself that might corrupt the data and require validation.  

 

                                                
2 PBS uses PostgreSQL by default 
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2.2.2 Unexpected Node Downtimes 

If a node goes offline unexpectedly, the job scheduler has to reschedule reservations that were 

made for that node. This cannot take place in advance, as those downtimes are unpredictable. It 

is also unclear for how long the downtime will last. Hence, the scheduler can only start planning 

reservations for it again if the node goes back online. On a real system, nodes are considered 

offline if a hardware defects occur, nodes need to be rebooted with a different configuration, or 

the load on nodes is high enough to make them appear unavailable. To simulate this effect in 

MS, the unexpected node offline times are required. Information about node downtimes can be 

retrieved from the PBS log file. 

MS supports reservations but does not have the functionality to replay them as with workload 

trace files. We hence propose to use MS’ setres, releaseres, canceljob, and schedctl 

commands. The simulation advances until it meets a time step in which the node goes offline, 

where it places a user reservation with infinite duration. When advancing further and reaching 

a time step where that node turns online again, the related reservation is removed. A node only 

has one such user reservation at a time. We further assume that a failing node terminates its 

associated job. The following pseudo code shows how to combine these commands: 
 

1. for step := 1 to last_step do begin  

2.   ∀ nodes switching offline between step - 1 and step: 

a. canceljob: delete node’s job, and 

b. setres: place unlimited reservation on node 

3.   ∀ nodes switching back online between step - 1 and step: 

releasers: remove reservation from node 

4.   schedctl: advance one time step 

5. End 

2.2.3 Planned Maintenance 

A full system (or site-wide) maintenance is typically known about weeks in advance and 

announced to all users in good time. Hence such periods are well documented even if not always 

machine-readable (e.g. in an internal ticket system). Compared to unexpected downtime, the 

cluster will become fully idle immediately before the system maintenance period (ramp down) 

and continue its normal operation after the downtime. 

To simulate planned maintenance, system reservations are created for every one of these 

windows at the beginning of the simulation. This announces them to the scheduler sufficiently 

ahead of time. For example, the system maintenance for all nodes is created with the following 

setres command starting at 2017-01-29 8:00:00 and lasting 20,000 s: setres -s 

08:00:00_01/29/2017 -d 20000 ALL 

3. SIMULATION RESULTS WITH REAL WORKLOADS 

We validate our MS configuration with historic workloads from a large-scale PBS based cluster 

system with a non-trivial configuration. First, we explain the real cluster setup and PBS 

configuration in terms of job scheduling. Second, we describe the historic workloads that were 
available and explain their use for MS. Lastly, we discuss early simulation results concerning 

accuracy and different time step resolutions with their simulation times. 
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3.1 Reference Cluster Setup 

We use workloads collected from IT4Innovations’ Salomon cluster (2 PetaFLOP/s) which uses 

PBS Professional 13.1. As of writing, it is ranked 139th in the Top500 list (Top500, 2018). Its 

nodes contain two Intel Xeon E5-2680v3 processors with 24 cores and 128 GB of memory in 

total. The entire cluster has 1,008 nodes, of which 432 are equipped with two Intel Xeon Phi 

7120P coprocessors in addition. The job scheduling system does not offer node sharing, and as 

such only assigns entire nodes to a job (multiples of 24 cores/tasks). 

Users submit jobs to selected queues and specify the type of nodes. Eligibility for using a 
queue depends on the queue type, wall time of the job, and free project resources (accounting). 

Certain restrictions apply to the queues as shown in Table 1. For the simulation, queue imposed 

wall time constraints are not relevant since the real system rejects jobs with wall time violations. 

Historic workloads contain no such rejected jobs. 

During the simulated time window, use of the coprocessors required allocation of their 

nodes. Past the observed period an additional queue qmic was introduced to allocate 

coprocessors separately. Hence, our workloads do not contain the qmic queue yet. 

PBS uses the job formulas shown in Equation 1 and 2 (IT4Innovations, 2018). The 

configuration of fairshare is account based with a half-life of 168h (FSINTERVAL 168:00:00). 

Liberal backfilling is used with a maximum of three jobs per cycle (BACKFILLDEPTH 3). The 

simulation required an individual increase of RESDEPTH depending on the simulation window. 
This is a side effect of emulating node downtimes using one user (unexpected downtime) and 

multiple system reservations (one per system maintenance). There is at most one user 

reservation per node if it is down. Reservations for the entire system, however, depend on the 

amount of system maintenance periods during the simulation window. Hence, RESDEPTH should 

be individually set by adding 1 + # of system maintenance periods for each simulation 
window. 

Table 1. Queues and constraints of the Salomon cluster 

 

                                                
3 Negative priorities require Maui’s ENABLENEGJOBPRIORITY TRUE and REJECTNEGPRIOJOBS FALSE 

Queue 

name  

Number of nodes Priority q Maximum 

wall time 

MS configuration 

qexp 1,006 + 2 dedicated 
(max. 8 per user, 
max. 32 total) 

150 1h CLASSCFG[dexp] PRIORITY=150   

  MAXNODE=32 MAXNODEPERUSER=8 

qprod 1,006 0 48h CLASSCFG[qprod] PRIORITY=0 

qlong 576 
(max. 256 total) 

0 144h CLASSCFG[qlong] PRIORITY=0     

  MAXNODE=256 

qmpp 1,006 0 4h CLASSCFG[qmpp] PRIORITY=0 

qfree 1,006 

(max. 752 total) 

-1,0243 12h CLASSCFG[qfree] PRIORITY=-1024 

  MAXNODE=752 

qmic 2 * 432 0 24h CLASSCFG[qmic] PRIORITY=0 

SERVICE 1,008 512 N/A CLASSCFG[SERVICE] PRIORITY=512 
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3.2 Historic Workloads for the Simulation 

For the simulation, we used three different data sources: job information from PBS stored in an 

SQL database for all submitted jobs, logs from PBS for unexpected node downtimes, and a list 

documenting the planned system maintenance downtimes. 

For the job information in the SQL database, we found that less than 1% of all job records 

had incorrect information or were the subject of system changes. As such, we removed them 

from the workloads. We used a 50 week simulation window in 2017 and consecutively 

enumerated the jobs by assigning job IDs in ascending order by submission time. 
Unexpected node downtime information is currently an approximation as there is no 

standardized source as with submitted jobs. We parsed the PBS logs to reconstruct the 

unplanned offline times, which showed good results but still had spurious false positives. Such 

false positives occur for example if nodes reboot for a different configuration or nodes are 

utilized so that they appear offline to PBS. Due to the large amount of offline reports over the 

50 weeks window, manual validation is not feasible. We thus filtered out all offline times shorter 

than 4 minutes, which should account for the majority of sporadic and erroneous offline reports. 

Fortunately, planned maintenance had been well communicated to users, and consequently 

information is readily available and accurate. 

Simulation results are available within the simstat.out file created by MS for each 
simulation run. In addition to the workload trace, it contains the job execution and end times. 

From those, it is possible to derive cluster utilization and job wait times. 

3.3 Changes Applied to MS 

To enable MS to simulate a cluster the size of Salomon (1,008 nodes, 24,192 cores), with a peak 

of approximately 60k jobs in the queues, some defaults need to be changed. For properly sized 

buffers we increase MAX_MTASK and MMAX_JOB to 32,768 and 80,000 respectively. In addition, 

MAX_PRIO_VAL needs to be changed from 109 to 1012 to account for the extended priority value 
range (compare Equation 1 and Table 1). 

To simulate historic workloads, it is beneficial if the simulator uses the exact timestamps of 

each job. By default, MS will use the current time for the first job of the simulation (relative 

time). We have applied modifications to MS so it uses the absolute timestamp as provided in 

the workload trace. This helps to easily identify timeframes in the past. 

3.4 Results 

In the following, we highlight the initial results from our simulation runs. We compare the 

accuracy of the simulations and the real system. We do so on a week-by-week basis but prepend 

the preceding week as a warm-up phase. Furthermore, we explain the impact of different 

simulation time step resolutions with their simulation times. 

3.4.1 Accuracy of the Simulation 

For demonstration purposes, we selected week 7 because it contains one system maintenance 

period, and a large amount of unexpected downtimes. As shown in Figure 1 (left), the simulation 

shows similar utilization to the real workload. It is visible that during the warm-up week 6 (gray 
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area) the utilization of the cluster builds up and follows the real utilization in week 7 (starting 

within day 464). 

Around the system maintenance period (green area), both the simulation and the real system 

show a ramp down of utilization. This is typical for a system shutdown, as queued jobs will not 
fit in the remaining time before all nodes go offline, according to the wall time specified by the 

users. At the end of the maintenance period, queued jobs are assigned to nodes again. In this 

example, the backlog of jobs accrued during the downtime is quite low, which results in a lower 

cluster utilization (<80%) directly after the maintenance period.        

Unexpected downtimes (red area) reduce the total number of nodes on the system, which is 

visible by the utilization adjusting accordingly. Even though most of the unexpected downtimes 

happen early during the warm-up week, their effect is already visible. The node downtimes 

during the system maintenance period are also visible in red, but have no effect since there is a 

system reservation overlapping them. 

Furthermore, Figure 1 (right) compares the wait times of jobs between the real workload and 

the simulation. Every data point is one executed job, colored depending on the queue used. The 
wait time is the difference between the execution and submission time of a job. It is visible that 

especially for the job bursts (to queue qexp) the patterns are identical and wait times are similar. 

The patterns result from how jobs are submitted, by which user/account/group, and the queue 

restrictions. There are also some deviations visible, which result from job dependencies as 

discussed below. 

 

  

Figure 1. Comparison of the real workload of week 7 with a simulation using a 5 s time step resolution 

left: real (gray) and simulated (blue) cluster utilization with unexpected node downtimes (red) and a 

system maintenance period (green); right: job wait times of real (top) and simulated (bottom) workloads 
with jobs from different queues, in ascending order of submission time 

As a contrast to week 7, we show week 29 (starting within day 200) in Figure 2, which does 

not have a system maintenance period, and has only minor unexpected system downtimes. It is 

a representative of the usual utilization of the cluster, with a larger number of shorter jobs and 

some job bursts. 
Figure 3 shows a comparison of the wait times of jobs for weeks 6, 7, and 29 in detail. At 

the top, it uses Cumulative Density Functions (CDFs) for the real and simulated workloads with 

a 5 or 60 s time step resolution. For better readability, we only show those time step resolutions 

                                                
4 Weeks are aligned with first job of the historic workloads and hence are not calendar weeks 
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in the CDF diagrams. At the bottom of Figure 3 we show the errors with mean 𝑥̅, median 𝑥, and 

standard deviation σ for all time step resolutions we evaluated. Errors are the difference between 

the real and simulated wait times. For all diagrams, only jobs submitted at the week of interest 

are considered, which excludes the warm-up phase. 

 

  

Figure 2. Comparison of the real workload of week 29 with a simulation using a 5 s time step resolution 

left: real (gray) and simulated (blue) cluster utilization with unexpected node downtimes (red); right: job 
wait times of real (top) and simulated (bottom) workloads with jobs from different queues, in ascending 

order of submission time 

 

The wait times of the simulations are tentatively lower than for the real system, since the 
simulation made the assumption of ideal job dispatching where nodes are immediately available. 

A job does not instantly execute if the job scheduler selects it. Prologue and epilogue scripts are 

executed to prepare and validate a node before a job is executed, and to clean up after the job is 

finished, respectively. The runtime of such scripts is dependent on the resources (i.e. nodes) 

selected and the job itself. Nodes without an Intel Xeon Phi coprocessor have a shorter prologue 

as validating the coprocessors takes additional time. In addition, a job that creates a significant 

amount of temporary data on a node increases the cleanup time compared to a job that keeps 

persistent data on the user’s home drive. The runtimes of such scripts are not part of the PBS 

logs or otherwise recorded. The typical runtime of such scripts is between seconds and a few 

minutes. In the simulation we assume an ideal scenario, where nodes become available instantly. 

This results in differences that are more visible for jobs with a shorter runtime. For longer 
runtimes, the simplification has less relative effect. 

Comparing the errors of the different time step resolutions, it becomes clear that an increase 

in resolution results in less error. The error converges to a minimum at the highest resolution of  

1 s. Using a 60 s time step yields a large error for week 6  

(𝑥̅: 103,386, 𝑥: 116,932, σ: 53,415), week 7 (𝑥̅: 39,617, 𝑥: 18,984, σ: 53,245), and week 29  

(𝑥̅: 27,951, 𝑥: 951, σ: 70,094). In contrast, the error when using a 5 s time step are reduced for 

week 6 (𝑥̅: -52, 𝑥: 171, σ: 7,557), week 7 (𝑥̅: -2,223, 𝑥: -10, σ: 21,137), and week 29  

(𝑥̅: 167, 𝑥: 2, σ: 2,952).  

In addition, the CDFs for the wait times further demonstrate two additional properties of the 
workloads. First, towards the lower end of the wait times, within the range of 10 to 100 s, the 

simulation tends to have much lower wait times than the real system. This is due to the ideal job 

dispatching in the simulation. Second, there are more outliers in the real system, whose wait 
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times are about one order of magnitude larger compared to the simulation. This is mostly due 

to job dependencies. Job dependencies are used to overcome the wall time limitations of jobs 

by submitting a batch of shorter running dependent jobs at once. Such jobs are executed one 

after the other and enable users to run computations longer than the maximum wall time of the 

targeted queue. For weeks 6 and 7, mostly jobs from the queue qprod showed job dependency 

patterns - they have a constant wait time difference (e.g. 24h interval). In the real workload, they 

show up as vertical spikes, which are marked with green triangles in Figure 1 and Figure 5 below. 

Job dependency information is not available in the current PBS logs and hence preventing its 

simulation. In the current simulations, such jobs are not considered dependent and are scheduled 

like any other job. 

 

   
 

   

Figure 3. Cumulative density functions (CDF) of job wait times and errors for weeks 6, 7 and 29 
For weeks 6 (top left), 7 (top middle), and 29 (top right), the CDF for real and simulated workload with 5 
and 60 s time steps are shown; corresponding errors compared to the real workload are shown with mean 

(bar), median (dot) and standard deviation (range) for each simulation time step resolution (bottom) 

3.4.2 Time step Resolution 

Jobs submitted to PBS immediately trigger a scheduling event. The historic logs have a 
resolution of one second, which allows for a fine-grained replay. The MS simulator is capable 
of handling arbitrary simulation time steps down to a second. However, such a fine-grained 
resolution increases the simulation time proportionally. For example, the simulation of week 7 
took approximately 42h and 239h (in the order of 5 times difference) with a resolution of  
5 and 1 s, respectively. Comparing resolutions of 10 to 5 s, the simulation slowdown is about a 
factor of 2, following the increased time step complexity. The slowdowns with increasing 
resolutions are not caused by our approach to handling unexpected node downtimes, with 
placing and removing reservations from nodes. That handling is a constant overhead, 
independent of the time step resolution. Figure 4 compares the simulation times over the full 50 
week range for each week (including the warm-up week) and different time step resolutions. It 
is visible that differences in simulation times are proportional to the time step resolutions but 
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not to the number of submitted jobs. Additional factors influence the complexity of the 
simulation such as the amount of waiting jobs in the queues, mean job runtime, cluster 
utilization, and the amount of reservations during the simulation window. We have observed a 
variation of simulation times by up to two orders of magnitude within the same time step 
resolution across different weeks. In addition, the memory usage per simulator instance varies 
between approximately 2 and 10 GB. The memory requirements primarily depend on the 
number of waiting jobs in the queues, which changes over time. During our simulations, the 
queue lengths range from a few thousand up to over 60k jobs waiting at peak times. We ran our 
simulation on a two socket Intel Xeon E5-2665 with 8 cores per socket, enabled Hyper-threading 
(simultaneous multithreading) and with 64 GB of memory. Since simulation instances are not 
dependent on each other, simulations are embarrassingly parallel, providing enough main 
memory is available. 

 

Figure 4. Comparison of simulation times for different time step resolutions 
Each week is simulated independently and contains its previous week for the simulator warm-up; 

simulation time grows proportionally as the time step resolution is increased; measurement was done on 
the same system with one simulation instance per core 

 

  

Figure 5. Comparison of the real workload of week 6 with simulations using different time step 
resolutions of 60 and 5 s 

Left: real (gray) cluster utilization compared to simulations with 60 s (orange) and 5 s (blue) time step 
resolution; right: job wait times of real (top) and simulated workloads with 60 s (middle) and 5 s 

(bottom) time step resolution for jobs from different queues, in ascending order of submission time 
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For a shorter time-to-solution, it is desirable to reduce the resolution, at the cost of increasing 
the overall error. Such errors increase as (re-)scheduling only happens at the end of every time 
step. The time passed during the time step leaves resources idle if jobs finish within that window. 
When resources remain unused, it increases the risk of congestion, and later jobs may become 
delayed further (error propagation). Figure 5 shows an example for week 6 (starting within day 
39). Even though the node utilization of the simulated system with both 5 and 60 s resolutions 
is similar, the number of waiting jobs increases in the latter. This results in a gradually increasing 
wait time for jobs, offsetting the execution time of successive jobs and skewing the results. 
Therefore, reducing the resolution is not always appropriate, and needs a case-by-case decision. 
We have found that 5 s time steps offer the best tradeoff between time-to-solution and accuracy. 
However, some weeks with longer phases of high cluster loads likely require a shorter time step 
at the cost of an increased simulation time. 

4. CONCLUSION 

We have demonstrated a method for approximating non-trivial PBS Professional configurations 

using an additive job priority formula with different queue priorities and constraints, including 

fairsharing and backfilling with MS. With this setup, we are able to simulate HPC job scheduling 

effects with historic workloads from a large-scale 2 PetaFLOP/s cluster, including planned and 

unplanned node down times. Even though PBS does not have any simulation capabilities, early 

results suggest MS is a valuable simulation tool for PBS. The quality of approximation is 

sufficient for analysis of changes to a PBS production system, and allows a trade-off between 

accuracy and time-to-solution by varying the time step resolution. In addition, MS offers the 

option to replace the job scheduler from PBS, which would further minimize the remaining gaps 
between simulation and real workloads by using identical configurations for the real system and 

the simulation. 

Limitations currently apply to the quality of historic workloads, such as inconsistent node 

downtime information, which requires manual validation. In addition, the assumption of ideal 

job dispatching adds a larger error for jobs with a short wall time. Currently missing information 

about the real dispatching time and job dependencies requires improvement to reduce errors 

further. Whilst it is easy to collect such additional data on a real system, two deficits require an 

extension of MS itself. The simulation of unexpected node downtime currently uses a simplified 

approach by terminating the entire job associated to nodes taken offline. This is not always 

correct and, together with the modeling of job dependencies, MS currently does not have 

suitable functionalities built-in. 

In future projects, we plan to use the discussed simulation framework to study the effects of 
applying changes to the PBS job scheduler, such as changes to queue priorities or constraints. 

Furthermore, we plan to study the effects of job dependencies and different scheduling 

strategies. 

At our Github repository (Zitzlsberger, 2018) we provide a Dockerfile to build MS with the 

changes we applied. We also provide the environment we used for our simulations. The 

environment contains the MS configuration and the resource trace file, as well as an example 

implementation for handling node downtimes. Interactive versions of the diagrams used in this 

paper are also available for individual study. 
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