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ABSTRACT 

The task of color grading (or color correction) for film and video is significant and complex, involving 
aesthetic and technical decisions that require a trained operator and a good deal of time. In order to 
determine whether deep neural networks are capable of learning this complex aesthetic task, we compare 
two network frameworks—a classification network, and a conditional generative adversarial network, or 

cGAN—examining the quality and consistency of their output as potential automated solutions to color 
correction. Results are very good for both networks, though each exhibits problem areas. The classification 
network has issues with generalizing due to the need to collect and especially to label all data being used 
to train it. The cGAN on the other hand can use unlabeled data, which is much easier to collect. While the 
classification network does not directly affect images, only identifying image problems, the cGAN, creates 
a new image, introducing potential image degradation in the process; thus multiple adjustments to the 
network need to be made to create high quality output. We find that the data labeling issue for the 
classification network is a less tractable problem than the image correction and continuity issues 

discovered with the cGAN method, which have direct solutions. Thus we conclude the cGAN is the more 
promising network with which to automate color correction and grading.  
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1. INTRODUCTION 

Color grading, which is also known as color correction, is a task which many film and video 

viewers do not even know takes place. This job is nonetheless supremely important to the 

professional look of a finished film or video. Color correction is the job of taking raw footage 

from a video/film shoot and adjusting elements such as exposure, saturation, contrast, black 

point, white point, and color casts to achieve a higher quality, more pleasing, and more uniform 

look for takes shot under different lighting conditions and on different days. While the general 

public might not understand that continuity and look problems exist under the controlled 
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conditions of a professional shoot, a scene is often shot over many hours, or even several days. 

Thus, elements such a sunlight and/or artificial lighting can change (or the crew can move lights 

to better light an individual close-up shot, for example). Additionally, traditional film as well as 

digital sensors can respond differently to the same lighting conditions depending on many 
factors, including film chemistry changes and how long a digital camera has been running  

(and thus how hot the sensor is). Thus even with a trained and knowledgeable crew, there will 

be differences between shots in a given scene, and most assuredly there will be differences 

between different scenes.1 The art of color grading and correction is to make every shot look 

“good” (an admittedly aesthetic judgment) and also to hide the differences between the various 

shots of a piece, which can number in the thousands for a full-length movie. The job of color 

grading requires a good deal of operator expertise, time, and expensive equipment, and thus 

costs a large amount of money—upwards of $10,000US for an independent film 

(Liftgammagain 2015), and substantially more for a large commercial production. Thus color 

correction can prove to be a significant cost for a small film, or even a large budget one. Even 

more critically, the expertise involved in performing the task of color grading is beyond the 
knowledge, budget, or time of most amateur filmmakers, YouTube producers, home video 

makers, and so on. For such people, color correction is not well understood and the job is often 

not undertaken at all, creating video output that looks amateur: elements like contrast, color 

casts, black point, and so on, are not adjusted (or not adjusted properly), and there is little 

continuity between shots.  

Given these problems, both professional and amateur filmmakers would find an automated 

solution to color correction a welcome addition, both for cost savings and for the ability to have 

a one-click solution to a complex and time-consuming task. While the ‘artistic’ task of 

correcting color to please the human eye, as well as to hide discontinuities in coloring for 

different shots, is at the same time subtle, aesthetic, and fuzzy (i.e., not obviously deterministic), 

and thus seems an unlikely domain for computers, we show here that color grading/correction 

is a process which consists of many precise steps that can be learned and executed well by either 
of two different neural network architectures. During a color correcting session, a color grader 

makes a number of traceable, quantitative steps to achieve the artistic goals of creating an 

intended look and hiding the variations between shots in a film. As we show here, these steps 

from an input (uncorrected) image to an output (corrected) image can in fact be learned by neural 

networks, both as a classification problem, via a classification network, and as a generative 

problem, via a conditional generative adversarial network. In each case, the network produces 

excellent quality output, though each has ongoing issues that are the subject of continuing 

research.  

2. BACKGROUND 

Though deep neural networks have been studied since the 1980s (Hinton 1989, Olshausen and 

Field 1997), improvements in computer speed, GPU speed and memory, and better algorithms 

                                                
1 In addition to the issues noted above, much professional and pro-sumer video is currently shot using a log format 

(which encodes raw data on a log rather than linear curve, thus allowing for more data per channel, at the expense of 

looking very washed out when viewed directly). Color correction, then, also involves running raw video data through 

established Color Look-Up Tables, or CLUTs as a first step. As this step is already well understood and automated, it 

is outside the scope of this paper. 
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that take advantage of the processing power of newer CPUs and GPUs generated a renaissance 

in deep neural network research by the early 2000s (Hinton and Ruslan 2006, Yoshua and Lecun 

2007). When a convolutional deep neural network (CNN) won the Imagenet 2012 competition 

by a large margin (Krizhevsky, Sutskever and Hinton 2012), researchers at large noticed, and 
since that point a veritable flood of new research has been published utilizing deep neural nets 

and CNNs to great success. From understanding words (Mikolov et al 2013), to image 

recognition (Ciresan, Meier and Schmidhuber 2012, Zisserman 2014, Glorot, Bordes and 

Bengio 2011), to image caption generation (Vinyals et al 2015), to image-based recognition 

(Kundert-Gibbs 2017), to colorizing black and white images (Iizuka, Simo-Serra and Ishikawa 

2016, Reinhard et al 2001, Zhang, Isola and Efros 2016), even to generating bizarre new images 

(Evans 2016, Computerphile 2016), deep neural networks have, in only a few years, come to be 

the preferred search architecture for numerous tasks that people once considered beyond 

computer Artificial Intelligence ability. It is the combination of precision (of feature recognition 

and discrimination, for example) with the ‘human’ quality of understanding large-scale semantic 

elements in images (Chen et al 2015, Gatys, Ecker and Bethge 2016) that is particularly 
important to the project of color correction. In previous work we explored the semantic issue of 

image-based recall (IBR) (Kundert-Gibbs 2017) by building off a classification network 

(Vedaldi, Lenc and Henriques 2016, Veldaldi and Zisserman 2017). For color correction as well, 

a classification network is an obvious contender, as the task bears some underlying similarities 

to IBR. By learning to classify ‘what is wrong’ with an image, a classification network can, via 

a plug-in, instruct a dedicated color grading program like DaVinci Resolve to do the actual color 

correction at its guidance. A contrasting method of color grading we examine is the relatively 

newly developed conditional generative adversarial network, or cGAN (Mirza and Osindero 

2014). This network constructs entirely new, hopefully improved images based on input images, 

using raw-corrected image pairs to train the network. We modified the network described in 

(Isola et al 2017) to work on the color correction problem, focusing training on low frequency, 

often subtle details in the images. The two network architectures examined here have 
complementary advantages and disadvantages, which are discussed below. 

3. ASSET COLLECTION 

As with most neural network problems (and indeed modern AI as a whole), asset collection is a 

significant issue. Neural networks prefer large data sets, and classification networks require 
labeling—their major disadvantage compared to cGANs, which can learn in a semi-supervised 

setting (Radford, Metz and Chintala 2015). Film, fortunately, produces an almost limitless 

number of frames (still images which make up a movie), and thus data can be produced. There 

are, however, two issues: the first is that one needs matched sets of uncorrected and corrected 

images to train on; the second is that, at least for classification networks, these images must be 

labeled in a manner that captures the problems inherent in each image. For our initial work, we 

needed a small-to-medium-sized data set of at least 10,000 uncorrected images, each of which 

needed to have a corresponding corrected image as well as proper labeling to indicate the issue 

with the uncorrected image.  

Josh Kundert-Gibbs, professional cinematographer and color grader, was able to provide us 

with properly adjusted and logged sample images in the following manner. He properly color 
graded a number of shots—mostly “talking heads” from a documentary he was shooting—



IADIS International Journal on Computer Science and Information Systems 

4 

providing 675 frames broken down as follows: 15 different “shots” (one person talking) of 45 

frames each. This set of images is “correct” in the sense that Kundert-Gibbs deems them to be 

so—an artistic judgment, obviously. While the judgment is artistic/aesthetic, many of the 

elements of good color correction, such as a good black point value, and “not too green,” can 
be determined fairly effectively, if qualitatively, by looking at the shots. Beyond this, the value 

judgment that the shots look “good” according to a professional’s opinion is something that 

knowledge engineers are familiar with: inputs and outcomes are often somewhat fuzzy when 

learning from big data (McClean, Scotney and Shapcott 2000, Wood and Antonsson 1989). For 

these reasons, though “properly color graded” is an opinion by one individual, it is a professional 

opinion and thus can be respected for our training/testing data set. One could eventually train 

duplicate networks to color grade based on different individuals’ tastes, producing a number of 

different “looks” for a movie that a user could choose between.  

To provide the ‘uncorrected’ (or detuned) images, at our direction Kundert-Gibbs next 

created a number of carefully controlled incorrect images as follows. He took the 675 ‘perfect’ 

images and detuned them via Davinci Resolve (color grading software), creating 24 sets of 
images (675 in each set, to match the perfect set), each of which sets has one and only one 

element detuned in a controlled manner. For example, he adjusted each of the 675 ‘perfect’ 

images to make the green channel one of three levels too high (33%, 66%, or 100% too high). 

Each of these detuned images is labeled with the error (e.g., OneLevelTooGreen001.png) so 

that a classification network can judge its success or failure in classifying the problem with the 

image. In total, Kundert-Gibbs produced 24 sets of detuned images, each with a single problem 

area, creating a detuned database of 16,200 incorrect images. Though we did not need labeled 

images for the cGAN tests, we utilized the same set of data in order to compare the quality of 

the output versus the classification network under the same training circumstances. 

Images were reduced in dimension from 2K images (3840X2160 pixels) to a much smaller 

sized 456X256 pixels. Primarily this size reduction was needed to reduce system memory 

requirements and to substantially reduce the time it takes to process images in the network. In 
addition, color correction is generally focused on large-scale image problems, like the cast of a 

face, or the hue of the sky, so loss of smaller details is not much of an issue for images used to 

train color correction. As per the usual convention with CNNs, very small images are the 

expected inputs. More unusually, the original images are not (as per norms) square, but rather 

rectangular. For the classification network, which uses the VGG net as a start, images are 

expected to be 224X224X3 channels, so for that network, we ‘squashed’ images to that square 

aspect ratio (with 3 color channels). While this produces distorted images, it does not affect the 

aspects of the project we are interested in, and identification of problem classes was not an issue. 

As the classification network only recommends changes based on the error(s) in an image, 

distorting the input images had no discernable effect on the network’s success. For the cGAN, 

input aspect ratio is not important, so we utilized the properly sized 456X256 pixel images to 
generate image pairs that are 912X256 pixels.  

4. EXPERIMENTAL SETUP 

We simultaneously explored two options for color grading. The first was to classify color 

correction errors via a classification network. The classification of one or more errors in the 
image could then be used by a color correction program to tweak parameters to correct for the 
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noted problem(s). The second method was to use a generative network that can generate new 

images that would be able to fool a discriminator network as it compared the generator’s output 

with the target (corrected) image. While both options use deep CNNs, the two paths are 

fundamentally different in their approach.  

4.1 Classification Network 

For our classification network, we utilized MatConvNet, an open source convolutional neural 

network construction system built to run within MATLAB (MatConvNet 2017), modifying the 

fast VGG classification network included in the package. As noted above, and shown in Figure 
1, images were compressed in the horizontal dimension so that they filled a 224X224 square, 

which is the network’s expected input dimensions. The images we used, which are in .png 

format, have values for each pixel which are by default doubles in UTF-8 encoding (even though 

they are 0-255 integers). As MatConvNet assumes every number in its data tensor is a single 

precision number, we had to convert the images (the .data tensor in the database) to single using 

the single(imdb.images.data) command in MATLAB. Though CNNs have traditionally been 

trained primarily to deal with the high frequency aspects of images, they worked very well for 

our focus on low frequency issues within the test images.  

 

Figure 1. A sample input image with horizontal dimensions compressed to create a 224X224 square for 
the classification network  

The classification network’s goal is to identify what is wrong with the image (e.g., 33% too 

much orange, or black point set 66% too low) and return the result, allowing an automated  

plug-in extension—or a human user—to adjust settings in a color grading program. The primary 

advantage of the classification network is that it will ‘do no harm.’ In other words, given that it 

is a classification network, it will only tell a program (or user) which adjustments to make to fix 

a given problem (e.g., if the image is 66% too orange, the output would tell the plug-in to move 

the orange down by 66%). The primary disadvantage for the classification network is that it 
requires massive amounts of diverse, labeled data, which is not only time-consuming but a 

fundamentally challenging task. In our case, for example, we made 24 singular de-tuning 

adjustments to our ‘perfect’ images (black point 66% too high, etc.). This only accounts for one 

grading issue at a time, however. What happens when there are two issues simultaneously? Or 

when there is an unknown mix of issues? This problem can make generating properly labeled 

outputs for classification extremely challenging, as a color grader might make dozens of 

adjustments to get an image to look right to her. Thus without a large and varied amount of 

correctly labeled images to train on, the classifier might not generalize well.  
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To increase chances for a network that would work on a large class of images, we used a 

very low learning rate, and inserted up to three dropout layers (placed after the last three  

batch-normalization layers) with up to 80% dropouts on each of these layers to reduce the 

network’s tendency to over-train rapidly. Though this slowed training down substantially, it 
proved to be ineffective at allowing the network to generalize (see Results, below).  

4.2 Conditional Generative Adversarial Network 

Our conditional generative adversarial network is a modification of the open source Pix2Pix 

cGAN that is built on the torch convolutional neural network framework (Torch 2017, Pix2Pix 
2017). Modification of this network to strongly ‘punish’ outlier pixels (e.g., introduced noise), 

to look at very large patches at a time, and to use temporal modifications described below, tuned 

the network to train well with respect to our color grading issues. Prior to training, a script was 

run that paired detuned and tuned images, shown in Figure 2. These image pairs were then fed 

to the cGAN for training.  

 

Figure 2. An example image pair (uncorrected, very blue, image on the left; corrected, or target image on 

the right) that is fed into the conditional generative adversarial network  

The cGAN methodology changes input pixels to generate an entirely new output image that 

will (hopefully) fool an adversarial discriminator network into thinking its output is in fact the 

target image. The primary advantage of the cGAN is that it can utilize any set of 
corrected/uncorrected image pairs (of which there are a vast supply). An additional benefit of 

using a cGAN is that it provides a stand-alone solution to color grading: no other piece of 

software is needed to perform the color correction—as with the classification network—as the 

network generates corrected images itself. The primary concern with this network is that it will 

do damage to the image, reducing the quality or consistency of the output. An image, for 

example, might have its green cast adjusted properly by the cGAN, but the generator network 

might insert random noise into the image, or, worse, insert large-scale artifacts into the image. 

In these cases, the output images will be sub-optimal, likely to the extent that a viewer will 

notice the problems. Just as problematically, each image might be corrected well, but following 

images might be adjusted differently from each other, thus causing images to flicker as they are 

presented at 24 or more frames per second.  
For the cGAN, another significant concern was preserving high frequency detail while 

correcting large-scale, low frequency image issues. We tried several methods, some of which 

addressed the problem well (see Results, below). One of the reasons Pix2Pix was a good starting 

point for us is that the scripts utilize both patch and Euclidean error metrics, which account for 

feature matching and also per-pixel distance errors. Though it tends to produce blurrier images 

than the L1 (absolute distance) measure used by (Isola et al 2017), we used MSE (mean squared 

error) metrics to more drastically penalize rogue pixels in the output images. We also increased 

patch size and the metrics used for penalizing mismatched patches. Adjusting the network 
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helped deal with unwanted, transient pixels and patches that would come across as flickers in a 

moving image, with the caveat that the individual images looked slightly softer due to these 

more draconian error metrics. As our ultimate goal is to produce color corrected image 

sequences (video), rogue or mismatched elements are unacceptable as they result in poor quality 
output, while slightly fuzzier images are not a noticeable issue in moving video, and there are 

as well ways to deal with softer images post hoc. In addition, we modified our cGAN to read in 

multiple frames of a video sequence at once by increasing the dimensionality of our tensor by 

one degree, accounting for a temporal dimension. Adding a fourth dimension to the tensor 

creates a X by Y by F by 3 (by batch size)2 tensor where the additional F dimension is the 

number of frames in a clip. While this addition increased memory requirements, training on 

sequential frames allowed the cGAN to learn to generate multiple frames that look alike, which 

is critical for making image sequences all look the same. Training individual images led to a 

flickering look, as each image was generated independently; sequencing images allowed the 

network to train to produce matched output for multiple images that were very nearly the same.  

4.3 General 

For both networks, we randomly selected approximately 2/3 of the 16,200 images for training, 

with about 1/6 for testing, and 1/6 held out for validation. While our concerns for each network 

were significant, they are, interestingly, complementary. While the classification network needs 

a labeled dataset and might not generalize as well, the cGAN does well in these areas. On the 

other hand, where the cGAN might introduce noise or softness into the image, the classification 
network, as it only detects problems, cannot introduce any image degradation. For both 

networks, our interest was primarily in low frequency issues, like color casts or issues with 

contrast, as shown in Figure 3. Therefore, we adjusted the parameters of each network to be 

more attuned to low frequency issues as opposed to the more usual concern researchers have 

with high frequency elements of images (e.g., feature detection). 

 

 

Figure 3. Two source images showing the low frequency nature of color correction issues. The left image 
has its white point set 100% too low, while the right image has its contrast set 100% too high  

 

                                                
2 X = image horizontal dimension, Y = image vertical dimension, F = number of frames in a clip, 3 = image color 

channels (RGB), and batch size = the number of images pulled into memory for simultaneous batch training.  
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5. RESULTS 

After adjustments and multiple training runs, both of our networks produced excellent results, 

solving the fundamental color correction task. Each network, however, exhibited some of the 

shortcomings predicted before trials began. Section 4.1 discusses results for the classification 

network while 4.2 discusses results for the conditional generative adversarial network. 

5.1 Classification Network 

For our classification network, optimal results for the training data was found very quickly, 

within 30 epochs of retraining the modified VGG-f network. As shown in Figure 4, convolution 

filter weights were indeed adjusted to deal more with low frequency, color-centric issues (note 

the blurring of filter outputs having to do with color, and with the more intense colors being 

output from many of the filters). In fact, in many cases classification confidence was at or nearly 

100% for the correct problem classification, as shown in Figure 5. For the trained network, 
nearly all errors made were in neighboring classifications. For example, the network might 

predict that the white point was 66% too low, whereas the ground truth was that it was 33% too 

low. As this misclassification is qualitatively nearly correct, we factored these near misses into 

our results in addition to completely correct results. If one considers that the eventual outcome 

of this network is to recommend corrections—reduce the white point by 66%, say—then a 

mistake like this is not a great problem: reducing the black point by 33% rather than 66% is not 

going to make a drastic difference visually in the final image. Furthermore, on examining the 

probabilities for “nearest neighbor” mistakes, we found in every case that the correct 

classification also registers with very high probability. As an eventual correction (via software 

plug-in) would likely provide averaged rather than quantized corrections, for this example it 

might adjust the white point about 50% (the weighted average between the two), which would 

provide very acceptable results, especially as human qualitative viewing will be used to 
determine the quality of the output corrections. As Table 1 shows, error rates on validation data 

was exceptionally low for this network. The error rate was so low, in fact, that we feared the 

network was over-trained, as was borne out by subsequent experiments.  

Table 1. Error rates on validation set, including correct and “nearest neighbor” errors in classification of 
image problems 

 Correct Classification Nearest Neighbor Total 

Number of Images 2,699/2746 46/2746 2745/2746 

Percentage 98.3% 1.6% 100.0% 
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Figure 4. First layer convolution filters before retraining (top) and after 30 epochs of retraining (bottom)  

 

Figure 5. Correct classification that the source image’s contrast is 33% too high. Note that the confidence 

in the result is 100%  

To test our network under more real-world conditions, we input several images with two 
detuning issues, and a few images that were simply out of camera and not corrected. 
Unfortunately, the network performed poorly on these. Attempting to run the network on images 
with two classes of problems at the same time, as well as on images with unspecified problems, 
demonstrated that the network failed to generalize properly, as shown in Figure 6. We thus 
adjusted our training methodology, most notably inserting three dropout layers after the last 
three batch normalization layers, with up to 80% dropouts. Though this slowed training down 
considerably it did not resolve the underlying issue of network generalization to other images. 
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Figure 6. The network fails to generalize to images with multiple color correction issues. The network 
here predicts the image is too orange, with 100% confidence, while the true issues are too blue and too 

green  

5.2 Conditional Generative Adversarial Network 

Our cGAN with larger patches, MSE error metrics, and a high degree of weight given to the 

MSE portion of the loss function also produced very good, high quality results. As shown on 

the left and center images in Figure 7, the sample output image is nearly indistinguishable from 

the target (ground truth) image. The right-most image shows the results of subtracting the two 

images in Photoshop (via the difference layer mode). That this image is nearly completely black, 

even for an exceptionally poor quality output image (based on output metrics), indicates that 

each pixel in the output image is extremely close to the value of the target image. Examining 

the image, approximately 74% of the pixels have integer values of 0, indicating that the pixel 
values in the two images are effectively identical. For better quality output images (the vast 

majority of outputs), the differences are much smaller.  

 

Figure 7. cGAN output, left, compared to the target image, center. Right is the difference between the 

two images (via difference layer mode in Photoshop). The nearly black result shows that most pixels 
have nearly the same value (the image on left is an unusually poor output, thus showing at least some 

difference between the two images) 

As predicted, two significant issues pertain to the cGAN solution. First is that high frequency 

elements of the images are very slightly blurred, which was expected due to the highly weighted 

MSE factor in error accumulation, an error metric that tends to produce pixels more averaged 
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over an image, especially in high frequency areas. Though MSE did very well correcting for 

outlying pixels or groups of pixels, thus greatly reducing image noise, this comes at the cost of 

a slight blurring or softening of the image. Fortunately, there is a simple solution to this problem: 

oversampling. This technique, which is used in many disciplines, including video games, blows 
up images beyond 100% before performing convolutional tasks on them. In our case, we 

doubled both the X and Y dimensions of our validation images (2X oversampling, which 

quadruples image size) before running the cGAN on them. After the network processed this 

larger image, producing a matching corrected one, we reduced the scale back to the original 

size. As the cGAN works well when applied to images larger than those it is trained on (see 

Isola 2017), the larger image size did not prove to be a problem for the network. Figure 8 shows 

a blown-up section of the same image run through the network at 100% per dimension versus 

200% per dimension. While the differences between the images are subtle, there is a distinct 

sharpening of edge detail in the oversampled image. We could also, of course, train on 

oversampled data, though this requires more memory and time for the training.  

The second problem area with the cGAN is more pernicious: as each image is run through 
the network individually, spurious pixels or patches can appear in one image that disappear (or 

move about the image) in the next. In addition, images can be corrected to different solutions 

when they are being created individually, thus producing images that have slightly different 

general characteristics (e.g., the color cast in one might be very slightly bluer than the color cast 

of another). When examining an individual image these rogue elements are generally slight 

variations, and thus are relatively invisible (or at the least inoffensive to the viewer). When 

viewed one after another in a moving image sequence, however, the changes between each 

image can produce a flickering appearance that is distracting. 

 

Figure 8. The cGAN run on a standard sized image (100% in X and Y), on top, versus a 2X oversampled 
image (200% in X and Y), on bottom. A blown up portion of the image is shown here in order to reveal 

fine detail 

We attempted two solutions for these inter-image problems, both of which worked well. Our 

first solution was to utilize post-hoc frame blending, a trick that has been used for years to good 

effect to match images. The left-hand side of Figure 9 shows a (greatly exaggerated) problem 

with frames not matching, while the right-hand side demonstrates how frame blending reduces 

the differential changes between frames. Frame blending, as its name suggests, takes 

information from surrounding frames (backwards and forwards by some number of frames) and 
averages pixel values between them. While each frame becomes softer using this method, the 

moving video image, at 24 or 30 frames per second, is markedly improved and the individual 

image softness is not apparent.  
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Figure 9. Multi-frame differences produce a flickering effect, left (greatly exaggerated for clarity), while 
frame blending, right, smooths out frame-to-frame differences to produce a more pleasing sequence of 

images 

Our other solution to the variability of concurrent images was, as discussed above, to 

increase the dimensions of our data tensor to read in image sequences all at once, creating a 

temporal dimension. By altering the data tensor so that the cGAN trained on a four dimensional 

‘image’—X, Y, image number, color channel—it learned to generate sequences of images with 

little variation between them. Due to memory constraints we were limited to 18 images per 

sequence, but this number of frames was effective at reducing variation between frames to a 
very small amount. One interesting discovery when training on four dimensional images was 

that flipping the horizontal dimension of random images within the sequence actually worked 

better than keeping them all in their original horizontal configuration. Figure 10 shows a portion 

of an image sequence (with random flipping), indicating that this solution creates consistent 

output images over a sequence.  

 

Figure 10. Training the cGAN on image sequences as a group produces a more consistent look. Left is 
the uncorrected input, middle the cGAN output, and right, the corrected target image. Note the random 

image flipping in the sequence 

Very importantly, the cGAN generalizes well. Given image types the network has not trained 

on at all, as in Figure 11, the network produces reasonable quality results, indicating that even 

with a small and specific data set to train on (i.e., talking heads video sequences), it already can 

generalize to a larger class of uncorrected images. With a larger, more diverse training set the 

quality of output should improve even more. 
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Figure 11. Given totally new types of input images, the cGAN produces high quality results. Original 
uncorrected images are on the left, while corrected output images are on the right 

6. DISCUSSION AND CONCLUSION 

Both the classification and the conditional generative adversarial neural networks produce very 

high quality results. Comparatively speaking, the classification system’s main shortcoming—

its inability to generalize well beyond a single-problem, labeled data set—is likely to be a more 

significant issue than the two problems the cGAN has—softer details and rogue, changing 

elements in succeeding images (creating image flicker).  

The only really effective way to create a more robust classification network is to accrue, and 

more problematically, properly label a large database of images. Labeling is not only time 

consuming but also highly challenging, as any number of subtle corrections can be performed 
by a color grader while working on an image. Effectively notating the range of input image 

problems being corrected for by the colorist given a real-world image is something that could 

perhaps be solved by keystroke recording software. The number of classification categories, 

however, would then become problematic. A colorist might, say, make 20 changes to one image 

sequence, and 20 changes to another image, but these changes will almost certainly not be 

identical, and thus each set of changes needs to be its own classification category. Given that 

each change can at the least go from 1% change to 100% change (and very possibly more than 

100%), the set of classification categories, even assuming each category only accounted for one 

integer percentage point at a time, could be  20100, or 20,000 categories for only these 20 

change categories. Thus the number of possible categories would grow into the tens of 

thousands, massively increasing training time and likely reducing the effectiveness of the 
network as a whole, as it would have to discriminate between very subtly differing categories.  

The cGAN’s issues, on the other hand, have already been partially addressed even with the 

limited initial data set used. Edge softening is already effectively taken care of, as oversampling 

(followed by image reduction after processing) has been added to our pipeline, and works very 

efficiently to sharpen edges and other high frequency elements in the images. Working with 

images larger than those trained on is also not a problem, as there have been few issues noted 

in our tests. Furthermore, with more time and resources, training can easily be done on larger 

images, almost certainly improving results further.  

Image-to-image variance is the outstanding issue with the cGAN. We tried two solutions to 

this problem, each of which had a positive effect. Our first solution was to post-process the 

image sequences using frame blending. This solution works well, but there can still remain 
subtle flickers, and unfortunately the individual images are degraded, as they become somewhat 

smoother and blurrier, which while generally undetectable for a viewer is nonetheless a 

reduction of overall quality and fidelity to the source images. Our second solution was to add a 

temporal dimension to our image data tensor. This addition, while increasing memory load on 
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the CPU/GPU system, allows for image sequences to be corrected as a unit, creating a correction 

that accounts for a long sequence of very similar images (as they are sub-second frames in a 

video clip) rather than to individual frames. This solution drastically reduced inter-frame 

differences in the video clips we used to validate our results. One other potential solution is to 
modify our code to include temporal convolution as in (Ji et al 2013), though it is not obvious 

that this will produce better results than the image sequence modification we have implemented, 

as a combination of frame blending and image sequence training created nearly ideal output.  

 Both our classification network and our conditional generative adversarial network were 

trained to produce high quality output from the data we gave them. The classification network 

could easily identify (classify) problem areas in an image that had a single detuning error. The 

cGAN produced images that are nearly indistinguishable from the target output images. Our 

opinion is that between the two networks, the cGAN system is more suited to further research, 

as collecting unlabeled image pairs is relatively easy and straightforward, and as the issues still 

outstanding are partially solved, and thus more tractable.  

Though color correction is considered an aesthetic task, both of our neural networks learned 
the basics of the task using just 16,200 images. We believe that with further training on larger, 

more diverse data sets, our cGAN network in particular can provide a practical solution to a 

complex, time-consuming, artistic task with which every film/video producer has to contend. 
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