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ABSTRACT 

Feature dimensionality has always been one of the key challenges in text mining as it increases 

complexity when mining documents with high dimensionality. High dimensionality introduces 

sparseness, noise, and boosts the computational and space complexities. Dimensionality reduction is 

usually addressed by implementing either feature reduction or feature selection techniques. In this work, 

the problem of dimensionality reduction is addressed using singular value decomposition and the results 

are compared to information gain approach through retaining top-k features. High dimensional clustering 

is carried by using k-means algorithm with gaussian function. The proposed dimensionality reduction 

and clustering approaches are compared to conventional approaches and results prove the importance of 

our approach. 
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1. INTRODUCTION 

Mining text documents using unsupervised learning has the prime challenge from the document 
dimensionality. In this regard, methods used to reduce the dimensionality have received wide 
attention from text mining researchers. Dimensionality is addressed in literature using two 
methods, Feature reduction and Feature selection (Hawashin, Mansour, & Shadi, 2013). In the 
feature extraction process also called feature reduction, the high dimensional text documents 
are projected onto their corresponding low dimensional representation in feature space using 
algebraic rules and transformations. The objective is to find an optimal transformation matrix 
corresponding to the input high dimensional document feature matrix (Lam Hong Lee et al., 
2012).  
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The objective of present work is to apply basic gaussian function to k-means algorithm to 

cluster text documents and perform dimensionality reduction applying SVD. The SVD 

approach is extended to determine top-k important features. The application of gaussian 

membership function to k-means for document clustering is inspired from contribution of 

authors (Jung-Yi Jiang, Ren-Jia Liou, & Shie-Jue Lee, 2011).The membership function used 

retains the original distribution of words in documents. In the feature selection process, we 

reduce the feature set W, consisting of w features to a new reduced word set W’, consisting of r 

features, where | r |<| w |. These set of features denoted by W’, are later used when performing 

classification and clustering (Jing Gao & Jun Zhang, 2005; Hussein Hashimi, Alaaeldin Hafez, 

& Hassan Mathkour, 2015). The transformed view of document corpus using feature extraction 

process is depicted pictorially using figure 1. The paper is organized as follows. Related works 

are reviewed in Section 2, a review on feature selection using SVD for dimensionality reduction 

is carried out in Section-3. Section-4 introduces proposed approach. Results are discussed in 

Section-5. The paper is concluded in Section-6. 

2. RELATED WORKS 

In G. SureshReddy, Rajinikanth.T. V. & Ananda Rao (2014); Gangin Lee & Unil Yun (2017) 

frequent item sets are obtained from considered text corpus. These obtained frequent item sets 

are later used to form the feature set. This feature set is used to form the document-feature 

matrix and a document to document similarity is generated (Chintakindi Srinivas, Vangipuram 

Radhakrishna & C.V. Guru Rao, 2013). The similarity matrix is used to cluster documents. The 

design and analysis of similarity measure (Suresh Reddy, 2016 and Chintakindi Srinivas, 

Vangipuram Radhakrishna & C.V. Guru Rao, 2015) is based on considering word distribution. 

The similarity measure is based on feature function. To enhance clustering quality, (Shady 

Shehata, Fakhri Karray, & Mohamed Kamel, 2010) proposes concept based mining. Yanjun Li, 

Congnan Luo, Chung, & S. M. (2008), makes use of statistical data and uses this data to select 

suitable features from documents which to yield better clustering results. (Shuigeng Zhou  

& Jihong Guan, 2002) discuss approach for increasing efficiency of text classification.  

Text clustering algorithms usually suit non-distributed environments, and usually are not 

that compatible to distributed scenario. In O. Papapetrou, W. Siberski & N. Fuhr (2012), 

authors propose a decentralized probabilistic clustering approach that suits distributed 

clustering. A fuzzy algorithm (Andrew Skabar & Khaled Abdalgader, 2013) is proposed that 

aims at generating sentence-level clusters. Authors (Shie-Jue Lee, Jung-Yi Jiang, 2014) 

introduces, multi-label text clustering using fuzzy logic. An extended and improved similarity 

measure is proposed in G. Suresh Reddy, A. Ananda Rao, & T. V. Rajinikanth (2015), which 

improves similarity values when compared to Suresh Reddy et al. (2014). SVD based clustering 

is adopted in Jing Gao et al. (2005); Suresh Reddy et al. (2015). Text classification such as 

rough sets based (Libiao Zhang, Yuefeng Li, Chao Sun, & Wanvimol Nadee, 2013), hybrid 

(Chin Heng, 2012), extracting group features by substring approach (Dell Zhang & Wee Sun 

Lee, 2006), SVM based (Jung Yi Jiang, 2011; Wen Zhang, Taketoshi Yoshida, & Xijin Tang, 

2008) are some of the related works. Application to text mining w.r.t market prediction is 

discussed in Arman, Saeed, Ying Wah, & David (2014). In Sajid Mahmood, Muhammad 

Shahbaz, & Aziz Guergachi (2014), association rules (positive and negative) are extracted from 

text corpus and used to text clustering. A text clustering approach using generated similarity 
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matrix is proposed in Wen Zhang (2010). Application of text clustering to pattern discovery is 

done in Ning Zhong, Yuefeng Li, & Sheng-Tang Wu (2012). Dimensionality and selection 

criteria to obtain, quality text classification and improved clustering are studied in Hussein, 

(2015); Fodor (2002); Christopher (2009); Sunghae Jun, Sang-Sung Park, & Dong-Sik Jang, 

(2014) and Jung (2011). A review on gene classification is carried in Shadi Aljawarneh  

& Bassam Al-shargabi (2013). 

In the present work, our idea is to design a similarity measure overcoming dis-advantages in 

Euclidean, Cosine, Jaccard distance measures (Yung-Shen Lin, Jung-Yi Jiang & Shie-Jue Lee, 

2014). The proposed measure considers distribution of features of the global feature set.  

Applications of similarity measure in software reuse are addressed by Chintakindi et al. (2013); 

Chintakindi et al. (2014); Chintakindi et al. (2015). Approach for clustering users based on 

transactions is given in M. S. B. Phridviraj, Vangipuram RadhaKrishna, Chintakindi Srinivas, 

& C.V. GuruRao (2015). Temporal pattern mining in time stamped temporal databases require 

similarity functions which can handle supports expressed as vectors. Novel similarity measures 

for temporal context are proposed in Vangipuram Radhakrishna, P. V. Kumar, & V. Janaki, 

(2015); Vangipuram Radhakrishna, P.V.Kumar, & V.Janaki (2016); Shadi A. Aljawarneh, 

Vangipuram Radhakrishna, P.V.Kumar, & V. Janaki (2017); Vangipuram Radhakrishna, Shadi 

A. Aljawarneh, Puligadda Veereswara Kumar, & Kim-Kwang Raymond Choo (2016) and V. 

Radhakrishna, P. V. Kumar, V. Janaki & S. Aljawarneh (2016). Applications of similarity 

measures to medical data mining are addressed in Shusaku Tsumoto, Haruko Iwata, Shoji 

Hirano, Yuko Tsumoto (2014). An application of text mining is discussed in the context of 

Arabic text in Nafaa Haffar et al. (2017). Semantic kernel for text classification is proposed in 

Berna Altınel, Murat Can Ganiz, & BanuDiri (2015) which is based on text corpus. Data 

mining and text mining principles are applied for intrusion detection in Gunupudi Rajesh 

Kumar, N. Mangathayaru, & G. Narsimha (2015); Shadi A. Aljawarneh, Raja A. Moftah, 

Abdelsalam M. Maatuk (2016); Gunupudi Rajesh Kumar et al. (2016); Shadi A. Aljawarneh et 

al. (2011). Reuse of resources in e-learning systems almost become impossible because of bad 

indexing. N. Haffar, M. Maraoui & S. Aljawarneh (2016) addresses this issue by proposing a 

dynamic system which uses natural language tools SAPA and AL-KHALIL. Ons Meddeb, 

Mohsen Maraoui, & Shadi Aljawarneh (2016) proposes a new model for AHRS (Arabic hand 

recognition system). The system is modeled considering preprocessing, segmentation, features 

extraction, classification and post-processing. Recognizing research trends by mining data 

obtained using search engines has been studied in Mohammed R Elkobaisi, Abdelsalam M 

Maatuk & Shadi Aljawarneh (2015).  

3. FEATURE SELECTION USING SVD 

Feature dimensionality has always been one of the key challenges in text mining as it 

increases complexity when mining documents with high dimensionality. High dimensionality 

introduces sparseness, noise, and boosts the computational and space complexities. 

Dimensionality reduction is usually addressed by implementing either feature selection or 

feature reduction techniques. For feature selection, SVD (singular value decomposition) and 

IG (Information gain) approaches are adopted through retaining top-k features to compare the 

dimension reduction achieved. Section 3.1 below outlines the dimensionality reduction using 

singular value decomposition.  
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3.1 Dimensionality Reduction Using SVD 

The feature selection using singular value decomposition, is achieved using the procedure 

discussed below 

1. Initialize the text corpus obtained after the preprocessing stage as a feature document 

matrix representation. This feature document matrix is denoted as [M]dxw. 

2. Apply the method of SVD to transform the initial matrix,[M]dxw to its equivalent 

real valued matrix factorization consisting element matrices, document-document, 

feature-feature and singular value matrices. 

3. In singular matrix obtained after decomposition, choose only elements of the first 

column. Each column in the singular matrix represents a column vector of dimension 

d, equal to the number of documents in the text corpus. ’w’ columns are available in 

the singular matrix. 

4. To perform feature selection, first sort the obtained column vector in step-3. Feature 

selection is done by selecting only the top-k features from the sorted column vector. 

The top- k features are those with significant Eigen values which add up to 90% total 

energy. Also, features whose Eigen values are less than unity may be neglected as 

they do not affect the learning approaches. 

5. Consider these top-k features and form the final global feature set. 

 

Figure 1. Feature Reduction 

4. PROPOSED METHOD 

In this section, proposed algorithm to cluster the corpus of text documents using fuzzy 

Gaussian membership function is discussed. Documents are expressed in terms of their feature 

probabilities. The total feature probability of each feature with respect to all documents is 1.  
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4.1 Algorithm 

Algorithm for clustering using fuzzy similarity measure based K-means  

Input      :  Text Corpus with documents expressed in terms of word probability   

Output   :   K-Generated Clusters   

Measure :   Fuzzy Gaussian Membership Function 

 

Step-1: Decide the number of clusters required. Call this value as k.  

Choose the number of clusters required. 

Step-2: Choose the k-appropriate cluster center.  

Choose any random document, say document1 and compute similarities between 

document1 and all other documents in the corpus to be clustered and then choose the top k-1 

least similar documents. The cluster center is now document vectors of the initial randomly 

chosen document say document1 and these top k-1 documents. 

Step-3: Initialize mean and deviation for k-clusters. Initialize iteration I=0  
Initialize k-cluster with document vectors as their cluster center and choose the standard 

deviation to some fuzzy value preferably not zero and lies between 0 and 1. 

Step-4: Obtain similarity between each document to these k-cluster centers. 

Find fuzzy similarity between each document from the text corpus and k-cluster centers. 

The document is moved to cluster to which it shows maximum fuzzy similarity value. This 

finishes one iteration, update I by incrementing it by 1 i.e. I= I+1 

Step-5: Update cluster center for these k-clusters. 

If clusters formed in the previous iteration are different to clusters obtained at the end of 

iteration, repeat step-5. Once the documents are assigned to clusters, at the end of iteration, 

compute the average of document vectors assigned and are grouped to a specific cluster. This 

value becomes mean of the corresponding cluster or clusters. If no change exist in the cluster 

configuration, than stop generating clusters. 

Step-6: Compute similarity of each document from text corpus to updated k-cluster 

centers. 

Find fuzzy similarity between each document from the text corpus and these updated  

k-cluster centers. The document is moved to cluster to which it shows maximum fuzzy 

similarity value. Update I by 1 i.e. I = I+1, go to step-5. 

Step-7: Stop the clustering when clusters do not change between successive iterations.  
Clusters generated are the final k-clusters. 

 

 

The input to the fuzzy k-means algorithm is the text corpus with documents expressed in 

terms of feature probabilities and output is k-clusters generated. Since the measure computes 

similarity, choose the maximum value for deciding the choice. 

4.2 Fuzzy Membership Function 

The standard Gaussian function is adopted for clustering documents in incremental approach. 

The membership function defines the similarity degree of document doci to a given cluster say 

‘g’. The Gaussian membership function is given by equation 1. 
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Here k represents, k
th

 feature considered.     
  refers to k

th
 feature value in document i, 

     
  refers to mean of k

th
 feature in document ‘i'. We use the membership function which is 

standard Gaussian distribution function for computing similarity between cluster feature and 

new document corresponding feature. The notion,     in equation (1) represents product 

considered for all k features (1≤ k ≤ m) where ‘m’ denotes number of features.  

5. CASE STUDY  

5.1 Text Clustering  

Consider the sample corpus obtained after dimensionality reduction as shown in Table 1.  

 

Table 1. Sample Text Corpus 

 
Features  

Documents w1 w2 w3 Class 

Document 1 1 2 1 C
(1)

 

Document 2 0 1 3 C
(1)

 

Document 3 0 1 0 C
(1)

 

Document 4 1 5 2 C
(1)

 

Document 5 2 0 1 C
(2)

 

Document 6 5 0 1 C
(2)

 

Document 7 10 0 2 C
(2)

 

Document 8 3 0 1 C
(2)

 

Document 9 4 0 0 C
(2)

 

 

Table 2 shows documents expressed in terms of word probabilities. The total probability of 

each word with respect to all documents of the corpus is always equal to 1. This property of 

word probabilities is used for clustering using fuzzy measure. Table 3 shows computations of 

similarity between documents, document 1 to all other documents. i.e document 2 through 

document 9. The document 7 in Table 3 shows least similarity to document 1. Hence, this 

forms the best candidate for another cluster center. The similarity is computed using proposed 

fuzzy membership function.  
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Table 2. Modified Text Documents   

 Features probabilities 

Documents w1 w2 w3 

Document 1 0.038462 0.222222 0.090909 

Document 2 0 0.111111 0.272727 

Document 3 0 0.111111 0 

Document 4 0.038462 0.555556 0.181818 

Document 5 0.076923 0 0.090909 

Document 6 0.192308 0 0.090909 

Document 7 0.384615 0 0.181818 

Document 8 0.115385 0 0.090909 

Document 9 0.153846 0 0 

 

Table 3. Choosing Cluster Centers   

Documents Document 1 

Document 2 0.829 

Document 3 0.9154 

Document 4 0.6203 

Document 5 0.816 

Document 6 0.7465 

Document 7 0.4916 

Document 8 0.801 

Document 9 0.7528 
 

 

Table 4. Initial clusters With Centers 

Clusters Documents w1 w2 w3 

Cluster 1 Document 1 0.038462 0.222222 0.090909 

Cluster 2 Document 7 0.384615 0 0.181818 
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We get two clusters, cluster 1 and cluster 2 with document 1 belonging to cluster 1 and 

document 7 belonging to cluster 2. This is represented in Table 4. This finishes the 

initialization and become the starting point for clustering. Table 5, shows the computation of 

similarities of documents in corpus to both clusters. Now document 1, document2, document 

3, document 4, document 8, document 9 are grouped to cluster 1 while document 6, document 

7 are grouped to cluster 2. Call this one as first iteration, say iteration I=1. 

Table 5. Similarity Computations to Initial Clusters, Iteration-1 

 
Cluster-1 Cluster-2 Decision 

Document 1 1 0.4914 Cluster 1 

Document 2 0.829 0.509 Cluster 1 

Document 3 0.9154 0.4614 Cluster 1 

Document 4 0.6202 0.1801 Cluster 1 

Document 5 0.8159 0.6624 Cluster 1 

Document 6 0.7465 0.8344 Cluster 2 

Document 7 0.4916 1 Cluster 2 

Document 8 0.801 0.723 Cluster 1 

Document 9 0.7528 0.708 Cluster 1 

 

Table 6. Similarity Computations to Initial Clusters, Iteration-2 

 
Cluster-1 Cluster-2 Decision 

Document 1 0.9725 0.6339 Cluster 1 

Document 2 0.8757 0.6334 Cluster 1 

Document 3 0.94 0.6334 Cluster 1 

Document 4 0.4928 0.2247 Cluster 1 

Document 5 0.9199 0.8292 Cluster 1 

Document 6 0.8591 0.9557 Cluster 2 

Document 7 0.5907 0.9557 Cluster 2 

Document 8 0.909 0.8797 Cluster 2 

Document 9 0.8523 0.8634 Cluster 2 

 

Since there is a change in configuration of clusters, proceed to next iteration. This is done 

to verify if clusters are consistent or not. At the end of second iteration, Iteration-2 has clusters 

updated and varying once again. So, proceed to one more iteration. At the end of second 

iteration, document 1, document 2, document 3, document 4, document 5, document 8 are 

grouped to cluster 1 while document 6, document 7 and document 9 are grouped to cluster 2. 

Call this as second iteration, say iteration I=2. This is represented in Table 6. 
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Table 7. Similarity Computations to Initial Clusters, Iteration-3 

 
Cluster-1 Cluster-2 Decision 

Document 1 0.983 0.693 Cluster 1 

Document 2 0.893 0.657 Cluster 1 

Document 3 0.92 0.726 Cluster 1 

Document 4 0.538 0.237 Cluster 1 

Document 5 0.887 0.894 Cluster 2 

Document 6 0.817 0.989 Cluster 2 

Document 7 0.5557 0.8934 Cluster 2 

Document 8 0.874 0.936 Cluster 2 

Document 9 0.804 0.936 Cluster 2 

 

Table 6 shows computation of similarities of documents in corpus to both updated clusters 

at the end of iteration-2. Now documents document1, document 2, document 3, document 4 

are grouped to cluster 1 while document 5, document 6, document 7, document 8, document 9 

is grouped to cluster 2. Call this as third iteration, say iteration I=3. This is shown in table 7. 

Since clusters are changed once again, proceed for next iteration. Since clusters generated at 

Iteration-4 also remain same, stop here and declare clusters formed as final clusters. Table 8 

show the final updated clusters using proposed method. Initially had two classes with 

document 1, document 2,document 3, document 4 categorized as class-1 and document 5, 

document 6, document 7, document 8,document 9 are categorized to class-2. The obtained 

clusters have the same documents, which justifies the efficiency and accuracy of the approach. 

Table 8. Initial Clusters with Centers 

Clusters Documents 

Cluster 1 1,2,3,4 

Cluster 2 5,6,7,8,9 

5.2 Dimensionality Reduction  

Let M be the sample document feature matrix which is considered for dimensionality 

reduction. The order of the matrix is 9 X10. Here, consider the same input document set used 

in the Table 9 to demonstrate the dimensionality reduction process using singular value 

decomposition. The sample input is given below for the sake of convenience.  
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The word document matrix in Table 9 consist of 9 documents, 10 features and 2 classes. The 

initial feature set contains ten terms W = {campus, building, lane, floor, relax, food, colony, 

web, WC, fridge}. The feature set size is 10.  This is treated as an initial global vector. The 

initial feature set is obtained after preprocessing the text corpus set consisting these nine 

documents. The objective is to see the possibility of dimensionality reduction and at the same 

time, also retain the dominant and significant features eliminating least dominating features 

called outliers.  

 

Table 9. Word Document Matrix 

 Features or  words 
 

Class Doc 
w

(1) 

campus 

w
(2)

 

building 

w
(3)

 

lane 

w
(4)

 

floor 

w
(5)

 

relax 

w
(6)

 

food 

w
(7)

 

colony 

w
(8)

 

web 

w
(9)

 

wc 

w
(10)

 

fridge 

D(1) 0 1 0 0 1 1 0 0 0 1 C(1) 

D(2) 0 0 0 0 0 2 1 1 0 0 C(1) 

D(3) 0 0 0 0 0 0 1 0 0 0 C(1) 

D(4) 0 0 1 0 2 1 2 1 0 1 C(1) 

D(5) 0 0 0 1 0 1 0 0 1 0 C(2) 

D(6) 2 1 1 0 0 1 0 0 1 0 C(2) 

D(7) 3 2 1 3 0 1 0 1 1 0 C(2) 

D(8) 1 0 1 1 0 1 0 0 0 0 C(2) 

D(9) 1 1 1 1 0 0 0 0 0 0 C(2) 

 

Stage-1: Apply SVD  

On applying SVD, three matrices are obtained, left singular matrix called document x 

document matrix, Eigen value matrix which is a diagonal matrix and the third matrix called as 

right singular matrix which provide the real valued matrix factorization denoted as  

M =                                                     . Table 10, Table 11 and Table 

12 gives document to document, Eigen value matrix and word to word matrices. Table 13 and 

Table 14 gives the Eigen values before and after sorting. 
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Table 10.  Matrix U (Document X Document Matrix) 

-0.1349    -0.2729 -0.1618 -0.4403 0.7357 -0.0484 -0.2167 -0.2213 -0.2186 

-0.1525 -0.4215 0.6911 -0.0219 -0.1221 -0.3667 0.3545 -0.0364 0.2114 

-0.0137 -0.1428 -0.0284 0.1846 -0.2607 -0.236 -0.2333 -0.7336 -0.4778 

-0.1920 -0.7976 -0.3913 0.1966 -0.1377 0.1438 -0.1904 0.2228 0.0982 

-0.1642 -0.0298 0.4653 0.1179 0.332 0.4638 -0.5669 -0.2121 0.2238 

-0.3748 0.0532 -0.0049 -0.7739 -0.4096 -0.0031 -0.2974 0.0224 0.0319 

-0.7796 0.2643 -0.0444 0.3361 0.1631 -0.3178 -0.0662 0.221 -0.1632 

-0.2689 -0.0040 0.1456 0.0412 -0.2158 0.6781 0.4732 -0.0094 -0.4176 

-0.2720 0.1330 -0.3204 0.0738 -0.076 0.1047 0.3139 -0.5171 0.6462 

Table 11. Eigen Value Matrix S 

6.33 0 0 0 0 0 0 0 0 0 

0 3.88 0 0 0 0 0 0 0 0 

0 0 2.05 0 0 0 0 0 0 0 

0 0 0 1.73 0 0 0 0 0 0 

0 0 0 0 1.58 0 0 0 0 0 

0 0 0 0 0 1.15 0 0 0 0 

0 0 0 0 0 0 1.05 0 0 0 

0 0 0 0 0 0 0 0.66 0 0 

0 0 0 0 0 0 0 0 0.38 0 

 

Table 12. Matrix V (Feature X Feature matrix) 

-0.5732 0.2644 -0.1547 -0.2447 -0.3912 -0.153 -0.0059 0.2726 -0.5145 -0.0462 

-0.3697 0.1136 -0.2804 -0.2699 0.3627 -0.504 0.0956 -0.4121 0.348 -0.1155 

-0.2981 -0.0903 -0.2996 -0.0728 -0.4254 0.5242 0.221 -0.0907 0.5108 0.1849 

-0.4808 0.2294 0.0765 0.7154 0.3332 0.2537 0.0205 -0.1136 -0.0968 -0.0231 

-0.0819 -0.4804 -0.4597 -0.0272 0.2896 0.207 -0.1555 0.3372 -0.058 -0.5314 

-0.3505 -0.4191 0.6769 -0.3264 0.1406 0.1585 0.2636 -0.0745 -0.0593 -0.1155 

-0.0869 -0.5553 -0.0584 0.3203 -0.4143 -0.2726 -0.2461 -0.4879 -0.1829 0 

-0.1775 -0.2456 0.1243 0.2943 -0.0609 -0.4679 0.0928 0.6126 0.3824 0.2311 

-0.2083 0.074 0.2025 -0.1844 0.0538 0.1237 -0.8821 0.047 0.2418 0.1386 

-0.0516 -0.2753 -0.2692 -0.1405 0.3763 0.0826 0.025 0.0022 -0.3144 0.7625 
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Table 13. First column Elements of Right Singular Feature Matrix 

Features before sorting 

w
(1)

 -0.5732 

w
(2)

 -0.3697 

w
(3)

 -0.2981 

w
(4)

 -0.4808 

w
(5)

 -0.0819 

w
(6)

 -0.3505 

w
(7)

 -0.0869 

w
(8)

 -0.1775 

w
(9)

 -0.2083 

w
(10)

 -0.0516 

 

Table 14. Sorted features 

Features before sorting Features after sorting 

w
(1)

 0.5732 w
(1)

 0.5732 

w
(2)

 0.3697 w
(4)

 0.4808 

w
(3)

 0.2981 w
(2)

 0.3697 

w
(4)

 0.4808 w
(6)

 0.3505 

w
(5)

 0.0819 w
(3)

 0.2981 

w
(6)

 0.3505 w
(9)

 0.2083 

w
(7)

 0.0869 w
(8)

 0.1775 

w
(8)

 0.1775 w
(7)

 0.0869 

w
(9)

 0.2083 w
(5)

 0.0819 

w
(10)

 0.0516 w
(10)

 0.0516 
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Table 15. Sorted features and sorted Eigen values  

Features after sorting Features after sorting 

w
(1)

 0.5732 EV
(1)

 6.3313 

w
(4)

 0.4808 EV
 (4)

 3.8887 

w
(2)

 0.3697 EV
 (2)

 2.0543 

w
(6)

 0.3505 EV
 (6)

 1.7350 

w
(3)

 0.2981 EV
 (3)

 1.5891 

w
(9)

 0.2083 EV
 (9)

 1.1554 

w
(8)

 0.1775 EV
 (8)

   1.0549 

w
(7)

 0.0869 EV
 (7)

 0.6650   

w
(5)

 0.0819 EV
 (5)

 0.3829 

w
(10)

 0.0516 EV
(10)

 0.0000 
 

Table 16. Sorted features with Eigen values 

features w
(1)

 w
(4)

 w
(2)

 w
(6)

 w
(3)

 w
(9)

 w
(8)

 

singular values 6.3313 3.8887 2.0543 1.7350 1.5891 1.1554 1.0549 
 

Table 17. Reduced document feature matrix using top-7 features 

 
w

(1)
 

campus 

w
(2)

 

building 

w
(3)

 

lane 

w
(4)

 

floor 

w
(6)

 

food 

w
(8)

 

web 

w
(9)

 

wc 

D
(1)

 0 1 0 0 1 0 0 

D
(2)

 0 0 0 0 2 1 0 

D
(3)

 0 0 0 0 0 0 0 

D
(4)

 0 0 1 0 1 1 0 

D
(5)

 0 0 0 1 1 0 1 

D
(6)

 2 1 1 0 1 0 1 

D
(7)

 3 2 1 3 1 1 1 

D
(8)

 1 0 1 1 1 0 0 

D
(9)

 1 1 1 1 0 0 0 
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6. RESULTS  

Figure 2 shows dimensionality of documents after initial preprocessing phase, after applying 

SVD and after computing feature IG then applying SVD on the resultant document matrix. 

The dimensionality reduction of documents is not significant through computing IG and SVD, 

compared to applying only SVD. This can be depicted from the Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Dimensionality reduction obtained on Reuters-8 dataset with SVD, IG-SVD 

The graph of figure 2 , compares the dimensionality reduction achieved using both the 

approaches for a randomly chosen 100, 200, 300, 400, 500, 600 and 700 text documents from 

Reuters, R8 of R21578 text corpus after retaining top-k features by retaining 90% feature 

energy. From this it may be concluded, that SVD alone is sufficient and no need to compute 

IG.  
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Figure 3 shows dimensions of documents before and after applying SVD. For example, the 

global vector of features for 700 documents chosen randomly from Reuters, R8 text corpus 

consists of 3263 features. So the dimensionality of each of these documents obtained after the 

preprocessing phase i.e. stop word and stemming elimination before applying dimensionality 

reduction is 3263. After applying SVD, through retaining 90% feature energy, the reduced 

dimensionality is 510. This means that it achieved almost 85% dimensionality reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dimensionality reduction obtained on Reuters-8 dataset with / without SVD 

One of the evaluation approaches for clustering is through the use of a Silhouette plot. The 

Silhouette value ranges from -1 to +1. A high Silhouette value, usually 1denotes that it is  

well-matched to its own cluster and poorly matched to neighboring clusters. Conversely, if 

many points show a low or negative Silhouette value, then the clustering solution may have 

either too many or too few clusters. For the working example in section 5.1, the average 

silhouette value 0.4622, for k=2, after dimensionality reduction using fuzzy membership 

function is shown in figure 4.  
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Figure 4. Average Silhouette Value, 0.4622, for k=2 after Dimensionality Reduction Using Fuzzy 

Membership Function 

 

Figure 5. Average Silhouette Value, 0.4337, for k=2, Cosine, Before Dimensionality Reduction 
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Figure 6. Average Silhouette Value, 0.2979, for k=2, City Block Distance 

The average silhouette value 0.4337, for k=2, before dimensionality reduction using 

Cosine measure is shown in figure 5. The average silhouette value 0.2979, for k=2, for City 

block distance measure is shown in figure 6. This shows that the proposed approach for 

clustering better compared to existing K-means approach and this is obtained because of the 

fuzzy measure used for clustering. 

7. CONCLUSIONS 

This paper discusses an approach for clustering high dimensional text documents by applying 

K-Means algorithm using novel fuzzy Gaussian membership function which uses word 

probabilities with respect to documents in the text corpus. For clustering, the reduced 

document-feature matrix obtained using feature selection and feature extraction techniques is 

used. The results of dimensionality reduction using information gain and SVD are also 

compared. The conventional SVD approach is supported by defining a procedure to obtain 

top-k important features. The effectiveness of clustering using membership function is 

addressed using silhouette plots. The results show the performance of K-means clustering is 

improved when adopted the proposed measure and approach. 
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