
IADIS International Journal on Computer Science and Information Systems

Vol. 11, No. 1, pp. 115-133
ISSN: 1646-3692

115

ON LEARNING ASSISTANCE SYSTEMS FOR

NUMERICAL SIMULATION

Irina Bernst, Christof Kaufmann and Jörg Frochte. Dept. of Electrical Engineering and

Computer Science, Bochum University of Applied Science , 42579 Heiligenhaus, Germany.

ABSTRACT

The work we present deals with the problem to provide learning assistance systems in the context of
simulation and modelling. We develop a classification scheme for learning assistance systems and their
use cases. Beyond this, we discuss how learning from simulation data differs from traditional knowledge
discovery from data bases. The discussion contains a classification and review of existing approaches
followed by an enclosing case study of an assistance system for load balancing purpose in FEM
simulation. The presented application case uses a two-stage architecture to minimize additional

computational costs. The approach does not require labeled data in the sense of a quality rating for a load
distribution nor a teacher for the initial setup and can improve itself unsupervised. For the FEM
simulation on heterogeneous distributed systems we introduce a novel feature set and perform an
evaluation for several problem sets.

KEYWORDS

Assistance System, Machine Learning, Data Mining, Simulation, Load Balancing, FEM

1. INTRODUCTION

Nowadays numerical simulation in science and product development has become quite

standard approach next to classical experiments. With the growing capacity of the computers
simulation models grow in size and complexity. Also multi-domain modeling and simulation

tools became more and more popular during the last years. To mention a few examples there is

COMSOL Multiphysics for FEM simulations or tools based on the modeling language

Modelica and collateral relatives like Simscape. The latter class of tools are more related to

models which can be represented by differential algebraic equations (DAE). Expressing

models with a declarative language increases the freedom in modeling in conjunction with the

possibility to make mistakes during the modeling process. A lot of work has already been

spent on the question how to assist the user debugging process see e.g. Bunus and Fritzson

(2002) or Pop et al. (2012).

IADIS International Journal on Computer Science and Information Systems

116

As an example for parameter complexity let us consider the dialog “Model Configuration

Parameters” in Simulink (R2015a) from TheMathWorks. For special use cases e.g. for a

real-time HIL simulation, which always comes along with code generation, there are at least

three major sub-dialogs that might play an important role: Solver, Optimization and Code
Generation. If we just look at the Solver dialog we can choose between many solvers.

Especially the fixed-step solvers, like “ode14x”, lead to more parameters, such as step size

aspects like “Solver Jacobian method”, “Extrapolation order”, “Number Newton’s

iterations” and so on. So before the simulation can be run, a lot of choices have to be made by

the user. This is not the case for a common simulation of a small system on a workstation,

since in that case the default settings perform well. But also other tools with code generation

capacity like Dymola provide a massive amount of options. Of course the problem is not

limited to real time simulation of DAEs. There are a lot of special demands like e.g. energy or

mass conservation that may occur. The selection of proper methods has already been covered

for specific applications by some parts of the scientific community, e.g. Stein and Curatolo

(1998). Due to the robustness of parameter-independent methods – such as direct solvers for
linear systems – these are often preferred over the most efficient and parameter-dependent

methods – such as domain decomposition and iterative solvers – in many engineering

contexts, see e.g. Burrows et al. (2013). Assistance systems could help to choose a method

that is superior in a specific application.

In this paper we will deal with the question how to classify learning assistance systems for

numerical simulation and modeling. By the term learning assistance systems we mean

assistance systems, which are able to perform the necessary knowledge discovery and

acquisition mainly autonomous, unlike in static approaches as e.g. discussed in Woyand et al.

(2012). Therefore we focus on the technique of simulation data mining for building these

assistance systems. We use the term simulation data mining in the spirit of Burrows et al.

(2011) and similar publications. This combination of simulation and data mining has been

successfully applied in different fields such as diagnosis of fluidic systems, see Stein (2003),
automotive crash simulation, see Painter et al. (2006), and aircraft engine maintenance, see

Mei and Thole (2008). Such a learning approach is able to avoid some common problems like

acquiring knowledge by rare experts. Additionally it has the chance to improve itself, which

also avoids being limited to an initial knowledge or rule set. Beyond this, being used in a

certain application case type, these systems will perform better and better on particular cases

of this type, which will be the most interesting cases for the user.

Our contributions in this paper are summarized as follows:

(1) We develop a classification scheme for learning assistance systems and their use

cases.

(2) We provide a novel survey how learning from simulation data can be distinguished

from traditional knowledge discovery from data bases.
(3) We provide a detailed case study about a machine learning approach for automating

the distribution of FEM simulations in heterogeneous environments. To do this we

develop and evaluate a working feature set and provide an appropriate performance

measure.

The sections of the remainder of this paper is organized along the mentioned contributions

starting with section 2 in which we describe the classification scheme. At last the paper is

finished with a discussion about the conclusion and future work.

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

117

2. CLASSIFICATION SCHEME FOR LEARNING

ASSISTANCE SYSTEMS AND USE CASES

This section first describes the common concept of a model hierarchy in modeling and

simulation context. Then this hierarchy is used to classify different types of assistance

systems, which act on different hierarchy levels.

2.1 Model Hierarchy and Use Cases

Firstly, we present an approach to divide the modeling process into hierarchical steps, which is

quite natural and common, see e.g. Finn and Cunningham (1994) or Stein (2008) for related

approaches. The purpose of a simulation is to see how a real or mental system reacts to an

input or a modification. A user has to build a model which behaves like the system for the

observed effects.

So when it comes to simulation the first step is the model. The model starts with the

physical behavior of the system and ends with the so-called computer model, which is an

executable unit that really runs on a computer system and produces results. It is a long way

from the intent to simulate a real or mental system to the computer model. We consider five

steps in the modeling procedure:

1. Real or Mental System
2. Physical Model

3. Mathematical Model

4. Numerical Model

5. Computer Model

In our case physical model means the part of the modeling process, where e.g. the engineer

mainly works with pen-and-paper. In this first step a lot of decisions are made. Often this is

the time for the main simplifications, since only the important effects for the system can be

taken into account. E.g. the geometry is simplified or material parameters are assumed to be

constant or linear. It is not possible to simulate the real world, but the reaction should be

realistic for the considered physical effects. However, there might be several ways or depths to

model an effect or even coupled effects. This will make the difference between the real system
and the simulated model. If we think about a simple pendulum, the modeler can decide that a

mathematical pendulum is sufficient for his purpose. Sometimes these decisions might be

performed automatically, because nowadays there exist approaches like Simscape or Modelica

Libraries in combination with a proper GUI etc.

When the modeler has fixed his physical model, he needs to find a mathematical

expression for it. The mathematical expression is – in contrast to a quite common presumption

– not unique. If you think of the pendulum example above one can e.g. describe the equations

of motion using a Laplace or a Newton based approach. Considering partial differential

equations, the physical model of linear elasticity can be modeled using the Lamé equation or

with a saddle point formulation and so on. Making these decisions we end up with the

mathematical model. In most cases these decisions will transform the physical model to a

mathematical model without further simplifications and assumptions, but in any case these
decisions will have implications when it comes to the numerical model.

For a PDE in general there is a wide range of methods like Finite Differences, Finite

Elements, Finite Volumes and Spectral Methods, see e.g. Brenner and Scott (2008) and Shen

IADIS International Journal on Computer Science and Information Systems

118

et al. (2011). Some are more or less fixed to a given application domain. Finite Volume

methods are for example preferred for hyperbolic PDEs. Let us assume that the initial problem

was linear elasticity model and the rough choice was the Finite Element Method (FEM).

Whatever one has chosen, the Lamé equation or saddle point formulation, it changes how the
FEM is applied on the mathematical model. A saddle point formulation e.g. will require

special finite element spaces providing some other benefits etc. Additionally, after one has

chosen the discretization in space, one has to choose the discretization in time. Concerning

discretization in time one has to decide e.g. between implicit and explicit solvers, Runge-Kutta

based approaches or multistep methods and so on. To summarize, the step from the

mathematical model to the numerical model requires a lot of decisions.

When all of the numerical methods are selected there is still a very important step left.

Most of the numerical methods have parameters to choose or rules of behavioral control. A

simple and very common case are fixed step sizes or variable step sizes and rules how to adapt

them. The same for non-linear solvers to increase stability, special techniques for higher order

DAEs etc.
Nevertheless of course the number of choices a simulation system provide or should

provide depends on the scope of the tool. If one considers tools with a very narrow scope e.g.

just time-independent linear elasticity models in general all choices except of a very few ones

on the lower level of the numerical model are already made. On the opposite we have multi-

domain modeling and simulation tools like e.g. Simscape, Comsol or Modelica-based tools,

which leave the modeler with a wide range of possibilities in modeling. For these tools the

modeler must have deep knowledge to make good choices.

2.2 Hierarchical Classification of Assistance Systems

Now we suggest to classify the assistance systems. They can be classified by the modeling

level (see above) in which they assist the user. Hence, like illustrated in Figure 1, we propose

to distinguish between a “Model Assistance System”, a “Method Assistance System” and a

“Parameter and Behavior Assistance System”.

This classification is independent of whether the assistance system is a learning or a static

one. A lot of systems known as expert systems would be considered as assistance system, but

they often suffer from the need to acquire their knowledge from human experts and from the

problem that they do not grow with the challenges they meet. An update of their abilities is
always connected to a software update which again requires a software engineer and an expert

in the application area. A learning assistance system avoids these problems. Its ability to

improve itself is based on machine learning and pattern recognition techniques like artificial

neural networks or clustering methods. These kind of methods require an initial learning phase

that we are going to discuss in section 3.

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

119

Now we will have a closer look at the different assistance system classes, their

characteristics and some related work already done in specific fields. We again restrict us here

to learning approaches.

2.2.1 Model Assistance System

The purpose of a model assistance system is to provide help during the beginning of the

modeling phase before the actual simulation. On the one hand the more flexible a modeling

environment is the more important assistance systems become. But at the same time the

development of assistants becomes much harder because the feature selection – which is in
general already hard enough – becomes an even more demanding topic. In cases where the

range of possible models is limited by the scope of the simulation tool this was already

successfully performed by a learning assistance system. For example for the assistance of

bridge design processes see e.g. Burrows et al. (2011). Another very interesting application

case are problems arising in the context of the diagnosability of technical systems, see e.g.

Stein (2003). For very open scenarios the analysis of the model is very demanding. This is due

to the problems of analyzing a Modelica model for the purpose of debugging, shown e.g. by

Bunus and Fritzson (2002) and Pop et al. (2012). These analyzing techniques are the

fundamentals on which one can add the feature selection and processing for assistance systems

for these open simulation tool scenarios.

Figure 1. Hierarchical Classification of Assistance Systems

IADIS International Journal on Computer Science and Information Systems

120

2.2.2 Method Assistance System

Depending on the physical and mathematical model respectively, their discretization and the

feature selection, the method assistance system can suggest a numerical method to be used.

There has already been done some work in this field concerning learning assistance systems,

see e.g. Stein and Curatolo (1998). One has to keep in mind that in general there is no such

thing as a best method for a given physical or mathematical model. There are some methods

that are for an expert or a trained assistance system clearly inappropriate. These can be sorted

out. For the rest one needs in general additional requirements from the user. The stable and

therefore appropriate methods have different characteristics, e.g. different computational costs,

accuracy, conservation of constraints. Depending on the application the user might find e.g.

conservation of constraints a very important property or the user has real-time constraints. The

latter depends again on the available hardware. An assistance system has to take the

preferences of the user and environment information like hardware architecture into account.

2.2.3 Parameter and Behavior Assistance System

This kind of assistance system works on the lower levels, nevertheless it is quite important.

The efficiency and stability of most methods depend very much on the chosen parameters or

behavior modules. The term behavior modules includes aspects like strategies for step size

control (see e.g. Cellier and Kofman (2006), section 3.9 and section 4.12) or adaptive

refinement of FEM meshes, see e.g. Verfürth (2013). The publication Burrows et al. (2013)

indicates that it is of course possible to design learning assistance systems for FEM models.

But as well as Burrows et al. (2011), which focusses on model assistance systems, they both

emphasize that the feature selection is very important and non-trivial for spatial models. E.g.
FEM output data contains an enormous set of simulation data per mesh node, geometrical data

of the mesh itself, material properties and so on. In this context it is very important to form

meta-features from this data. In general that cannot be done using automatic approaches. One

really has to consider which features make sense and which not. At the end of this

consideration the list of candidates might still be too long and one has to make a proper set of

features with common approaches. We will discuss that point in our case study – which is

based on the publication Bernst et al. (2015) – more detailed.

3. LEARNING FROM SIMULATION DATA – CHALLENGES

AND BENEFITS

In this section we will discuss why and how learning from data bases with simulation data

differs from ordinary knowledge discovery in databases. According to Fayyad et al (1996) this

process contains a few steps that are not necessary when using simulation data. Common

databases contain inaccurate or missing data and need a preprocessing step. This is quite

different with generated simulation data which is in general clean. Such a data base may

contain data from failed or timed-out simulations, but this problem is much easier to handle

compared to non-generated data. The same holds for the removal of outliers, which is in

general not necessary with simulation data.

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

121

The quite related task of clustering of similar tasks might be important for simulation data

mining, but – in the logic of Fayyad et al. (1996) – for the data mining step and not for the

preprocessing step. The reason is that clustering is a – by all means common – approach to

group similar cases. Then one can proceed with other techniques like learning a function on a
single grouped subset with an artificial neuronal network.

So on the one hand the knowledge discovery in simulation databases for assistance

systems seems to be shorter compared to the original one by Fayyad et al. (1996). On the other

hand it contains some additional steps that are not possible for an approach on a non-generated

data base. Such a data base contains information and there are actions performed like

selection, preprocessing or transformation. In general it is quite hard to add a new information

feature to an existing data set. This is different for the engineering phase of a learning

assistance system with simulated data. There the initial learning phase – which is the more

demanding one – is illustrated in Figure 2. This phase can be followed by an online learning

approach during the productive phase of the assistance system. First of all let us have a closer

look on Figure 2.

Figure 2. Initial Learning Process

We have some common steps like transformation – which means more or less feature

reduction, meta-feature generation and feature selection – and learning. Then the validation

might show, if the assistance system works satisfactory. For clustering systems this might

mean that different cases are well separated or each sample has enough neighbors. For

artificial neural networks (ANN) satisfactory might mean that the error is low enough for a

validation set. Other validation test cases can be used to check the behavior of the assistance

system. If the validation indicates that the system has to be improved, there are three ways

shown in Figure 2.

The two lower arrows are accessible for anyone dealing with machine learning or data

mining, so also with non-generated data bases. The “Change Transformation” arrow is
actually a part of the feature selection procedure. The “Change Learning Approach” can mean

a different method, like ANNs vs clustering based methods, or just a parameter like the

number of neurons in an ANN.

However, the top arrow “Add Additional Information and Change Initial Data Base” is

only possible in simulation data bases. Completely new properties can be recorded. For

example if we want to develop an assistance system which is dealing with ordinary differential

equations, we might decide after a failed validation in the initial learning phase to e.g. track

the changing of the eigenvalues during the simulation. This step can give rise to new features

IADIS International Journal on Computer Science and Information Systems

122

in the training data. Note, this is only possible if one has enough control over the simulation

environment, which might be a problem when dealing with closed source software. If we have

enough control we are able to generate new features on demand and need. This is a huge

difference regarding to a common data base e.g. containing customer data. If this data base
does not contain the information one has to work without it. A similar benefit is that we can

also generate data on demand. If we are e.g. interested in unusual configuration of a simulation

we can perform the simulation and track the results. Therefore we can generate data on

demand with different density in the feature space according to our needs. This is again very

different to the situation for non-generated data bases. If the data base does not contain enough

information e.g. concerning a minority, this situation cannot be changed easily. But

nevertheless there is no such thing as a free lunch. Considering ordinary application cases of

data mining; the data comes more or less for free. In most cases people work on data that was

accumulated not for the purpose of data mining. So for example an internet shop might use the

data of its customers for the optimization of the web-shop or the supply of goods. So on the

one hand data mining in these data bases is limited to the information given by the costumers
or business associates but on the other hand this data comes in principle for free. The benefits

of the on-demand generation for training data base of the assistance system is paid by need to

spend CPU-time for this purpose. This is especially true for new features, since it might

require to start over with the complete data base. So we can now sum-up:
1. In general one will see a two-phase approach for the learning assistance system, first

an initial learning phase and then an online learning during the productive phase.
2. For the initial learning phase we have the capability to generate data on demand.
3. Depending on how much control one has about the simulation environment feature

generation on demand is possible.
4. The price for top 2 und 3 is computation time and additional effort.

In our case one has to distinguish between top 2 and top 3 because the additional effort for
the additional data record is needed just once during the initial learning phase. If we choose to
add a new feature, apart from eventually rebuilding the data base in the initial learning phase,
and if this feature requires additional effort during the simulation like post-processing, it will
in general require the same effort in the productive phase. So to use the example from above:
If one considers eigenvalues to be a useful add-on information, one will often try to get along
with features that are cheap to compute e.g. Gershgorin circles instead of exact eigenvalues
and so on.

So the one challenge for training of an assistance system is to keep the initial learning

phase cheap. If all data for the initial phase is just generated for the purpose of training there

might show up some scenarios in which the data generation is no more justified by the

benefits the assistance system can provide. To negotiate this problem one should use as much

data as possible which is generated by skilled users anyway. The more relevant simulation in

cloud architectures become, the easier this could be in principle. Users and their simulations

on a system without assistance system can be monitored and this data be used for the training

of the assistance system. A big issue in this context are data privacy concerns of private

people. Also security considerations of companies are still a problem for cloud simulation

today, see e.g. Frochte et al. (2014). Much more common are cloud or similar approaches
when it comes to education institutes. These tend to use academic licensed products for

teaching, see e.g. Bouillon and Frochte (2015). The data acquired here might be helpful if it is

mixed up with generated data in the sense of top 2. This will in general be necessary because

education institutes might tend to simulate less complex and smaller models than industrial

users.

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

123

4. CASE STUDY ON AN ASSISTANCE SYSTEM FOR LOAD

BALANCING FOR SIMULATION IN HETEROGENEOUS

SYSTEMS

In this section we present a case study for an assistance system. It will help in balancing the

load from a 3D FEM simulation on a heterogeneous cluster structure. The mesh for the FEM
simulation is partitioned using an overlapping Schwarz method. This is a robust domain

decomposition method, see e.g. Tosselli and Widlund (2014) or Nikishkov (2007). The major

challenge is caused by the heterogeneity of the cluster, since then the optimal distribution is

not trivial. Because the problem consists of distributing a computational task, it makes sense

to look for two parameters. One is the waiting time, which is associated with convenience of

the user and his wish to achieve results quickly. The other is the CPU time, which in a way

represents the energy cost as a second optimization variable. This is a very important aspect of

cloud computing concerning green IT.

Figure 3. Hierarchical distribution of the job J on a heterogeneous system with three homogeneous
sub-systems

We consider a distributed system as shown schematically in Figure 3. The host computer
plays an important role in the suggested setting, which triggers the task and manages the

computation. It submits the relevant subsets of the simulation data to the remote masters,

which again spreads the necessary parts to the computation nodes. The result is a

communication cascade, in which one subsystem solves its part of the problem using

distributed computing causing network communication between within the cloud. After this is

done the remote master of each cloud communicates with host. Because the solving method

we use is iterative, this is done multiple times. Most of the communication is done in each

subsystem, which makes sense, because the network connection from within a cloud is

generally faster than the one between the host and remote masters. Because of the

heterogeneity of the system, which means firstly non-equal computation power per

computation node across different server-systems and secondly non-equal connection speed
between the host computer and the remote masters, an efficient distribution of the tasks is a

non-trivial challenge. Because the problem set shown in Figure 3 is of wide scope, we make

some reasonable assumptions. We assume that sub-environments are homogeneous among

themselves. This means in every sub-environment, e.g. a cloud architecture or a standard blade

server, we have the same connection speed between every node, and every node is equal

concerning the computation speed.

Load balancing is a technique to optimize the distribution of sub-problems; for a general

insight, see e.g. Kameda et al. (1997). Because of the complexity in heterogeneous network

IADIS International Journal on Computer Science and Information Systems

124

environments load balancing is a research field in which heuristic approaches, see e.g.

Doulamis et al. (2014), and similar strategies are commonly applied. The learning assistance

system in this case study should provide the user with a reasonable load distribution that takes

the user's preferences of waiting time and computation time into account. This is similar to the
case with the preferences at the time integrator, described in Section 2.2.2. Here the finding of

a good distribution depends on the user's preferences as well. In terms of classification defined

in Section 2.2.3, this assistance system belongs to the class of "Parameter and Behavior

Assistance System".

4.1 Learning Approach and Detailed Task Description

FEM is used for a wide range of problems. Different FEM models like e.g. a model for linear

elasticity or one for a laminar flow behaves differently on the same mesh concerning domain

decomposition. Problem classes that behave very differently need a different numerical

treatment anyway, and thus just problems of the same class can share the same learning data

base. The workflow in Figure 4 concentrates as example on linear elasticity problems modeled

with the Lamé equation, also known as displacement formulation. There the process of online

learning is illustrated. This assumes an assistance system that has passed already the initial

training. This initial learning process is shown in Figure 4.

Figure 4. Workflow of the learning method

Very important to understand the used approach is the fact that we have in a way just

unlabeled data. Our data base consists of features associated with the waiting time and CPU

time of the performed simulation. What our data base does not contain is information about

the best choice in a given situation. This is because it is in general a very tricky task to tell

whether the setting has been optimal – in most cases there might not be such a thing as a

unique optimum. The key idea is to learn the waiting time and the CPU time instead and to use

the resulting functions to find good settings.

To achieve this, we argue for a two-stage approach; the first stage uses only a few features,
while the second stage uses the full feature set. The reason is that it is quite cheap to evaluate

the learned function, but if one needs a partitioning to evaluate the full feature set the call of a

partition tool like METIS (Karypis and Kumar (1998)) is not that cheap. To identify the

features for the machine learning task in learning workflow we need a more formal description

of an exemplary case related to the scenario in Figure 3.

Let J be a computational task (or job) that can be scheduled in parallel. We want to

distribute it on a heterogeneous system with a number of major subsystems, like e.g. cloud

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

125

hardware provider. For example, we consider a system with three subsystems as displayed in

Figure 3. Each of them provides a maximal number of computation nodes: c1, c2, c3. Let n1, n2,

n3 be the numbers of computation nodes that we use for the computation and which are limited

by the maximal number of computation nodes c1, c2, c3.
The job J can be decomposed into maximal three main-jobs J1, J2, J3 (see Figure 3). The

size of these jobs concerning the degrees of freedom might differ. These main-jobs can again

be decomposed into sub-jobs in the second step up to the number of available computation

nodes ci (i=1…3) in this system. The result of this approach is a job hierarchy.

At the beginning of the choice for n1, n2, n3 stands the question, how many computation

nodes in total n1+n2+n3 the user in general would like to access. This is limited by the number

of computation nodes the system provides him with. Because of the job hierarchy it makes

sense in the next step to not directly try to answer the question, how we would like to choose

n1, n2, n3, but first to answer, how many main-jobs should be in the first level of the job

hierarchy and how they should be dimensioned. The last step is how many sub-jobs of each of

these main-jobs should be generated and executed. For a more detailed look we will now
continue with the feature selection.

4.2 Feature Selection and learning Approach

To start learning our data base must contain information about the hardware, on which the

simulation has been carried out. Because gaining data samples is expensive in this application
case, it makes sense to restrict us to as few as possible hardware features. As Figure 3 suggests

a minimal description consists of

1. number of used computation nodes n1, n2, n3.

2. computation node speed (computation power) in every subsystem s1, s2, s3

3. data transfer rate from J (host) to Ji (e.g. cloud provider): dh1, dh2, dh3

4. data transfer rate in homogeneous sub-environment dc1, dc2, dc3.

Therefore, we end up with 12 features for the hardware topology (HF).

The next step is connected to the first task shown in Figure 3. We have just the model

without any partitioning yet. The model consists of the discretized PDE including the right

hand side and coefficients, e.g. representing material properties, mesh, the boundary

conditions (Dirichlet, Neumann etc.). As mentioned above the suggested trained system is
only suitable for a narrow class of problems. Therefore, the PDE itself is not a feature;

consider the assistance system trained for this class as a member of a single learning assistance

system for a more general problem class. This of course does not cover the right hand side and

the coefficients. In Burrows et al. (2013) the aspect of coefficients were discussed. To keep the

number of features reasonable we concentrate on the features based on the geometric mesh,

which in our case consists of vertices, edges, facets and tetrahedral elements. There are other

mesh types for three dimensional problems like hexagonal meshes, but the results and features

can easily be transferred to them. Since we cannot use the geometric entities, like vertices,

directly as features, we use meta-features as mentioned in Section 2.2.3. Here we use simply:

1. number of vertices in the mesh nv

2. volume ratio of minimal and maximal volume of tetrahedrons in the mesh, denoted

with r
3. number of boundary vertices nbv

IADIS International Journal on Computer Science and Information Systems

126

The number of vertices nv as feature correlates to the size of the problem – degrees of

freedom – which is the most important aspect. It makes no sense to divide small problems

below some limit. The volume ratio r is one of the important aspects, which influence the

condition of the problem and its sub problems, see e.g. Brenner and Scott (2008) or Toselli
and Widlund (2014). The condition number in turn will influence the behavior of the linear

solvers used by the computation nodes. The last feature nbv is related to both. For Dirichlet

boundary conditions e.g. for all boundary elements the values are given, so they reduce the

degrees of freedom and improve the condition. We denote these selected features as global

mesh features (GMF).

This leads to 12 hardware related features and 3 model related features for the first step.

Our learning approach proposes to predict the computational cost and the waiting time

by a learned function. To do this we suggest multilayer feedforward artificial neural networks

(ANN). A design decision in this context is the question whether to use one ANN with two

outputs or to use two separate in general smaller ANNs for computation time and waiting

time. In our test it turned out that we achieved better results using two ANNs. This might be
related to the number of data sets in the training set and may change, if a huge amount of data

is available. Our solution can be denoted as follows:

By choosing a weight the user can fix the relation of and for the optimization

problem. This is a good example of a user preference that the assistance system has to take

into account as mentioned in Section 2. The assistance system cannot know what is more

important for the user – cost or time. The goal is to find the minimum of

 .

This is a problem, which just depends on the chosen number of used nodes, because in our

scenario the rest of the features are fixed. In our example with three systems it is a

three-dimensional problem. Which technique is used for optimization depends on the size of

the search space defined by the total number of used nodes. In many applications it is possible

to evaluate all possible combinations and choose the best one; otherwise techniques like the

Hill climbing should be used. The scaling coefficients cwait and ccomp can be chosen to balance

waiting and computation time because in general for distributed problems the computation

time is much bigger than the waiting time.

Using the approach described above we end up with some candidates, this means not just

to pick the minimum but a small subset of the best candidates. If we evaluate all variations, we

choose the m smallest ones; if one uses Hill climbing, one may choose a whole region near the

Figure 5. Overlapping Partitions

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

127

minimum or a union of results of Hill climbing iterations started from different initial points

and maybe stopped in local minima.

So, for the next step we partition the mesh once for each of the resulting m combinations

using METIS. Because of the hierarchical structure of the problem set this is performed in two
steps: In the first step three weights, w1, w2, w3 are chosen. These control how many percent of

the mesh every partition should consist of before the overlapping part is added. Therefore,

these weights represent roughly the sizes of the main-jobs Ji in the first hierarchy level.

However, computation is mainly performed on the computation nodes in the second level of

the job hierarchy. Hence, the main-jobs are further partitioned into sub-jobs Ji,k. The

corresponding sub-partitions below a main-partition are equally weighted, since all used nodes

within one cluster are equal. wi = 0 is interpreted as turn off the specific subsystem. As Figure

4 suggests for this second step, there are additional features available, because now we know

more details about how this job will be partitioned.

A new aspect is the size of the overlaps illustrated in Figure 5. This is very important for

the convergence speed of the domain decomposition methods. To improve convergence and
stability, we let the host J and the local master Ji perform a few iterations of a GMRES

algorithm, see e.g. Greenbaum (1987), which leads to less network traffic, particularly

between J and Ji, which is the most expensive one. Nevertheless, on the one hand bigger

overlap leads to fewer iterations. On the other hand more parts of the problem are solved

redundantly and increase the problem size artificially. Beyond this, we have the effect that

concerning the network traffic small overlaps are desirable, because this is the data that has to

be transferred in every iteration step. Thus, we have here a non-linear effect that is mainly

associated with the number of vertices, which are exchanged between neighbor domains.

Therefore, we choose the following feature set per main partition, which means on the first

level for all i partitions:

1. npi, number of vertices in the partition

2. rpi, volume ratio of minimal and maximal volume of tetrahedrons in the partition
3. opi, ratio of number of overlapping vertices to the partition size.

Because the number of features would increase dramatically, the equally-sized

sub-partitions are not considered, and nevertheless their effect is quite deterministic and static

using METIS, if one does not optimize the overlapping size as done by Burrows et al (2013)

but just keep it fixed as we do it here. If one looks at the features on the second level, one may

argue, if concerning some aspects there is less information compared to the first level. One has

to keep in mind that nv correlates with npi and opi. A partition equivalent for the global

information nbv is missing but for the solution of the sub problems of less importance. With a

fixed rule, how to dimension the overlap, the degrees of freedom on the boundaries of the

partitions correlate with opi. For dynamic chosen overlap sizes this information might play a

bigger role. We denote the set of all of these features for all main partition as partition mesh
features (PMF). Using this together with the hardware features (HF) this leads us to the

following approach for the next two ANNs, which are again multilayer feedforward artificial

neural networks:

This network ANN2 has the potential to give a more accurate answer compared to ANN1

but at the prize of an increased number of features – in the case of three main-partitions we

have 9 PMF instead of 3 GMF. Additionally, each evaluation is preceded by a partitioning

IADIS International Journal on Computer Science and Information Systems

128

procedure to extract the features from the main-partitions. The first aspect leads to the demand

of more data for the training and the last makes it more expensive. To emphasize this aspect:

this is the main reason for using a two-stage approach. The features for ANN1 are available

just by analyzing the FEM model geometry and the evaluation is cheap. Therefore, it is the
first filter selecting a few candidates. For these candidates the partitioning of the main-jobs Ji

is performed by METIS, which leads to much higher additional costs but only for these few

new candidates. With this information for these candidates the ANN2 picks up the most

promising distribution. The simulation is then performed, distributed accordingly. When the

simulation has finished, we can use the corresponding features with the measured times and

add it to our data base to improve the neuronal networks. Because the approach is not based on

labeled data, in the sense of knowing the optimal distribution, this leads to a system improving

itself in an unsupervised way.

4.3 Performance of the Assistance System

As test problem we choose the linear elasticity model using the Lamé equation with a

homogeneous isotropic material parameter and Dirichlet boundary conditions. For training

purpose this has been simulated for four three-dimensional objects (geometries), shown in

Figure 6, with a mesh size from 250,000 vertices up to 400,000. Because the Lamé equation

computes the displacement vector, this means up to 1,200,000 degrees of freedom. The four

objects refer to prototypes, like a full convex geometry (sphere), a geometry with a hole

(Torus), one with a re-entrant angle (L-shape) and the simple cube.

Figure 6. Training objects (with coarse meshes for the visualization)

We provided 564 FEM simulations for different hardware topologies with two and three

server systems to prepare the training set. They contain different CPUs, in this case 1) Xeon

E5645 @ 2.4GHz, 6-Core, 2) Xeon E5-2660 @2,2GHz 8-Core, 3) Xeon E5-2640 @ 2,5GHz

6-Core. These are constant as well as the connection speed between the nodes in one server

system, which differ from server system to server system between fast Ethernet (100 Mbit/s)

and Gigabit Ethernet (10 Gbit/s). The connection speed from the host server to each of the

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

129

server systems has been varied between 10 Mbit/s, 100 Mbit/s and 1 Gbit/s. In this test

problem we assume that the user constantly wishes to use 16 computational nodes and at least

two server systems, which means clouds in the scenario discussed by Frochte et al. (2014).

With the constraint to use always 16 computational nodes we can reduce the number of
features by one, because we have n3 = 16 – n1 – n2. Furthermore we choose the weights of the

main partitions to be

.

Figure 7. Training of ANN1 (left) and ANN2 (right)

We used the standard approach, see e.g. Marsland (2015), Chapter 2.2, to control the

training of the ANNs by dividing our data into three subsets: training, validation and test, as

Figure 7 shows.

As mentioned above the ANNs differ concerning their features and as expected they differ

concerning their size as well. In our experiments it turned out that the following choices

produce reasonable results: ANN1 for the computation time has 23 neurons and 36 for the

waiting time. ANN2 has for the waiting time 75 neurons and 45 for the computation time. One

IADIS International Journal on Computer Science and Information Systems

130

can sum up that the approximation of the waiting time is more complex than the computation

time and that ANN2 is more complex than ANN1.

While the difference between ANN1 and ANN2 is expected, because ANN2 has more

information to consider, the difference between waiting and computational time might need a
further discussion. The communication between host and server system is performed in a

network system, which is used unexclusively. This means traffic caused by other users tends

to add some additional statistical errors to our measurement.

All the results above, e.g. shown in Figure 7, were achieved on a validation and test set,

that is not used for the training. In this case the suggested approach works very well, but the

data set just contains geometries, that are used for training. The meshes may differ because of

global mesh refinements, but they represent the same geometries with more or less the same

ratio between boundaries and inner vertices etc.

For testing the load balancing approach we additionally used three new objects, see Figure

8, which were not included in the initial training, test or validation set above. Ellipsoid is

related but not equal to sphere, T-Shape is in a way related to L-Shape and the cube. The
hardest geometry is the crankshaft, which is totally different to the training geometries.

Figure 8. Test objects (with coarse meshes for the visualization)

We tested the quality of predictions of ANNs for foreign objects and geometries on these

three. As one can see from Figure 7, the ANN1 works quite well on our initial data base with

known objects. If ANN1 works so well, does it really make sense to apply a second more

expensive step using ANN2 afterwards? Yes, it makes sense, because ANN1 loses some of its
quality on foreign objects. In our approach the main job of ANN1 is to work as a filter before

using ANN2.

To do this ANN1 must mainly keep the relation between the results. If a configuration is

better than another in real life, the learned function should keep this relationship. The absolute

values are less important. To illustrate effects we picked the shaft as the most demanding

geometry. Figure 9 shows the results of 5 randomly picked data base entries with three

different values for . So, the first plot is the use case for optimization of computation time

only, the last for waiting time only, and is a mixed scenario. The data is ordered by

the value of ANN1. A theoretical optimal result would be that both graphs are monotonically

increasing. Again this figure illustrates that the computation time is easier to predict than the

waiting time. For both are monotonically increasing, in the two other scenarios it is not.

So, it turned out in our tests that ANN1 is able to work as a reasonable filter, but as proposed it

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

131

is necessary to attach a second step with ANN2 to increase the probability to pick the best one

of the set collected by ANN1.

The results for the three test objects of Figure 8 are shown in the regression plot in Figure

10. They illustrate that the learned functions correlate with the real world measurements we
performed for comparison. Again we see, that it is easier for us to predict the computation

time than the waiting time. We assume, that with a bigger data base, the statistical effects

concerning the waiting time will be eliminated more and more.

Concerning the waiting time the results suggest that for new objects not always the best

solution would be picked up. This corresponds with our tests, in which always a reasonable

approach is suggested by the assistance system, but sometimes with expertise knowledge and

experience we could provide a better solution.

This assistance system belongs to the class of "Parameter and Behavior Assistance

Systems", as already mentioned. This class affects models in the bottom of the hierarchy

shown in Figure 1. An assistance system is developed for a specific model type from the class.

This also implies that whenever a decision in the modeling process is made differently above
in the hierarchy, it will affect this assistance system. If for example in the numerical model the

solving method changes, the computation and waiting times might behave completely

different. The same holds for example if the mathematical model uses a saddle point

formulation instead of the Lamé equation. So for a complete system of assistance systems that

support the whole modeling process, there would be a tree hierarchy of assistants necessary.

5. CONCLUSION

In this paper, we proposed a classification scheme for learning assistance systems and their

use cases. The challenge is to provide assistance systems for complex scenarios in simulation

for end-users like engineers. We emphasized that static approaches, like e.g. traditional expert

systems, cannot keep up with today’s demands. For a new generation of self-learning and

self-improving systems like e.g. the ones by Burrows et al. (2011) or Stein and Curatolo

 Figure 9. Performance of ANN1 keeping relation Figure 10. Comparison of ANN2 predictions vs. real on
 the crankshaft geometry simulation times (scaled) for foreign test objects

IADIS International Journal on Computer Science and Information Systems

132

(1998), we discussed how learning from simulation data differs from traditional knowledge

discovery from data bases. The transfer of these concepts to a novel assistance systems on the

level of “Parameter and Behavior Assistance System” was performed in the presented case

study. The goal was an assistance system for load balancing of a simulation task on a
heterogeneous hardware architecture. We described the design in detail. To achieve this, our

assistance system introduced a novel feature set for a learning approach using artificial

neuronal networks. These were implemented in a two-stage design to minimize additional

computational costs. The presented work shows how in a complex scenario the decisions of

assistance systems on more abstract levels like “Model Assistance System” may affect the

work of the lower levels. As future prospects we see that modern – especially multi-domain

and multi-physics – simulation tools will integrate more and more assistance systems.

Sometimes one may realize them because personal preferences will be requested, sometimes

they will become the equivalent of assistant systems in automotive and do their work in

silence. To achieve this, the interaction of such assistance systems as well as assistance

systems particularly on the modeling level need further improvements in future work.

ACKNOWLEDGEMENT

The authors would like to thank Patrick Bouillon for the support & administration of the

server systems. This work is supported by the BMBF (Federal Ministry of Education and

Research, Germany) under grant 03FH01812. The homepage of the project is located under

www.simcloud.eu.

REFERENCES

Bunus, P. and Fritzson, P., 2002. Methods for structural analysis and debugging of Modelica models. In
Proceedings of the 2nd International Modelica Conference, Vol. 10, pp. 157-165.

Bouillon, P. and Frochte, J., 2015, Simulation- and web-based e-learning in engineering - open source
architecture and didactic issues. In 16th International Conference on Research and Education in

Mechatronics, pp. 127-134, IEEE.

Bernst, I., Kaufmann C. and Frochte J, 2015. Learning Load Balancing for Simulation in Heterogeneous
Systems. Proceedings of the 12th Intern. Conference Applied Computing, Maynooth, Ireland, pp.
121-128.

Brenner, S. and Scott, L., 2008. The mathematical theory of finite element method, 3rd ed.
Springer-Verlag, New York-Berlin-Heidelberg.

Burrows, S., Stein, B., Wiesner, D. and Müller, K., 2011. Simulation data mining for supporting bridge
design. Proceedings of the Ninth Australasian Data Mining Conference. Australia, pp. 163-170.

Burrows, S., Frochte, J., Völske, M., Martinez Torres, A.B. and Stein, B., 2013. Learning overlap
optimization for domain decomposition methods. 7th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 13), pp. 438–449.

Cellier, F.E. and Kofman, E., 2006. Continuous System Simulation. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Doulamis, N., Kokkinos, P.C. and Varvarigos, E.A., 2014, Resource Selection for Tasks with Time
Requirements Using Spectral Clustering, IEEE Trans. on Computers, Vol. 63, No.2

ON LEARNING ASSISTANCE SYSTEMS FOR NUMERICAL SIMULATION

133

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P., 1996. From data mining to knowledge discovery: an
overview. In Advances in knowledge discovery and data mining. American Association for Artificial
Intelligence, Menlo Park, CA, USA, pp. 37-54.

Finn, D. P. and Cunningham, P., 1994. Physical Model Generation in Thermal Engineering Problems

described by Partial Differential Equations. In Proceedings of the Eighth International Workshop on
Qualitative Reasoning about Physical Systems (QR 94), pp. 90-97.

Frochte, J., Kaufmann, C. and Bouillon, P., 2014. An approach for secure cloud computing for FEM
simulation. Proceedings of the 11th International Conference Applied Computing. Porto, Portugal,
pp. 234–238.

Greenbaum, A., 1997. Iterative Methods for Solving Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

Kameda, H, Li, J., Kim, C. and Zhang, Y., 1997. Optimal Load Balancing in Distributed Computer

Systems.
Springer-Verlag, London, UK.

Karypis, G. and Kumar, V., 1998. A fast and high quality multilevel scheme for partitioning irregular
graphs. Journal on Scientific Computing. Vol. 20, No. 1, pp. 359–392.

Marsland, S., 2015. Machine learning - An Algorithmic Perspective. CRC Press a Chapman& Hall book,
Boca Raton.

Mei, L. and Thole, C. A., 2008. Data analysis for parallel car-crash simulation results and model
optimization. Simulation modelling practice and theory, Vol. 16, 3, pp. 329-337.

Nikishkov, G.P., 2007. Basics of the domain decomposition method for finite element analysis.
Saxe-Coburg Publications, Kippen, UK.

Painter, M. K., Erraguntla, M., Hogg, G.L., and Beachkofski, B., 2006. Using simulation, data mining,

and knowledge discovery techniques for optimized aircraft engine fleet management. In Proceedings
of the 38th conference on Winter simulation, pp. 1253-1260. Winter Simulation Conference.

Pop, A., Sjölund, M., Asghar, A., Fritzson, P. and Casella, F., 2012. Static and dynamic debugging of
Modelica models. In Proceedings of the 9th International Modelica Conference (Modelica’2012),
Munich, Germany.

Shen, J., Tang, T., and Wang, L.-L., 2011. Spectral Methods: Algorithms, Analysis and Applications (1st
ed.). Springer Publishing Company, Incorporated.

Stein, B., 2003. Model compilation and diagnosability of technical systems. In Proceedings of the 3rd

International Conference on Artificial Intelligence and Applications (AIA 03), Benalmádena, Spain,
pp. 191-197.

Stein, B., 2008. Model construction for knowledge-intensive engineering tasks. In Advances of
Computational Intelligence in Industrial Systems. Springer Berlin Heidelberg, pp. 139-167.

Stein, B. and Curatolo, D., 1998. Selection of Numerical Methods in Specific Simulation Applications.
Proceedings of the Eleventh International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems. Castellon, Spain, pp. 918-927.

Toselli, A. and Widlund, O., 2004. Domain Decomposition Methods – Algorithms and Theory, 1st ed.

Springer-Verlag, Leipzig, Germany.

Verfürth, R., 2013. A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford
University Press.

Woyand, H., Goldhammer, L. and Roj, R., 2012. A knowledge based assistance system for finite element
analysis. In 15th International Conference on Interactive Collaborative Learning (ICL), pp. 1-4.

