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ABSTRACT 

Energy efficient systems are receiving worldwide attention in response to the negative effects of global 
warming. Energy efficient systems are concerned with allocation of adequate resources in the Energy 
Domain to meet the energy demand in possibly several Process Domains. In allocation, a balancing 
problem arises when the energy resources demanded by the Process Domains do not match the resources 
allocated in the Energy Domain. This situation may lead to suboptimal process performance and 
inefficient usage of energy. Solving this allocation problem requires a coordination and control 
mechanism that can balance allocation and demand between multiple coupled subsystems. In this paper, 

we propose a novel agent-based software system for solving this type of cooperative control problem. 
The system performs energy allocation for several Process Domains while considering the individual 
requirements of each domain. In case of resource inadequacy the proposed solution is able to handle the 
resulting conflicts according to domain specific requirements for system operation. The efficacy of the 
proposed approach is demonstrated through simulation. Our results show that it is possible to create a 
coordination mechanism that can achieve a global stable state for energy allocation and demand between 
multiple coupled systems. 
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1. INTRODUCTION 

Energy efficiency and the reduction of carbon footprints are receiving attention in response to 

an increased demand for energy resources, which results in negative effects such as global 

warming. This fosters a need for designing energy efficient Cyber-Physical Systems (CPS). 

CPS encompasses systems, which integrate computational algorithms and communication 

with physical processes. These systems act independently, co-operatively or as  

”systems-of-systems” composed of interconnected autonomous systems originally developed 
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independently to fulfill dedicated tasks (Francoise 2014). The individual components of such 

systems and subsystems are coupled to exchange data with each other and influence each 

other. This coupling of multiple autonomous systems (physical and cyber) provides  

far-reaching benefits in terms of more efficient hybrid systems that provide new capabilities in 
interoperability, resilience etc. To be considered energy efficient, a CPS must provide 

effective allocation of energy resources in the Energy Domain to meet the demands of  

energy-intensive processes in the Process Domain to avoid suboptimal system performance 

due to allocation imbalances. In order to cope with this problem, a coordination and control 

mechanism is needed that can balance energy allocation and demand. 

The main contribution of this paper is a coordination mechanism that unifies the properties 

of cooperative control strategies and multi-objective multi-issue negotiation protocols in order 

to achieve a group objective among self-interested agents in each coupled domain. 

The remainder of the paper is organized as follows. Section 2 presents related work. 

Section 3 presents how our framework performs intra-domain and inter-domain negotiation to 

achieve an agreement state, i.e., a system state in which energy allocation and energy demand 
is balanced. Section 4 presents case study. Section 5 describes experiments for bilateral and 

multilateral negotiation and finally Section 6 draws conclusions and discusses some future 

research directions. 

2. RELATED WORK 

As the task of balancing energy allocation and demand addresses the system as a whole, the 
problem can be viewed as a cooperative control problem. Cooperative control strategies have 

been studied very widely. The cooperative control problems are formulated as formation and 

non-formation control problems (Li & Duan 2014). Formation control strategies such as the 

ones proposed in (Wang 1991; Rezaee et al. 2013; Lin et al. 2013) employ leader-following 

approaches, where the leader agent pursues the group objective and followers are supposed to 

follow their leader. This approach seems therefore infeasible for solving the allocation 

problem as followers (Process Domain) are required to follow the energy allocation given by 

their leader (Energy Domain). There is no negotiation and the leader has no knowledge of the 

actual energy demand of its follower. Balancing allocation and demand requires feedbacks 

between the Energy Domain and Process Domain to avoid a situation in which the leader 

allocates too much or too little energy to the Process Domain. 
Contrary to formation control problems, non-formation control problems are typically 

solved using distributed control, based on different cooperative control strategies. Several 

attempts (Ren et al 2005; Bauso et al. 2003; Tanner et al. 2003) have been made to solve 

agreement problems using cooperative rather than self-interested agents. In state of the art of 

cooperative control strategies, all agents in the group know about the group objective. The 

group of agents cooperates in the sense that they all want to maximize the group objective. 

However, real world problems are often more complex, with individual objectives, which may 

be in conflict with each other or with the group objective. 

Several techniques have been proposed in the literature for achieving a consensus among 

conflicting individual goals in order to fulfill a group objective. For instance, (Klein et al. 

2003) proposed bilateral multi-issue negotiation involving non-linear utility functions. But 
Klein et al. considered a single domain to deal with complex (non-linear) problems. (Ito et al. 
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2008) proposed an auction-based protocol where agents propose bids and a mediator is 

responsible for finding the overlaps among generated bids. However, this approach has a 

major scalability issue, as it imposes an upper limit on the number of bids, agents can generate 

depending upon the number of agents participating in the auction. Later (Marsa Maestre et al. 
2009) extended their work in (Ito et al. 2008) by employing a technique called Q-factor to 

balance agents’ individual utility and agents’ social utility. The author reduces but does not 

fully eliminate the scalability problem by employing probabilistic search in the deal 

identification phase. (Fujita et al. 2012) proposed a novel secure and fair mediator protocol for 

non-linear negotiations. The protocol finds the fairest Nash Bargaining solution using 

approximated fairness. (Aydogan et al. 2014) proposed a mediator-based protocol with 

feedback for multilateral negotiation scenarios. The mediator generates the estimated utilities 

from the preferences of negotiating agents by observing their feedback during negotiation to 

determine the final agreement. 

The main limitation of the state of the art mediator-based negotiation protocols dealing 

with non-linear complex problems is that they only address negotiation involving 
interdependent issues within a single domain. These approaches haven’t addressed negotiation 

problems where interdependent issues are distributed across multiple coupled control 

domains. Balancing the allocation of energy resources to the coupled Process Domains 

requires negotiation between coupled domains in order to coordinate the interdependent issues 

of energy allocation and demand distributed across the different control domains. 

3. MULTI-OBJECTIVE MULTI-ISSUE NEGOTIATION 

The agent-based coordination and control mechanism proposed here for balancing the 

allocation and demand among coupled domains extends the work of (Sørensen et al. 2011; 

Clausen et al. 2014) on Controleum. Controleum is a generic framework for multi-objective 

multi-issue intra-domain negotiation. The extension proposed here allows for inter-domain 

negotiations spanning several subsystems, each controlling a separate problem domain.  

3.1 Intra-domain Negotiation 

The Controleum negotiation process bears similarities with the negotiation process presented 

by (Fujita et al. 2012) in which a negotiation defines a context consisting of   concern agents, 

              , which negotiate over a set of M issues,             . The negotiation 

context has a Mediator Agent (MA), which is responsible for managing the negotiation 

process. The MA searches for a contract that satisfies the preferences of the Concern Agents 

(CAs).  

The negotiation process is shown in Figure 1. In step 1, the MA initiates the negotiation by 
generating a population of random contracts. A contract is defined as a vector of M issue 

values                 . Then, in step 2, the MA presents the contracts to each CA for 

evaluation. Each CA responds to the MA by assigning a cost to each contract in the 

population. The cost describes the degree to which the proposed contract adheres to the 

preferences of the CA. 
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Figure 1. Conceptual illustration of Controleum framework 

A lower cost means a better fitness for the agent. Each agent        defines a cost 

function, for each issue       , over which the CA wishes to negotiate. The cost of agent    

for a contract    defined as       
, is the summarized values of that agent's cost for each issue 

in    addressed by that agent. The MA uses the Pareto criteria to select the contracts that can 

be added to the Pareto optimal set of contracts. In step 3, the MA generates the next 

population of contracts by performing crossover and mutation on randomly selected contracts 

from the Pareto set. Step 2 and 3 are repeated until the negotiation terminates. The negotiation 

terminates, in step 4, when a predefined number of negotiation rounds is reached or when a 

time limit is met. At termination, the MA selects a final contract. To select the final contract, 

the cost of each agent is normalized for each contract in the Pareto set. After normalization, 

the sum of the normalized cost is computed for each contract. The lower the sum, the better 

the contract. The contracts are then sorted according to their costs. Finally, the first contract in 
the sorted population is selected as the final contract. 

If there is a conflict between the preferences of negotiating agents, there is a risk that the 

consequences are unevenly divided between participants in the negotiation (Clausen et al. 

2015). In order to avoid this a selection strategy based on Approximated Fairness (Fujita et al. 

2012) has been implemented. This selection strategy ensures that in case of a conflict each 

agent will concede equally to find a compromise. Approximated Fairness selects the final 

contract   from the Pareto set   with the smallest approximated fairness value specified in 

equations (1), (2) and (3), where    
 is the approximated fairness value for contract      , 

      
 is the cost of agent    for contract   ,        

 is the normalized cost for agent    for 

contract    and        
 is the average of the normalized cost for all agents with respect to 

contract    . 
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To ensure that negotiating parties always reach an agreement in case where conflict of 

preferences exists e.g. in a situation where a set of subsystems require more than the available 

resources, we have introduced the concept of priority in the selection strategy above. A 

priority is a numeric value ranges from 0 to 10. The lower the value, the higher the priority is. 
The priority mechanism is shown in Pseudo code 1. The priority scheme will guarantee the 

selection of a negotiation contract, which satisfies agents with a higher priority before it 

considers agents with a lower priority.  

 

Pseudo code 1. Priority Scheme  

contracts = getAllContracts() 

for i := high_prio to low_prio 

C = selectConcernsWithPriority(i) 

contracts = contracts.getApproximateFairContracts(C); 

end for 

3.2 Inter-domain Negotiation 

In a CPS, multi-objective multi-issue negotiation problems may involve interdependent issues, 

which are distributed across multiple control domains. This situation may arise e.g. when one 

subsystem consumes a resource allocated by another subsystem. In this case, the amount of 

resources consumed by the first subsystem must match with the amount of resources allocated 

by the other subsystem to maintain global system stability. To support this scenario, 

Controleum has been enhanced to support inter-domain negotiation through the addition of 

two types of agents: Subsystem Agents (SAs) and System Constraint Agents (SCAs). SAs are 

introduced to represent the connected subsystems. SAs are a special case of CAs with the 
unique property that their minimizing function has a dynamic input variable. This dynamic 

input variable represents the current best candidate contract from the perspective of a 

connected subsystem. As the inter-domain negotiation evolves, this input variable changes to 

reflect the updated perspective of the connected subsystem.  

SAs have knowledge of the subsystem they represent, and thus, have the ability to 

compare contracts proposed in the negotiation in which they are present with a candidate 

contract from the subsystem it represents. The SA will return a cost value reflecting, how well 

the contract offered in the negotiation matches with the candidate contract from its subsystem. 

If the cost is 0, the current best candidate contract of the connected subsystem matches the 

proposed contract. During inter-domain negotiation, SAs ensure that the preferences of 

subsystems are represented in each negotiation round and a Pareto-frontier is generated, where 
their preferences are reflected. This is how, we guarantee that the coupled domains converge 

i.e. reach a stable state in the negotiation.  
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SCAs are introduced as part of the conflict solving mechanism of the framework. 

Specifically, SCAs force connected subsystems to reach an agreement in case of conflicts, by 

finding an absolute compromise between their candidate contracts. As a result, the minimizing 

function of SCAs has two dynamic input variables representing the best candidate contracts of 
the two subsystems it connects. The SCA calculates the mean of the preferences of the two 

subsystems it connects to solve the conflict and is represented in both systems. This means, 

that the SCA is able to map values of the issues connecting the two domains, in order to 

compare them. 

In the enhanced Controleum framework, the MA has the responsibility of selecting the 

best candidate contract in each negotiation round to make this candidate contract available as 

an input for the SAs and SCAs in connected subsystems. The candidate contract selected by 

the MA in each coupled control domain represents the issue values over which agents 

negotiate. When the negotiation terminates, the final contract is selected in each domain. 

In case of conflicts between SAs and CAs, a decision needs to be made on how to deal 

with this conflict. One could choose to prioritize subsystem 1 over subsystem 2, subsystem 2 
over subsystem 1 or make a compromise between subsystem 1 and subsystem 2. In the latter 

case the SCAs are needed for two reasons: First, this ensures that the type of compromise we 

want is represented on the Pareto frontier. Second, in order to select this compromise, we need 

to be able to prioritize the agent reflecting this objective. The final contract in each domain 

complies with the group objective and guarantees that coupled domains finally reach an 

agreement i.e. guaranteed match between interdependent issues. The essence of the proposed 

coordination mechanism is the bidirectional information exchange and cooperation between 

coupled domains. This process of communication and cooperation will lead the whole system 

to a state, where energy allocation is equal to energy demand. 

4. CASE STUDY 

The ornamental horticulture industry in Denmark produces ornamental pot plants. The 

production of ornamental pot plants in the northern hemisphere depends on green houses 

because of low temperature and light conditions in the winter season. Denmark has 

approximately 1700 plant and ornamental nurseries in business today. According to the 

current production practices (Gadtke 2010), the majority of profit from the horticulture 

industry comes from plants that are produced in greenhouses. The greenhouses are energy 
intensive and require the use of large amounts of energy. To ensure an environmental and 

production optimal operation, energy resources must be used efficiently and process 

performance must be considered. In this regard, focus is on concepts and technologies that 

facilitate both energy efficiency and process performance.  

Consider a scenario as shown in Figure 2, where a Combined Heat and Power plant (CHP) 

is connected to a number of greenhouses in an ornamental nursery. The CHP constitutes the 

Energy Domain and the greenhouses constitute the Process Domains. CHP production, also 

known as cogeneration, is the simultaneous production of electricity and heat. 
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Figure 2. Conceptual drawing of the coupled physical systems 

In the scenario, the CHP is responsible for allocation of electricity to the greenhouses in an 

ornamental nursery. The greenhouses require electricity for providing artificial lighting during 
the winter season when natural light levels are low. The CHP must therefore allocate just 

enough electricity to each greenhouse, allowing them to provide the required amount of 

lighting to reach production goals. Each domain has domain specific concerns. The Process 

Domain is concerned with climate parameters such as CO2, air temperature, lighting and other 

factors influencing the production of plants. The Energy Domain, on the other hand, is 

concerned with generation limits on the CHP plant as well as electricity market prices. There 

can be different situations, for example,  

1. In case of low electricity prices, all electricity is bought from the public electricity market, 

since there is no economic incentive in producing electricity locally. When market prices 

are high, the CHP plant starts local production in order to decrease the amount of 

electricity bought from the electricity market. Any surplus production not consumed by 

the greenhouses can be sold to the electricity market, in order to increase profit.  
2. In case of extreme prices or when external electricity supply is unavailable, the Energy 

Domain is forced to perform an allocation, which does not exceed the capacity of the 

CHP plant.  

For better illustration of the properties of our approach, we have chosen to focus on 

allocation of electricity for artificial light. So, in order to balance the allocation of electricity 

to each greenhouse, allocation and demand need to be coordinated through negotiation. 

Figure 3 shows how the Energy Domain and a Process Domain can be modeled using the 

modified version of Controleum. The Energy and Process Domains are connected through 

physical subsystems e.g., lighting subsystem. The group objective is to achieve a state of 

agreement between the coupled Energy and Process Domains in terms of balancing energy 

allocation and energy demand. The Energy Domain includes one Allocation Concern Agent 
(ACA), one Process Subsystem Agent (PSA) and one System Constraint Agent (SCA) that 

negotiate over a single issue reflecting an energy allocation plan. 
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Figure 3. Conceptual illustration of bilateral inter-domain negotiation in Controleum 

 

The candidate contract selected by the MA in the Energy Domain represents an energy 

plan. An energy plan is an hourly allocation of energy to the Process Domain for an entire 

day. The value of a time slot in the energy allocation plan issue is 0 or 1 MWh. The Process 

Domain also includes one Production Concern Agent (PCA), one Energy Subsystem Agent 

(ESA) and one SCA, which likewise negotiate over a single issue reflecting a light plan. The 
candidate contract selected by the MA in the Process Domain represents the light plan. A light 

plan reflects a light schedule that describes when artificial light is on or off in the Process 

Domain for an entire day. The value of the time slot in the light plan is (on/off). The SCAs 

exhibit similar behavior in each coupled domain.  

 

 

Figure 4. Conceptual illustration of multilateral inter-domain negotiation in Controleum 
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Figure 4 shows how the bilateral negotiation of Figure 3 has been extended to a 

multilateral negotiation. Now the Energy Domain includes one ACA, three PSAs and three 

SCAs. The ACA negotiate over three issues reflecting energy allocation plans, one for each 

Process Domain. The Process Domains are identical and have same number of agents and 
issues as described in Figure 3.  

ESA: Each ESA represents the preferences of the Energy Domain in the Process Domain 

and negotiates over one issue representing the plan for using artificial lighting. This light plan 

is converted to an energy demand plan by the ESA in each Process Domain. The energy 

demand for “off” hours in the light plan is mapped to 0 MWh in the energy plan, while the 

energy demand for “on” hours in the light plan is calculated by computing the total load of the 

lamps, which are installed in the greenhouse. In our case, the total lamp load is achieved by 

multiplying installed lamp effect (100 W/m2) with the size of the greenhouse (100m * 

100m=10000m2), which corresponds to an energy demand of 1 MWh. For illustrative purpose 

we assume that all lamps are switched on at the same time. However, conceptually the 

framework supports multiple levels. The energy demand plan is defined as     
                   .  Each ESA has a Preference   , which represents the energy allocation 

made in the Energy Domain and is defined as                        . The cost function of 

each ESA returns a value, which corresponds to the absolute difference of cumulative values 

of    and   , as defined in equation (4). 

                                                                    
 
       

 
                                                         (4)       

 

PSA: Each PSA represents the preferences of a Process Domain in the Energy Domain and 
negotiates over one issue, the energy allocation plan for the particular Process Domain. The 

energy allocation plan issue for PSA agent    , where   is the number of PSAs in the 

negotiation context, is defined as                        , where t defines the number of time 

slots defined in the energy allocation plan issue. During negotiation, each PSA is assigned a 

Preference   , which represents the current best guess for the light plan of the Process 

Domain it represents. This is converted into an energy plan using the same conversion method 

as the ESA. The cost function of each PSA returns a value, which corresponds to the absolute 

difference of cumulative values of    and   , as defined in equation (5). 

                                                                    
 
       

 
                                                         (5)      

  

SCA: Each SCA is responsible for finding the mean of the preferences of the domains they 

are represented in. The SCA in the Energy Domain negotiates over energy allocation plan 

issue   , where the SCA in the Process Domain negotiates over light plan issue. Each SCA 

has a Preference, which represents the mean of preferences of coupled domains defined as 

                     . This preference is calculated after converting the light plan of the 

Process Domain into an energy demand plan following the same method as the ESA. The cost 

function of SCA in the Energy Domain returns a value, which corresponds to the absolute 

difference of cumulative values of    and   , as defined in equation (6). 

                                                                    
 
       

 
                                                          (6) 

 

The cost function of SCA in each Process Domain returns a value, which corresponds to 

the absolute difference of cumulative values of    and   , as defined in equation (7). 

                                                                   
 
       

 
                                                          (7) 

ACA: The ACA negotiates over the accumulate energy allocation of the energy allocation 
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plan issues for all Process Domains, defined as      
 
 , to ensure that the combined 

allocation does not exceed CHP capacity. It has a Preference,               , which 

represents total CHP capacity. The cost function of the ACA is shown in equation (8). 

                                                        
   

 
     

 
 

 
        

         
                                                           (8) 

 

Following this equation, an ACA will try to suppress the combined cumulative electricity 

allocation for all Process Domains,  , until it is equal to or less than  . 

PCA: The PCA negotiates over a light plan defined as                         to ensure that 

sufficient amount of artificial light is switched on to achieve the production goal. It has a 

Preference, which represents the preferred number of hours, the lamps need to be switched on 

in order to achieve the production goal defined as                        .  The cost 

function of PCA returns a value, which corresponds to the absolute difference of cumulative 

values of    and   , as defined in equation (9). 

                                                                     
 
       

 
                                                          (9) 

5. EXPERIMENTS 

Initially we consider a bilateral negotiation between two coupled domains. The Energy 

Domain is coupled with a single Process Domain as shown in Figure 5.  
 

 

Figure 5. Conceptual drawing of two coupled domains 

Next we establish multilateral negotiation among multiple coupled control domains. The 

Energy Domain is coupled with multiple Process Domains as shown in Figure 6. 

 

 

Figure 6. Conceptual drawing of multiple coupled domains 

In order to simulate the bilateral and multilateral negotiation needed in each of the 

different situations described in section 4, we have considered the following sets of scenarios: 

Scenario 1. Process Domain prioritized over Energy Domain: in this scenario, the 

Process Domain cannot divert from its electricity demand and the Energy Domain must 
adapt to the demand of the Process Domain in case of initial resource insufficiency. 

However, no surplus resources should be allocated, in the case the demand is less than the 
available resources.  
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Scenario 2. Energy Domain prioritized over Process Domain: in this scenario, the 
Energy Domain cannot allocate more than its total capacity and the Process Domain must 

adapt to the allocation made in case of resource insufficiency. However, no surplus 
resources should be allocated, in the case the resources are greater than the demand.  

Scenario 3. Absolute compromise between Energy Domain & Process Domain: Here 
both domains are able to adapt to the perceived preferences of the counterpart. However, 

no surplus resources should be allocated, in the case the demand is less than the available 
resources. But a compromise should be made in case of resource insufficiency, so that 

both domains concede equally in absolute terms. 
In each scenario, two experiments are conducted: One with sufficient energy resources to 

meet demand and other with insufficient energy resources to meet demand. During inter-

domain negotiation, the domain specific concern agents (ACA and PCAs) in each domain are 

assigned a high priority, priority value 0, the ESAs and PSAs are assigned a lower priority of 

1 and the SCAs are assigned a priority of 2. This configuration is chosen to exchange actual 

preferences of coupled domains through subsystem agents during inter-domain negotiation as 

shown in Table 1. When the negotiation has completed, the selection strategy imposes new 

configurations in case of a conflict in each set of experiments. In scenario 1, the PSA in the 

Energy Domain is prioritized over ACA to ensure that the preferences of Process Domain are 

never compromised. In scenario 2, the ESA in the Process Domain is prioritized over PCA to 
fulfill the preferences of Energy Domain and to force Process Domain to follow the 

preferences of Energy Domain. In scenario 3, the SCAs in both Energy Domain and Process 

Domain are prioritized to find the mean of the preferences of the coupled domains as shown in 

Table 1. 

Table 1. System configuration 

S# Scenario 

During Inter-domain  

Negotiation 

Selection of Final Outcome 

After Inter-domain  

Negotiation 

Energy 
Domain 

Process 
Domain 

Energy 
Domain 

Process 
Domain 

1 
Process Domain prioritized 

over Energy Domain 

ACA       (0) 
PSA       (1) 

SCA       (2) 

PCA       (0) 
ESA       (1) 

SCA       (2) 

 PSA        (0) 

ACA       (1) 

SCA       (2) 

PCA       (0) 

ESA       (1) 

SCA       (2) 

2 
Energy Domain prioritized 

over Process Domain 

ACA      (0) 

PSA       (1) 

SCA      (2) 

ESA       (0) 

PCA       (1) 

SCA       (2) 

3 

Absolute compromise 

between Energy Domain & 

Process Domain 

SCA      (0) 

ACA     (1) 

PSA      (1) 

SCA       (0) 

PCA       (1) 

ESA       (1) 
 

 

To validate the efficacy of the proposed coordination mechanism, each experiment is 

repeated 100 times to address possible random behavior of the Genetic Algorithm (GA) used 

by the MA to generate the population of contracts. 
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5.1 Bilateral Negotiation 

In case of bilateral negotiation, for the first experiment, the total CHP capacity in the Energy 

Domain is 24 MWh across 24 hours and the cumulative energy demand of the Process 

Domain is 18 MWh. In the second experiment, the cumulative CHP capacity in the Energy 

Domain is 18 MWh and the cumulative demand of Process Domain is 24 MWh. These values 

are chosen arbitrarily to simulate the cases described in each of the two experiments described 

in section 5.  

5.1.1 Process Domain Prioritized Over Energy Domain 

Figure 7 shows outcome of the inter-domain negotiation between the two domains. Figure 7a 

shows the experiment with sufficient resources. At the beginning of negotiation round 1, the 

MA makes initial allocation of 15 MWh in the Energy Domain for an energy demand of 18 

MWh. 

 

Figure 7. Bilateral convergence of coupled domains (a) Resources>demand (b) Resources<demand 

The ACA in the Energy Domain is able to increase its allocation but will not increase 

allocation beyond CHP capacity. As negotiation process progresses, the PSA in the Energy 

Domain will contribute to coordinate energy allocation with the demand of coupled Process 

Domain. This coordination will lead the system towards a state of agreement where energy 

allocation is exactly equal to the energy demand of the Process Domain.  At negotiation round 

2, the amount of energy allocated in the Energy Domain matches with the demand of coupled 

Process Domain. Table 2 shows that coupled domains converge and also reach an agreement 

during inter-domain negotiation.  

 

Table 2. Simulation results for state of convergence & agreement 

 

Experiment 

State of Convergence State of Agreement 

Allocation Demand Allocation Demand 

MWh MWh MWh MWh 

Process Domain prioritized over 

Energy Domain 

Res.>Dem. 18 18 18 18 

Res.<Dem. 18 24 24 24 

Energy Domain prioritized over 
Process Domain 

Res.>Dem. 18 18 18 18 

Res.<Dem. 18 24 18 18 

Absolute compromise between 
Energy Domain & Process Domain 

Res.>Dem. 18 18 18 18 

Res.<Dem. 18 24 21 21 
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In case of insufficient resources (Figure 7b), the MA makes initial allocation of 16 MWh 

in the Energy Domain, where the MA makes an initial demand of 21 MWh in the Process 

Domain. As expected, the PCA in the Process Domain does not deviate from its energy 

preference in response to this. Similarly, the Energy Domain approaches the demand of the 
Process Domain but does not exceed the CHP capacity. It can be seen from Figure 7b that a 

conflict exists in the system after negotiation.  The data in Table 2 shows how the conflict is 

resolved by the selection strategy based on system configuration 1 in Table 1, where 

allocation is increased in the Energy Domain to meet the demand of the Process Domain.  

5.1.2 Energy Domain Prioritized Over Process Domain 

This experiment yields the same results for inter-domain negotiation both in case of sufficient 

and insufficient energy resources with respect to demand as shown in Figure 7a and 7b 

respectively. This is expected, as the preferences and the agents are the same. The only 

variable changed is the selection strategy for selecting final negotiation outcome after inter-
domain negotiation. Here a selection is made according to the system configuration 2 in Table 

1, in which the Process Domain reduces its demand in order to match the energy allocated in 

the Energy Domain. 

5.1.3 Absolute Compromise between Energy Domain And Process Domain 

Again the result of the negotiation is same as the two previous experiments. Table 2 shows the 

outcome of the experiment using the selection strategy based on system configuration 3 in 

Table 1, which prioritizes the SCAs to reach a compromise. In case of sufficient resources, as 

expected, the Process Domain gets an amount of electricity that matches its demand. In case 

of a conflict, the selection strategy, which prioritizes the SCAs, will force each domain to 
make a compromise of 3 MWh in order to reach an agreement.  

5.2 Multilateral Negotiation 

In case of multilateral negotiation, there are three PSAs and three SCAs in the Energy 

Domain, one for each coupled Process Domain. We have used the same system configuration 
(Table 1) for the selection of the final outcome in the experiments with multilateral 

negotiation as in the experiments with bilateral negotiation.  

In case, where sufficient energy resources are available with respect to demand, we have 

defined the CHP capacity to be 24 MWh across 24 hours and the cumulative energy demand 

of the Process Domains to be 18 MWh across the same period. The individual energy demand 

preference of each Process Domain is defined as 3, 6 and 9 MWh respectively. To illustrate a 

situation with insufficient resources in the system, the total CHP capacity is set to 18 MWh 

and the cumulative energy demand of all Process Domains is set to 24 MWh. The individual 

demand of each Process Domain is here defined as 4, 8, and 12 MWh respectively. Again 

these values are arbitrarily chosen, in order to simulate the scenarios explained in the previous 

section. However, we have chosen different levels for the Process Domains, in order to show 

the capability of the framework to handle heterogeneous demands. 

5.2.1 Process Domain Prioritized Over Energy Domain 

Figure 8 shows the result of the inter-domain negotiation among multiple coupled control 

domains. Figure 8a shows the result of the experiment with sufficient resources. In the 
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beginning of negotiation round 1, the Energy Domain makes random initial energy allocations 

of 7, 6 and 5 MWh respectively for each Process Domain. The Process Domains makes 

demands of 3, 6 and 9 MWh respectively. As the negotiation progresses, the PSAs in the 

Energy Domain will contribute to coordinate the allocations proposals generated by the MA.  
The negotiation between ACA and PSAs ultimately converge towards allocations and 

demands of 3, 6, 9 MWh respectively at negotiation round 7. It can be seen in Table 3 the 

coupled domains not only converge but also reach an agreement during inter-domain 

negotiation. 

The result of the experiment with insufficient resources is depicted in Figure 8b. The initial 

allocations proposed by the Energy Domain for each Process Domain are 11, 4 and 8 MWh 

respectively. The demands made by each Process Domain are 4, 8 and 12 MWh respectively. 

As the negotiation progresses the PSAs in the Energy Domain try to coordinate allocations 

and demands in the Energy Domain. However, as can be seen from Figure 8b a fixed gap of 2 

MWh exists between allocation and demand of each coupled Process Domain from 

negotiation round 83. This is because, the selection strategy based on Approximated Fairness 
ensures that all agents are treated equally and therefore all Process Domains concede on fair 

basis to bridge the gap of the conflict as shown in Figure 8b. At the end of inter-domain 

negotiation, according to the system configuration 1 in Table 1, a selection is made forcing the 

Energy Domain to deviate from its preference with a cost of 6 in order to resolve the conflict 

between allocation and demand. The result is depicted in Table 3.  

 

Figure 8. Multilateral convergence of coupled domains (a) Resources>Demand  

(b) Resources<Demand 

5.2.2 Energy Domain Prioritized Over Process Domain 

This experiment yields the same results during inter-domain negotiation as depicted in Figure 

8a and 8b respectively. Again, this is due to the fact that the only variable, which changes, is 

in the selection of the final negotiation outcome. In order to solve the conflict, which arises in 
the case of insufficient resources, we use the selection strategy based on system configuration 

2 in Table 1, which makes the Process Domains compromise in order to adhere to an 

allocation. The result is shown in Table 3, where the Process Domains are conceding by a cost 

of 2 in order to meet the allocation of 18 MWh. 

5.2.3 Absolute Compromise between Energy Domain And Process Domain 

As with the previous experiment, we observe the same behavior depicted in Figure 8a and 8b 

during inter-domain negotiation. Here we apply the selection strategy based on system 

configuration 3 in Table 1, which prioritize the SCAs in to find a compromise in terms of 



AN AGENT BASED APPROACH FOR COORDINATION OF ENERGY ALLOCATION AND 

DEMAND IN CYBER-PHYSICAL SYSTEMS 

127 

allocation and demand. The result can be seen in Table 3. The contract selected by the MA in 

each domain is the one that fully satisfy SCAs such that the PCAs in each Process Domain 

made a total compromise of 3 and ACA in the Energy Domain made a compromise of 3.  

6. CONCLUSION AND FUTURE WORK 

Cooperative control strategies and multi-issue negotiation protocols have been studied widely. 
In this paper, we proposed a novel inter-domain coordination mechanism, which unifies the 

properties of both cooperative control strategies and multi-objective multi-issue negotiation 

protocols. Our experimental results show that our proposed coordination mechanism is able to 

coordinate a system consisting of multiple control domains using both bilateral and 

multilateral negotiation. We have illustrated, how cases with insufficient system resources 

result in conflicts between preferences of coupled domains. We further demonstrated three 

different approaches to solve this type of conflict: One, which forces demand processes to 

follow allocation, one which forces allocation to follow system demand, and one which find a 

compromise between demand and allocation.  It is observed from the results that the presence 

of SCAs is important in case where we need to find an absolute compromise between the 

coupled domains to solve the conflicts. The SCAs enforce the coupled domains to deviate 

equally from their preferences in order to reach a final agreement. We also see, that the SAs 
play a major role in all cases, as they are responsible for propagating the preferences of one 

subsystem in the connected subsystem during inter-domain negotiation. In cases where one 

subsystem should have preference over another subsystem, the SAs are further used to solve 

the conflicts, as the task of balancing demand and allocation is handled by the SAs to help 

coupled domains to reach an agreement. Each experiment has been repeated 100 times in 

order to negate random effects from the genetic algorithm used by the MA in the negotiation.  
We plan to test the approach presented in this paper on different domains, in order to see if 

the model presented for inter-domain negotiation and conflict solving is generic in terms of 

applicability. Further we plan to extend the existing experiments to a real life setting, with 

multiple local concerns. 

 

Table 3. Simulation results for state of convergence & agreement 

Experiment 

State of Convergence State of Agreement 

Allocation 

(MWh) 

Demand 

(MWh) 

Allocation 

(MWh) 

Demand 

(MWh) 

C A1 A2 A3 C D1 D2 D3 C A1 A2 A3 C D1 D2 D3 

Process Domain prioritized 

over Energy Domain 

Res.>Dem. 18 3 6 9 18 3 6 9 18 3 6 9 18 3 6 9 

Res.<Dem. 18 2 6 10 24 4 8 12 24 4 8 12 24 4 8 12 

Energy Domain prioritized 

over Process Domain 

Res.>Dem. 18 3 6 9 18 3 6 9 18 3 6 9 18 3 6 9 

Res.<Dem. 18 2 6 10 24 4 8 12 18 2 6 10 18 2 6 10 

Abs. compromise b/w Energy 

Domain & Process Domain 

Res.>Dem. 18 3 6 9 18 3 6 9 18 3 6 9 18 3 6 9 

Res.<Dem. 18 2 6 10 24 4 8 12 21 3 7 11 21 3 7 11 
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