
IADIS International Journal on Computer Science and Information Systems
Vol. 10, No. 1, pp. 47-63
ISSN: 1646-3692

47

INTELLIGENT AND SELF-ADAPTING
INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

Heiko Kern, Fred Stefan. University of Leipzig, Business Information Systems, Leipzig, Germany.

Vladimir Dimitrieski. University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia.

ABSTRACT

Increasing automation in the manufacturing industry requires a comprehensive integration of machines
and business information systems. Driven by the Internet of Things or the high-tech strategy Industry
4.0, an efficient integration plays in this domain an increasing role. Despite powerful technologies, the
integration is a challenging and labor-intensive task. To walk with the development, machines and
information systems need flexible and powerful integration mechanisms with self-configuring and
self-adapting features. The ideal conception would be a plug & produce mechanism, which follows the
USB plug & play principle. In this paper, we address this problem and present a novel approach for a
structured, automated and reusable integration of information systems and machines. The approach is
realized as a framework which allows the development of transformations between different data
schemas. Accordingly, the framework is positioned between machine and application layer. The
framework consists of a declarative mapping language with a graphical notation and an intelligent
solution for connecting different systems. In this contribution, we give an overview of the framework
components and demonstrate the approach in a practical use case.

KEYWORDS

Integration, Mapping, Transformation, Automation

1. INTRODUCTION

Increasing automation in the manufacturing industry requires a comprehensive integration of
machines and business application systems. According to emerged visions of Internet of
Things (Mukhopadhyay 2014) or Industry 4.0 (Dujin et al. 2014), continuous integration is an
essential requirement for the implementation of common business processes. The realization
of this guiding principle requires a horizontal and vertical integrated information flow

IADIS International Journal on Computer Science and Information Systems

48

throughout the entire automation pyramid. Machines on the lowest level have to be vendor-
independent, flexible and efficiently integrable with application systems from the IT-level and
new cloud services.

With increasing automation and coupling degree the factors adaptability, quality and
efficiency of the machine integration play a central role. Currently, the exchange of data
within the automation pyramid does not meet future requirements in terms of flexibility and
adaptability. As shown schematically in Figure 1, there is a horizontal gap between the
machines on factory level and the overlying applications and services on enterprise level.
Additionally, there exists a vertical gap between machines from different manufacturers,
customers and domains.

Manufacturers of application systems are facing with the challenge to integrate their
products into the existing machine landscapes of their customers. Often, the machine and
equipment landscape is heterogeneous and characterized by many different interfaces. Despite
a variety of standardized industry protocols or exchange standards, machine interfaces are
often adapted for a certain domain, manufacturer, or machine. Thus, integration between
machines and overlying application systems causes manual adaptation effort which is
complex, time-consuming, and expensive. Moreover, quality and transparency of the
integration solution are hindered.

Figure 1. Horizontal and vertical lack of integration inside the automation pyramide

In this paper, we address the described integration problem and present a novel approach
for a structured, automated, and reusable integration of information systems and machines.
The central idea of our approach is a machine and information system independent coupling
component, which allows a systematic reuse of integration knowledge from previous
integration projects. The reuse or adaptation of existing integration knowledge to new projects
is to be provided by a framework in an automated and transparent way. This simplifies the
integration of new machines and improves the response time of production process changes.

The paper is structured as follows. In Section 2, we identify specific circumstances and
challenges in the field of machine integration. In Section 3, we present our solution in detail.
Afterwards, we present the implementation of the framework in Section 4. After that, we

Intelligent
IntegrationFactory level

Enterprise level

… …

MES

QMSPLS

PPS

……

Cloud services

…Storage

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

49

illustrate a use case in Section 5 and evaluate our approach in Section 6. In Section 7, we
discuss related work and conclude this paper in Section 8 with a summary and suggestions for
future work.

2. INTEGRATION DOMAIN

Generally, integration in the area of software and system development can be defined as the
process of linking separate computing systems into a whole so that these elements can work
together effectively (Linthicum 1999). System integration is a manifold discipline with a lot of
different aspects. In this paper, we focus on the integration between machines and information
systems. Furthermore, we are interested in the integration on data or function level (Ruh et
al. 2001), more precisely, we investigate the data exchange between different data structures
provided by systems.

A further integration aspect concerning our approach is the unification mechanism to
overcome heterogeneity between systems. We can distinguish between the following two
mechanisms: standardization and transformation. Standardization can be defined as a
development process of a standard which avoids heterogeneity a priori by defining a common
structure. For the integration between machines and application systems there are a variety of
standards which overcome the technical heterogeneity (e.g. OPC, SECS/GEM, WSDL,
ODBC, Ethernet, and Fieldbus) and standards for semantic/functional heterogeneity (e.g.
MAP/MMS and B2MML) (SISCO 1995 and Scholten 2007). However, in practice, such
standards are frequently adapted to a specific domain, manufacturer or machine. Despite these
standards, many machines and systems offer proprietary formats or adapted standards. Thus, a
mapping or transformation approach is necessary to overcome the heterogeneity between
different structures. The aforementioned unification mechanisms are not mutually exclusive. A
proprietary structure can be mapped to a standard by using a transformation. Our approach
focuses on the semantic/functional heterogeneity and uses the transformation approach as a
unification mechanism.

Application vendors are often focused on a certain industry domain and they must
integrate their system with similar systems used by their customers in this domain. For
example, a vendor of a Manufacturing Execution System (MES) or a Quality Management
System (QMS) is specialized in quality management and must usually integrate data from
measuring and testing machines. We assume that the semantic entities of these systems are
similar and differ only in some issues, such as, naming, different attributes and relations, or
different serialization formats. Therefore, the transformations between these entities in
integration projects are similar and differ only in a defined variability. Despite powerful
approaches, developers are often facing the challenge that they cannot apply their existing
transformation knowledge to new integration projects.

Currently, in practice the integration is done as shown in Figure 2. In the most cases, the
machines and application systems were integrated by individual, hard-coded machine
connectors. Often, the interfaces comprising the transformation code are created manually.
This means, changing the interface according to new needs (e.g. production change or
machine updates), causes a lot of manual adaption effort. Additionally, the current approaches
are characterized by an insufficient reuse. Oftentimes, existing transformations are simply
copied and manually adapted to similar projects. This method is error-prone and contributes to
a lack of transparency.

IADIS International Journal on Computer Science and Information Systems

50

Figure 2. Current state of the art: manual developed
machines connectors

Figure 3. Planned objective: machine connection
using the integration framework

To solve this integration challenge, our framework should allow the reuse of existing
transformation knowledge in new and similar integration projects. As shown in Figure 3, our
mapping-based integration framework should substitute the individual machine connectors.
For this purpose, the framework should be non-invasively applicable as a standalone
component on-the-top of existing machines.

Our solution should differentiate between the transformation logic itself and
implementation of this transformation logic. This separation enables the portability of
transformation knowledge to different scenarios and integration platforms. Additionally, the
executable transformation code should be generated automatically. This automation minimizes
the development effort and increases the quality of the solution. Beside the automatic creation
of transformation code, the framework should suggest possible transformation logic in order to
increase the automation of the entire development process. In the next section, we present our
mapping-based integration framework.

3. MAPPING-BASED INTEGRATION FRAMEWORK

3.1 Framework Overview

The integration framework can be divided into several components. In Figure 4 we give an
overview of the framework architecture. The first component is the importer of data schemas
from the source and target systems. The second component is a binder which creates an
abstract element tree to represent concepts (types, attributes and relations) of a schema. The
element tree abstracts from concrete schema implementation details and allows the

Service Bus

Connector

Machine A

Connector

Machine C
Connector

Machine B

Connector

IS

Service Bus

Connector

IS

Mapping-based Integration

Framework

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

51

representation of schemas expressed in different technologies (e.g. XML schema, database
schema, CSV, or JSON). This allows the access to the actual machine data on the source side
and to the application systems on the target side. The data can be compliant to different
protocols.

Based on the element trees, a mapping can be defined in order to overcome the
heterogeneity of the source and target schemas. This functionality is provided by the mapper
editor. A single mapping comprises a set of the mapping rules that are independent of a
concrete schema technology because they are defined between element tree concepts.

Created mappings are stored in a repository. This repository can be regarded as a
knowledge-base for mappings and allows their reuse in similar projects. The framework
includes algorithms implementing comparison strategies to find repository mappings fitting to
the objects of the element tree. Finding correct mappings can be seen as an intelligence feature
that allows the automatic creation of new mappings.

Mappings and their rules are abstract correspondences between data schemas. To get an
executable transformation, a generator iterates over the specified mapping rules and produces
an executable data transformation. The generator is specific to a source and target schema
technology and a selected environment for the transformation execution. The final step is the
deployment and execution of the generated transformation that finally realizes the data
exchange between source and target system.

Figure 4. Overview of the mapping-based integration framework

Overall, the application of the integration framework consists of four main steps. These are
presented in Figure 5. In the first step, the source and target structures are linked. This
generates the abstract element trees, which forms the basis of the mapping. The second step is
the creation of a mapping. We distinguish between a learning phase and application phase.
During the learning phase, a user creates the mappings manually. Each mapping of the
learning phase is stored in the repository. The more extensive the learning phase, the greater
the knowledge of the repository. In the application phase, the acquired transformation

Integration platform

Machine data

(e.g. CSV)

Data schema

Data

Data

schema

Data

Import /

Export

Element

tree

Element

tree
Mapper

Generator

Data

schema

Data

Instance

of
Instance of

Binding

Instance of

Binding

Mapping

Data

transformation

Source Target

Storage/Query

Information system

(e.g. XML)

Data schema

Data

Instance

of

Import /

Export

Mapping-

Repository

Reuse

algorithms

IADIS International Journal on Computer Science and Information Systems

52

knowledge can be automatically applied to the new source and target structures. Therefore,
reuse algorithms compare elements from the current element trees with existing rules from the
repository in order to find appropriate mapping candidates. Depending on the quality of the
proposed mapping suggestions, they can be automatically adopted to the new structure. If the
suggested solutions make no sense, mapping suggestions can also be modified by hand. The
derived mapping can be also stored as transformation knowledge in the repository. After the
mapping creation, a generator generates the corresponding transformation code for a runtime
environment. In the last step, the generated code is automatically deployed and executed by an
integration platform.

Figure 5. Necessary steps for the application of the integration framework

3.2 Representation of Data Schemas

The mapping approach aims to provide an abstract mechanism for specifying mappings
regardless the underlying data schema technology. For this reason, we provide a generic tree
representation of schemas. A binding component reads a data schema and creates an element
tree structure of this schema. A user interface shows this element tree in a specific tree view.
Based on this view, a mapping designer can specify a mapping. Each concept in an element
tree holds a reference to the original concept of a data schema. This reference is important in
order to get specific details of the data schema for the later generation of the transformation
code.

An element tree consists of an element container and a set of elements. The element tree
structure is part of our mapping language. An element container (ElementContainer)
represents a data schema. Each element container has a name corresponding to the name of an
imported data schema and a location of the schema. Furthermore, an element container has a
binding type and a binding configuration. The binding type determines the responsible binding
component, the interpretation of the binding configuration, and is important for the selection
of the generator. Each element container comprises zero or more elements (Element). Each
element has a binding string and a name. The name attribute corresponds to the name of an
original element from an imported schema. The binding string stores the path to the native
element in the original schema. The format of the binding string depends on the schema
technology. The binding string or reference is necessary during the generation process of the
executable transformation. Additionally, the mapper tool enables the presentation of different

Bind source

and target

structure

Generate

transformation

code

Deploy and

execute

transformation

code

Mapping

repository

Application phaseLearning phase

Manual

mapping

Create mapping

Automatic

mapping

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

53

schemas in an element tree. Currently, we support the following binder components: CSV,
XML and SECS/GEM. Figure 6 shows example of different schemas represented as element
trees.

Figure 6. CSV, XSD and SECS binder

3.3 Mapping Description

Based on the created element trees, a mapping can be defined by using a mapping language.
The abstract syntax of this language is presented in Figure 7. The root element of a mapping
description is a mapping container (MappingContainer). A mapping container comprises zero
or more links (Link) and nodes (Node). Each mapping container references at least one source
and one target element container (ElementContainer). A mapping rule is represented by an
operator (Operator) linked to source and target elements. In dependency of the source and
target links in a mapping rule, we classify operators as one-to-one (OneToOne), one-to-many
(OneToMany), many-to-one (ManyToOne), many-to-many (ManyToMany), and zero-to-any
(ZeroToAny). The zero-to-any operator requires only a target element. This operator provides
the creation of any number of target elements. Operators have a name for their unique
identification in a mapping container, and an operator expression for specifying a filter on
source elements. Each operator is connected to source and target elements using links (Link).

Operators can depend on other operators. The dependency of operators results from the
parent-child relation of elements from the source or target structure. If all elements that are
being mapped have no parent elements in the operator tree, the mapping is considered to be a
root operator. If one of the participating elements has a parent element in the tree, the operator
is considered to be a child operator.

The source and target links of an operator reference only a certain set of data which is
defined by a type element in a schema. The mapping logic between these links is descripted as
assignment statements inside an operator. Each source and target link of an operator has an
identifier or variable name. This identifier can be used in an assignment statement to define
the concrete mapping between input and output of an operator. Additionally to the assignment
statements, the expression of select statements is possible. This is necessary to select a subset
of data from a schema element. Additional to this assignment and select statement, an operator
allows the definition of an execution constraint. This constraint is a condition which controls
the execution of an operator.

IADIS International Journal on Computer Science and Information Systems

54

Figure 7. Structure of mappings and element trees

3.4 Transformation Execution

A mapping describes only the relationship between elements of data schemas involved in the
process. This description must be executed in order to transform the data from the source into
the target system. We use a generator approach for the creation of executable transformations.
The generator iterates over the mapping rules and creates transformation code. The generator
can query specific information of the source and target schema which is referenced via the
elements in the element tree. There is a generator for each combination of (i) execution
environment, (ii) source and (iii) target schema technology. The transformation can be
executed by an existing environment (e.g. transformation systems, programming languages, or
integration platforms) and can be realized as a module or plugin for an integration platform
(MuleESB or OpenESB) or an independent program executable in a general programming
language (e.g. Java or C#). In summary, the generator approach is platform-independent and
enables the portability to other transformation environments.

3.5 Reuse of Mappings

A key concept of this framework is the reuse of mappings and the automatic derivation of new
mappings based on existing mappings. Each mapping is stored in a common repository. The
repository represents a knowledge-base and is the basis for the creation and adaptation of new
mappings. In the reuse process, reuse algorithms compare elements from the current mapping
with existing repository rules in order to find rule candidates for reusing. The output of the
algorithm is a set of rules with probabilities which indicate the appropriateness of these rules
for the currently observed mapping.

In Figure 8 we present the process for calculating rules for a new source and target
structure. The whole process consists of the following steps.
- Step 1: In the first step, a framework user may select at least one source and target

element which should be mapped to each other.

Mapping

Container

NodeLink 1
sources

1

1
targets

*

nodes

ZeroToAny

OneToMany

ManyToMany

Operator

ManyToOne

OneToOne

0..*

links

0..1

dependsOn

ElementContainer

Element

0..*elements

1

0..* children

parent

1..*
element containers

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

55

- Step 2: In the second step, the similarity calculation is executed. The input of this
calculation is the element selection from the first step. This step is descripted in more
detail in the next subsection.

- Step 3: After the execution of the similarity calculation, a list of possible rules are
identified as possible candidates for reuse. Each candidate has a probability which
describes the matching factor between the rules in the repository and the source and target
element from the current element tree. The similarity calculation is described in more
detail in the next section.

- Step 4: In the fourth and final step, the calculated mappings are adapted and applied to the
current source and target structure. The application depends on a definable threshold
value, which can be set automatically or manually. The chosen candidate rules are then
applied to the current mapping and represented in the mapping editor.

Figure 6. Process of the reuse algorithm

Based on (Manakanatas and Plexousakis 2006), we may classify reuse algorithms as: (i)
reuse algorithms based on isolated element information, (ii) reuse algorithms based on element
structure, and (iii) reuse algorithms based on element semantic. Our goal is to create a generic
algorithm that may be used in the creation of mappings between any source and target
structure. In such a case, we can only rely on isolated mapping information as we do not know
in advance which source and target structure are being mapped. Therefore, the used reuse
algorithm belongs to the first category. In addition to considering isolated element
information, the presented algorithm also considers past executions and previous user choices
in order to improve the accuracy of the results.

The individual steps of the algorithm are presented in the right part of Figure 6. The first
step (step 2.1 in Figure 8) of the algorithm is a preprocessing for all repository rules. During
this step, a number of occurrences of each repository rule is calculated. Based on the number
of occurrences, the probability of a repository rule is calculated as:

Read and group repository

rules

Calculate similarities

between repository and

selected rule elements

Combine element

similarities for each rule

Calculate weights for rules

St
e

p
 2

.1
S

te
p

2
.2

User selects the elements

for the algorithm

Execution of the reuse

algorithm

Selection of the best fit

rule candidates

Applying the rule

candidates

S
te

p
 1

St
e

p
 2

S
te

p
3

S
te

p
 4

IADIS International Journal on Computer Science and Information Systems

56

���→�� = ���→�����→∀

 ���→�� is the probability of the rule 	
 → �
 being the appropriate repository rule for the
reuse algorithm. 	
 → �
 describes a rule which maps a source element onto a target element.
With ���→��, we denote the number of occurrences of the 	
 → �
 rule in the repository. 	

and �
 are sets of source and target elements of a repository rule, respectively. With 	
 → ∀
we present all repository rules that have 	
 as the set of source elements. For example, let us
consider a repository containing two instances of the rule: � →
	and one instance of the rule � → �,�. In total, there are 3 rules with the �	set of elements as source. Therefore, the initial

probability that the element set �	should be mapped onto
 is ��→� = �
� ≈ 0.67 and that �

should be mapped onto �, � is ��→�,� = �
� ≈ 0.33.

In the second step of the algorithm (step 2.2 in Figure 8), user selected elements are
matched against the elements from the repository rules. The element comparison is based on
element names and done by combining different comparators. A comparator takes two
element names and produces a single number representing a similarity between these
elements. Currently, we have implemented several string comparison algorithms, such as,
Levenshtein (Levenshtein 1966) and Jaro-Winkler (Winkler 1990) algorithms. Each pair of
elements can be compared with an arbitrary number of comparators. Similarities calculated by
different comparators can be combined into a single value by weighted multiplication of
produced values. The weights are chosen globally by a user, in the tool settings, and assigned
to all comparators. Therefore, the element similarity is calculated as:

	�,�� = ∑ (�,��,�" ∙ ��")%&'� (

 	�,�� represents the similarity of the selected element) and a repository rule element)
.
With 	�,�� 	we denote the similarity of elements) and)
 	calculated by the comparator �&.
Comparators produce a normalized similarity that fits the *0,1,	interval. Additionally, ��" is
the weight assigned to each comparator by a user and it has a value in the same interval. The
sum of all calculated similarities is divided by the number of comparators (for the final
similarity to be also normalized and to fit the same interval.

In order to calculate a probability of a repository rule being an appropriate candidate for
reuse, similarities between all repository rule elements and user selected elements must be
calculated and combined into a single rule-specific value. This is calculated as follows:

-��→�� = .∑ 	�/" ,��/"%&'� +∑ 	�1" ,��1"2&'�(+ 3 4 ∙ ���→��
 -��→�� represents the probability of a rule 	
 → �
	being a candidate for reuse. With)5 we

represent a selected source element, while with)
5 we denote a source element of a repository
rule. 	�/" ,��/" represents a similarity between aforementioned source elements. Similarly,

	�1" ,��1" represents the similarity between a selected target element)6 and a target element of a

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

57

repository rule)
6. Both user-selected element collections and repository rule element
collections are ordered in the same way and comprise the same number of source elements (
and target elements 3. ���→�� is a weight factor calculated in the first step of the algorithm.

We should note here that the collection of user-selected elements may contain zero or more
source/target elements. If the user initiated the algorithm without selecting any elements, the
algorithm will search for the rule candidates containing any elements from a source or target
generic element tree. If a user selects one or more source elements, the algorithm considers
only these elements instead of all generic tree elements. In the case when, for example, all
selected source elements correspond only to a subset of a repository rule source elements,
other rule source elements must be also considered. They are compared to the rest of the
unselected generic source tree elements to find a match. Only when a match is found for all of
these other rule elements, it can be considered as a candidate. This is due to the fact that we
consider a rule to be an atomic semantic unit that is either considered for reuse with all of its
elements, or completely ignored. We do not consider rules with just a subset of its elements.
The algorithm works in a similar way when the user selected elements comprise zero or more
target elements.

In the case where a collection of selected source elements has fewer elements than n or a
collection of selected target elements has fewer elements than 3, then the following formula
may be used to calculate the rule probability for reuse:

-��→�� = .∑ 	�/" ,��/"%&'� + ∑ 	�7/1" ,��/"8&'� 	+ ∑ 	�1" ,��1"2&'� + ∑ 	�711" ,��1"9&'�(+: + 3 + ; 4 ∙ ���→��

Two new segments are added to this formula. The ∑ 	�7/1" ,��/"8&'� segment represents the

calculation of similarities between the repository rule elements that are not paired with any of
user selected elements)
5" and one of the elements from the generic element source tree)<56".
The number of repository rule elements which are not paired with the selected source elements
is denoted with :. The element from the generic source tree is chosen to have the maximum
similarity with the element)
5". This maximum similarity must be larger than a user defined
threshold. Analogously,	∑ 	�711" ,��1"9&'� segment represents a calculation of similarities of the

unmatched target elements of the repository rule. The number of unpaired repository rule
target elements is denoted with ;.

4. IMPLEMENTATION

The framework comprises the following components: binders, a mapping editor, a repository,
generators and comparison algorithms. The framework is implemented in Java as an Eclipse-
based application. Each component is implemented as a plug-in.

For each data schema technology, there is a binder plug-in. The binder plug-in implements
the creation of the element tree and the binding of the elements to the concepts in the data
schema. If there is no explicit data schema, the binder is responsible for the analysis of
instance data and the inferring of a corresponding data schema. Beside the creation of the
element tree, the binder offers a specific tree view for the mapping editor.

IADIS International Journal on Computer Science and Information Systems

58

The mapping editor is the central component which connects different binders, the
repository, comparison algorithms and generators. The mapping editor is implemented with
the Standard Widget Toolkit (SWT). On the left-hand and right-hand side of the user interface
a view for the source and target schemas is implemented. In the middle part of the editor, there
is a canvas which allows the drawing of mappings between elements. A property view at the
bottom allows the editing of properties, such as names, assignment statements, expression of
select statements, or rule conditions.

The data structure of the mapping and element container is implemented with the Eclipse
Modeling Framework (EMF). This framework offers code generation of data models and a
serialization and deserialization of data in order to store and load mapping models as files.

We use Xtend for the implementation of generators. Each generator is realized as a plug-in
and depends on a source and target schema technology, as well as, the transformation
execution environment. Xtend allows access on EMF data and offers navigation or analysis of
the EMF mapping models.

The repository is currently implemented as a file system directory. All mappings are stored
in a defined directory. The repository component reads the mappings from the repository and
can iterate over all mappings. The comparison algorithms are implemented in Java.

5. USE CASE

In this section, we present a case study to demonstrate our integration framework. The selected
use case concerns measuring thickness of wafers during their production. This measurement is
important to ensure the quality throughout the production process. For this purpose, the
measurement machines offer different methods, such as, grid, profile or spot measurements.
Depending on the selected method, the machine produces different output data. In this case,
each machine produces one CSV file per operation containing measured values. For data
processing and analysis, CSV data must be imported into a manufacturing execution system.
The manufacturing execution system offers data interfaces which allow the import of XML
documents conforming to a defined schema. Beside the technical heterogeneity between the
CSV format of the source system and XML format of the target system, the import mechanism
must overcome the functional heterogeneity between source and target systems. The existence
of different measurement methods lead to a variability in CSV files. That is, the MES vendor
needs a set of different adapters for the integration of the measuring machines. The manual
implementation may be insufficient, time-consuming, costly, and error-prone. Hence, we use
our integration framework in order to develop an integration solution which concerns the
variability in the machine data.

The integration solution must transform the CSV files into XML files which can be
imported into the MES. The source CSV files are structured into a header and a payload
section. The header contains metadata which characterize the measurement process (e.g. time,
laser, charge/batch number, or operator). The header is followed by the payload section which
contains the measured results of the wafer thickness. The payload conforms to the commonly
used CSV specification and is structured in a tab delimited table. Depending on the
measurement method, the number of measurement layers can differ. This affects the structure
of the CSV table. The target XML schema for the representation of the same data comprises
Lot, TestCycle, TeastCharacteristicResult, and measuredValues elements.

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

59

First, the integration framework creates a transformation for a single-layer point
measurement. Algorithms automatically recognize the structure of the CSV file. A binding
component creates an element tree of the analyzed CSV file structure. Afterwards, the XML
schema of the MES is imported into the mapping editor. A binder creates an element tree for
the XML schema. Based on the element trees, the mappings between the source and target
elements can be described graphically by using the mapping language. The mapping and the
created element trees are represented in Figure 9. The mapping consists of the following
operators (denoted as O).

- O1 creates the root XML element ArrayOfLot
- O2 maps the metadata values Time and Date into the XML element StartTime
- O3 creates for each row in the CSV payload a Lot and TestCyle element in the XML

file.
- O4 maps Sub values (from Sensor 1) into TestCharacterisiticResult, measuredValues,

and double XML elements.
- O5 is similar to O4 but this operator maps Sus values (from Sensor 2) to the

corresponding XML elements.
The created mapping is stored in the repository. Subsequently, the acquired mapping-

knowledge should be applied for the creation of a new mapping. The measurement machine
now processes a double-layer point measurement. The CSV file includes four sensor values
per test cycle instead of two values (two values for both layers A and B). The mapping can be
derived in a fully automatic manner because the differences between the two CSV files are
marginal. The header sections are identical. Hence the operator O1-O3 can be applied without
changes. Due to the name similarity between the elements (Sub -> {Sub_A, Sub_B} and
Sus -> {Sus_A, Sus_B}) the operators O4 and O5 can be adapted to these new CSV elements
(see Figure 10). The user can execute the reuse algorithm which offers a set of calculated
mapping rules. These mapping rules have the highest similarity value and are adapted to the
new source and target structure. The user can apply the mapping rules by the selection of rules
in a dialog.

Figure 9. Mapping of single-layer measurement Figure 10. Mapping of double-layer measurement

After the selection of the suggested mapping rules, a developer can check and correct the
mappings in the mapping editor. The implemented generator creates a data transformation
based on the mapping specification. In this use case, Java code is generated that can be
executed in the integration platform. Within the scope of this use case, the integration platform

IADIS International Journal on Computer Science and Information Systems

60

MuleESB (MuleSoft Inc. 2015) was used. The integration platform reads the CSV files,
executes the generated transformation and writes the created XML files into the MES.

6. EVALUATION

We evaluated the integration framework on the basis of this use case and similar applications
in the area of machine integration. The mapping editor works well with different data
structures. Organizing data schemas as element trees is suitable for the representation of many
different data schema technologies. The mapping language provides developers with enough
concepts to express all needed mappings and to generate an executable transformation
between the participating data schemas.

The graphical notation of the mapping is intuitive and enables a good overview of the
mappings. Nevertheless, we find that the graphical representation of complex mappings could
be confusing due to the amount of lines. Hence, we consider for the future work a table-based
view in mappings. Our mapping tool also improves the usability of the exchange process.
Instead of programming a transformation, the tool generates the executable transformation.
Generally, the mapping tool supports exchange between various data sources. The
representation of data structures as element trees allows the import of schemas from various
machines and information systems.

The automatic derivation of mapping rules based on existing mapping rules containing in
the repository works well in our use case. The finding of mappings in the repository depends
on the quality of the mapping database and the comparison algorithms. The development of
sufficient algorithms and the optimal configuration is a work in progress. We assume that
automatic mapping is possible but the developer must have the possibility to adapt the
suggested mappings in the editor.

Furthermore, the approach improves the efficiency and quality of transformation
development. By separating of mapping logic and the transformation execution aspect, it is
possible to change the mapping logic without writing transformation code. Furthermore there
are different levels of error handling: during the development time of the mappings and the
code generation of the data transformation.

7. RELATED WORK

Adapter boxes or protocol converters, for instance, Anybus-adapters by HMS Industrial
Networks (HMS 2014), are the easiest way to integrate machines and application systems and
to overcome technical and functional heterogeneity. These converters often focus on the
translation of technical machine protocols. Additional to this, some converter boxes allow
overcoming the functional or semantic heterogeneity. But the transformations are hard-coded
into these devices. Our approach allows for dynamic creation of mappings to overcome
functional heterogeneity.

In the simplest case, the associated transformations can be implemented by a general
programming language, specialized mapping languages (e.g. Altova MapForce)
(Altova Map Force 2014) or transformation languages (e.g. XSLT) (Kay 2007). These

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

61

technologies offer limited concepts for the reuse of transformation knowledge and the
automatic derivation of new transformations.

In many cases, integration platforms and middleware solutions, such as, IBM WebSphere,
Microsoft BizTalk Server, MuleESB or OpenESB, are used to exchange data between
application systems. These platforms usually offer a wide range of different standard adapters,
which can be used for the machine integration. These adapters enable the technical integration
to systems. The transformation between participating adapters to concrete data structures is
still necessary. Our tool supports this task and can be seen as an additional add-on to such an
integration platform.

The development concept of the mapping-based framework follows the Model-Driven
Development (MDD) paradigm (Stahl and Völter 2006). We use different concepts such as
model transformations or model comparison algorithms. Several mapping approaches and
environments are proposed in literature. (Wimmer 2008) proposes an approach to model-based
tool integration in the context of the ModelCVS project. However, this approach heavily
depends on the EMF technical space and it is not easily applicable to other technical spaces.
(Bézivin et al. 2005) present the ATLAS Model Management Architecture (AMMA). It
provides an extendable core language for specifying platform independent transformations.
Authors of the paper argue that for a tool integration process, a specific language should be
derived from the core language in order to cover the specific need of that process. However,
we feel that this could be burdensome for the users of such a tool as for each integration
scenario they need to create new concepts. Our goal is to provide a single and powerful
mapping language that can be used regardless of the tools being integrated. Several other
mapping approaches can be found in literature, such as, Clio (Miller et al. 2001), Rondo
(Melnik et al. 2003), RDFT (Omelayenko 2002), and a UML-based approach (Hausmann and
Kent 2003). All of these approaches focus on the integration of certain technical spaces or
languages, such as, XML, Relational Databases, or UML. However, none of these approaches
allows a single language for the integration of arbitrary technical spaces.

The reuse of transformations is a well-known problem. As it is presented in (Kusel et
al. 2013), currently there is a strong focus on the reuse in the implementation phase. However,
the reuse across all development phases is not yet accomplished. Our focus is on the design
phase. In addition to reuse in transformation languages, our approach is influenced by the
ontology alignment approaches. In papers (Euzenat and Valtchev 2004, Gross et al. 2013,
Jung 2010, Kappel et al. 2006) multiple ontology alignment scenarios and approaches are
proposed. Based on the observations from these papers, we were able to fine tune our
algorithm and also see its drawbacks that should be improved in the future.

8. CONCLUSION

In this paper we presented a mapping-based integration framework which enables data
exchange between different data structures. The integration framework focuses on the
connection of machine data and information systems. The approach consists of different
components. The first component reads different data schemas and represents a schema as an
element tree. Another component is the declarative mapping language with a graphical
notation to specify mappings between source and target schemas. Based on these mappings,
generators can create an executable data transformation. A special feature of this approach is

IADIS International Journal on Computer Science and Information Systems

62

the reuse of mappings and the derivation of new mappings from existing mappings stored in a
repository. With the help of this knowledge and derivation functionality, the specification of a
new mapping can be automated. A special charm of the solution is that in addition to new
machines also successively existing machines can be connected minimally invasive through
the integration framework. Thus, they get a posteriori industry 4.0 ready and will get able to
meet the more and more dynamic market demands more effectively.

In order to evaluate the approach, we presented an application scenario for our mapping
tool. The case study concerns the exchange of data between machine data represented as CSV
and an MES which allows the import of XML data. The presented framework is suitable for
mapping definition and for finding new mappings.

One direction of future work is to improve the user interface of the mapping tool. In case
of large data schemas, a mapping diagram could get overcrowded with links and operators.
This could be improved by using a tabular view of mappings with less graphical lines between
elements. Furthermore, we plan to implement comparison algorithms which take also the
semantic of elements into consideration.

Due to the separation between runtime and configuration environment, it would also be
conceivable, to develop beside additional transformation models, further value-added services.
This could be realized both on premise and on demand as a cloud offer.

ACKNOWLEDGEMENT

Research presented in this paper was supported by the research project SAAMI “Intelligent
Integration Framework for Connection of Machines and Information Systems” funded by the
BMWi as well as the German Exchange Service and Ministry of Education, Science and
Technological Development of the Republic of Serbia as part of the bilateral project
“Discovering Effective Methods and Architectures for Integration of Modeling Spaces with
Application in Various Problem Domains”.

REFERENCES

Altova Map Force, 2014. MapForce – Graphical Data Mapping, Conversion, and Integration Tool.
http://www.altova.com/mapforce.html

Bézivin, J., Jouault, F., Rosenthal, P. and Valduriez, P., 2005. Modeling in the Large and Modeling in
the Small. Model Driven Architecture - European MDA Workshops: Foundations and Applications,
MDAFA 2003 and MDAFA 2004, Twente, The Netherlands, June 26-27, 2003 and Linköping,
Sweden, June 10-11, 2004. Revised Selected Papers, Vol. 3599, Springer, pp. 33–46.

Dujin, A., Geissler, C. and Horstkötter, D., 2014. Industry 4.0: The new industrial revolution – How
Europe will succeed. Roland Berger Strategy Consultants, Munich, Germany.

Euzenat, J., Valtchev, P., 2004. Similarity-based ontology alignment in OWL-lite. Proc. 16th European
Conference on Artificial Intelligence (ECAI), Valencia (ES), pp. 333–337.

Gross, A., Dos Reis, J.C., Hartung, M., Pruski, C., Rahm, E., 2013. Semi-automatic Adaptation of
Mappings between Life Science Ontologies. Data Integration in the Life Sciences, Vol. 7970,
Springer, pp. 90-104.

Hausmann, J.H. and Kent, S., 2003. Visualizing model mappings in UML. Proceedings of the 2003 ACM
symposium on Software visualization, ACM, pp. 169–178.

INTELLIGENT AND SELF-ADAPTING INTEGRATION BETWEEN MACHINES AND
INFORMATION SYSTEMS

63

HMS Industrial Networks, 2014. Anybus Product Index.
http://www.anybus.com/products/prodindex.shtml

Jung, J.J., 2010: Reusing ontology mappings for query routing in semantic peer-to-peer environment.
Information Sciences, Elsevier, Vol. 180, No. 17, pp. 3248–3257.

Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., Schwinger, W.,
Wimmer, M., 2006: Lifting Metamodels to Ontologies: A Step to the Semantic Integration of
Modeling Languages. Model Driven Engineering Languages and Systems - 9th International
Conference, MoDELS 2006, Genova, Italy, October 1-6, 2006, Vol. 4199, Springer, pp. 528–542.

Kay, M., 2007. XSL Transformations (XSLT) Version 2.0, W3C Recommendation 23 January 2007,
W3C, 2007 http://www.w3.org/TR/xslt20/

Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger, W., 2013. Reuse in
model-to-model transformation languages: are we there yet? Software & Systems Modeling, Vol. 14,
No. 2, Springer, pp. 537-572.

Levenshtein, V. I., 1966. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.
Soviet Physics Doklady, Vol. 10, No. 8, pp. 707–710.

Linthicum, D., 1999. Enterprise Application Integration. Addison-Wesley Professional, Toledo, OH,
USA.

Manakanatas, D. and Plexousakis, D., 2006. A Tool for Semi-Automated Semantic Schema Mapping:
Design and Implementation. Proceedings of the CAISE*06 Workshop on Data Integration and the
Semantic Web DisWeb ’06, Vol. 238.

Manouvrier, B., Menard, L., 2008. Application Integration: EAI B2B BPM and SOA. Wiley-ISTE,
London, UK.

Melnik, S., Rahm, E. and Bernstein, P.A., 2001: Rondo: A programming platform for generic model
management. Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data, ACM, pp. 193-204.

Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L.-L., Ho, C.H., Fagin, R. And Popa, L., 2001. The Clio
project: managing heterogeneity. Newsletter ACM SIGMOD, Vol. 30, No. 1, pp. 78-83.

Mukhopadhyay S, 2014. Internet of Things: Challenges and Opportunities. Vol. 9, Springer,
Switzerland.

MuleSoft Inc., 2015. muleESB. http://www.mulesoft.org
Omelayenko, B., 2002. RDFT: A Mapping Meta-Ontology for Business Integration. Proceedings of the

Workshop on Knowledge Transformation for the Semantic for the Semantic Web at the 15th
European Conference on Artificial Intelligence (KTSW-2002), pp. 77-84.

Rautenstrauch, C., 1997. Integration Engineering. Addison-Wesley, Bonn, Germany.
Ruh, A., Maginnis, F., and Brown, W., 2001. Enterprise Application Integration: A Wiley Tech Brief.

John Wiley & Sons, New York, NY, USA.
SISCO, 1995. Overview and Introduction to the Manufacturing Message Specification (MMS). Sterling

Heights, MI, USA.
Scholten, B., 2007. The Road to Integration: A Guide to Applying the ISA-95 Standard in

Manufacturing. ISA, Durham, NC, USA.
Stahl, M. and Völter, M., 2006. Model-Driven Software Development: Technology, Engineering,

Management. John Wiley & Sons, Chichester, West Sussex PO19 8SQ, England.
Wimmer, M., 2008. From Mining to Mapping and Roundtrip Transformations - A Approach to Model-

based Tool Integration. PhD Thesis, Vienna University of Technology.
Winkler, W. E., 1990. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter

Model of Record Linkage. Proceedings of the Section on Survey Research Methods (American
Statistical Association), pp. 354-359.

