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ABSTRACT 

Smart Grids (SGs) are emerging as a promising technology meant to cope with the energy efficiency 
issue, currently witnessed in legacy electrical grids, by disseminating relevant information in a real-time 
mode among the different SG components. 
The SG Advanced Metering Infrastructure (AMI) forms a central SG component, and consists basically 
of meters/sensors that are regularly communicating data towards the Control Plane. Much of these 
communicated data emanates from wireless sensors, and falls in the realm of Big Data. The latter needs 
substantial high-performance compute (HPC) power for processing and mining.  
In this paper, we shed further light into a synergetic interface between SGs and the Cloud. We propose 
the use of Cloud computing to provide HPCaaS for SG Big Data processing, and delineate a suitable 
architecture. We present the blue print for deploying a real world private cloud testbed using OpenStack, 
Hadoop, and the MapReduce programming model. To assess the testbed functionalities, we run 
extensive experiments using benchmarked Big Data sets. 
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1. INTRODUCTION 

Smart Grids are emerging as a promising technology to integrate renewable energy in the grid 
as well as customer site and cope with energy efficiency and thus addressing the worldwide 
stringent energy concerns (Satyajayant,  Guoliang & Dejun 2012). In particular, energy 
efficiency is mainly fostered by the dissemination of information among producers and 
consumers of power in order to take appropriate decisions, mainly those relevant to the 
Demand/Response (DR) changes. Unlike traditional electrical grids where most of the 
components are automated and mostly exchange no data, SGs allow the exchange of real-time 
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data for an efficient usage of the generated electrical energy through smart meters (Abid et al. 
2013).  

A major novelty in SG, when compared to ordinary electrical grid, is the two-way 
electricity flow: besides the ordinary electricity flow, which is from the producer (Electricity 
service provider) to the consumer, electricity flows on the other direction as well. Indeed, in 
SG, the consumer can produce electricity, mainly via the use of renewable energies (e.g., solar 
panels fixed on home rooftops) and inject it into the SG for sale. From the electricity service 
provider perspective, this stipulates a concise metering of produced electricity and the 
consumed one, i.e., Demand/Response (DR). To meet a concise tracking of the DR variances, 
data needs to be communicated among concerned SG components and processed in a real-time 
manner.  

On the other hand, microgrids have been developed as a mean to integrate Distributed 
Energy Resources (DER), such as photovoltaic (PV), micro-turbines (MT) and fuel cells (FC), 
directly at the customer site (Wissner 2011). Microgrids provide reliable power with 
economic, environmental and technical benefits. More specifically, microgrids are currently 
being developed as a potentially effective strategy to feed power directly to low voltage (LV) 
networks, thereby allowing the customer to become an active participant in the grid (Lopes et 
al. 2006). In certain instances, retail electricity providers (REP) developed by communities 
(i.e. community microgrids) share an interest in such microgrids and interact with nearby 
microgrids within the smart grid to deliver electricity to consumers (see Fig 1). 

Indeed, SG is moving toward an architecture of interconnected microgrids (see Fig. 1), 
where microgrids composed of buildings (e.g., residential, business, or industrial), where 
every electrical appliance and DER is equipped with wired and wireless sensors and actuators 
that sense electricity consumptions and productions and receive commands for control 
operations (e.g., switching On/Off and adjusting the consumption behaviors). This is further 
eased by the recent advances in the Electronics industry which promoted cheap manufacturing 
of these sensors. Taking into account the gigantesque number of needed sensors, and the 
frequency by which data metering occurs (e.g., 1 Hz), the produced data  falls in the scope of 
Big Data as it exhibits the three basic characteristics of Big Data, i.e., Volume, Variety, and 
Velocity (aka., The Big Data three Vs). The processing of such real-time data still presents 
challenges merely because the generated data falls in the realm of Big Data. 

To process Big Data, substantial high performance compute power (HPC) is needed. Cloud 
computing provides different kinds of services, e.g., HPCaaS (High performance Computing 
as a Service) which is the means for providing HPC, e.g., for Big data processing. With Cloud 
services, the end-user (e.g., SG operator) is provided with a Cloud application interface via 
which he can input his Big Data, request specific processing, and get relevant input. To 
provide cloud services, different cloud deployments models arise, basically public, private and 
community clouds. 

In this paper, we propose the use of the private cloud computing model to provide HPCaaS 
for SG operator. We delineate a synergetic interfacing between the wireless sensors, SG, and 
the Cloud. Along, we present an architecture for AMI deployment using wireless sensors. The 
latter are used to control electrical appliances control in smart buildings. A blueprint for 
deploying a real-world private cloud for HPCaaS is presented. This uses OpenStack along 
with the Hadoop’s MapReduce programming model.  

The rest of the paper is organized as follows: Section II   covers key elements of WSNs as 
a key technology enabler for the Advanced Meeting Infrastructure. In Section III, we highlight 
AMI (Advanced Metering Infrastructure) and present a relevant architecture for deployment in 
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Residential buildings. Section IV gives detailed description of our proposed architecture in 
terms of integrating SG-WSN on one hand, and SG-Could on the other. Section V outlines the 
main deployment steps of the HPCaaS platform. Experimentations are presented in Section 
VI. Finally, we conclude and present future work in Section VII.  

2. COMMUNITY MICROGRIDS AND ENERGY 
INFORMATION SYSTEMS 

Figure 1 shows a typical architecture of a microgrid. It is composed Microgrid Central 
Controller (MGCC) that interacts with local microgrid controllers (MC) to implement energy 
management functions. MCs are typically interfaced with DER, such as Photovoltaic (PV), at 
rooftops of smart buildings for instance, and implement local control of these resources. These 
components control electricity flow in the microgrid as well as communicate information 
through Energy Information System (EIS). EIS plays a key role in managing the resources 
within the microgrid and can be thought of as a layer on the top of the power layer (see Figure 
2). EIS has the objective of making sure microgrid is stable, reliable, and resilient (can work in 
normal or islanded mode). EIS has also the capability of interacting with the smart grid market 
as well as other nearby microgrids.   
 

 
Figure 1. General components and architecture of a Microgrid. 

We model EIS of a community microgrids as a group of functions that represent different 
stake holders in the microgrids (see Fig. 2) namely users/occupants, DER are local produce of 
energy, buildings that include consumers such as machines and computers, etc. These 
components produce the data that is used to develop energy prediction model, user preference 
and activity models, consumption profile models. The data is collected by our middleware and 
archived by EIS for future use and further development.  The data is accessed by a number of 
applications including, solar energy prediction, user activity modeling, consumption 
prediction, thermal and air flow setting, HVAC control, event generation for maintenance and 
failure detection, etc. 



BIG DATA PROCESSING FOR SMART GRIDS 

35 

 
Figure 2. Architecture of the EIS system. 

The events associated with this model are collected through a wireless and wireline 
network and archived in the cloud. Networking as well as computing time will therefore play a 
key role in the delay of the feedback process and need to be quantified, which is the focus of 
the performance evaluation in this paper.  

3. SMART GRID AND CLOUD COMPUTING  

Smart gird related research and development is being investigated by utility companies, 
standards bodies, and university research groups, and is currently one of the top technologies 
that will give the economy a competitive advantage. Several consortiums have been 
established to develop technologies that will enable the migration of the current electric power 
grid toward a reliable and efficient smart grid (Bhatnagar & Rao, 2005, EIA team 2013, Zyga 
2011, Johnson Controls’s team 2013). The US Department of Energy has initiated a Modern 
Grid Initiative (MGI) to investigate the key technologies that are needed to enable smart grid 
(Abid et al. 2013). The demand for microgrids as a strategy for integrating small scale DERs, 
ensuring power grid reliability, energy independence and efficiency is growing. Studies are 
being conducted worldwide to assess various topics including DERs integration, smart 
microgrid controllers, network based control and management, demand side management, 
stability, and renewable energy integration. The energy generated by DERs are variable and 
therefore microgrids become a source of non-controllable power. The impact of these DERs 
on Low Voltage (LV) network in terms of power balance (Strbac 2008), voltage rise (Masters 
2002), quality and stability (Löf, 2011) become significant as the number of customer 
installing DERs in their site increase. These instabilities may propagate to the power grid 
operation as it becomes challenging to manage a distribution system with a large amount of 
non-controllable sources that inject reverse variable power. The FREEDM systems aim to 
develop innovative technologies, scalable and secure communications, and distributed control 
(Berkat 2011). The Cyber Physical Challenges of Transient Stability and Security in Power 
Grids project (Lopes et al. 2006) creates a cyber-physical system capable of adjusting the 
loads, communicating the information between different parties and sense abnormal states 
caused by natural faults or malicious attacks. As a way to address the challenge of matching 
demand to supply, projects are addressing issues such as robust network connectivity, resilient 
electric power infrastructure, robust control (Hairong et al. 2011, Tsado et al. 2014, Sanders 
2012, Massoud 2014), modeling and predicting human behavior and activity in building usage 
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pattern (Dong et al. 2011, Philipose et al. 2004, Nugent & Augusta 2006, Hong et al. 2009, Yu 
, Bruckner & Velik, 2010, Stephenson et al. 2010).  

Development of DER controllers for efficient and effective operation of microgrids with 
control strategies using Information and Communication Technologies (ICT) has been 
investigated (Gopalan et al. 2012, Ganet al. 2013, More Microgrids). The findings in these 
studies underscore the importance of ICT technologies and recommend further research in 
exploiting ICT for smart grid application. ICT virtualization through Software Defined 
Networks (SDN), Network Functions Virtualization (NFV) and Cloud computing to 
accomplish smart grid objectives and enable real time communication and control in smart 
grid has attracted the attention of researchers in smart grid. In particular, cloud computing will 
provide a platform that can implement the following smart grid functions (Bera et al. 2015): 

• Energy Management: This is one of the key function in smart grid and include 
demand side management (demand response), Building/Home energy management 
systems, and DER optimization. 

• Support of multiple and heterogeneous devices. 
• Information management and integration through scalable and unified way of 

information representation and integration.  
• Support of layered and heterogeneous architecture to help implement a complex 

system such as smart grid. 
• Implement security measured from data and information perspectives.  

Several of the end systems generating data are connected to the smart grid through wireless 
sensors, the following section will talk about the Wireless sensors data communications.   

4. WIRELESS SENSORS DATA COMMUNICATION IN SGS 

Thanks to their ease-of-deployment and self-healing features, WSNs (Wireless Sensor 
Networks) are becoming essential to SG (Akyildiz et al. 2002). They enable the real-time 
tracking of electrical appliances’ consumption levels, and ease the control of these appliances 
by turning them On or Off remotely.  

SG relies on AMI (Advanced Metering Infrastructure) for introducing a two-way power 
and information communication between different producers and consumers in the grid 
(Luhua et al. 2010). Thanks to this technology, Distributed Energy Resources (DER) became a 
pillar in SG, but also came with challenges, e.g., the fact that Utility Companies can no longer 
control the production entirely and this might lead to grid instability if it is not well managed 
(Rugthaicharoencheep et al. 2012). However, thanks to AMI and WSNs, the utility may be 
able to not only control production but also consumption through Demand Response 
(Datchanamoorthy et al. 2011). 

Figure 3 shows a deployed network diagram for a WSN in a residential building (Khalil et 
al. 2014). The WSN uses Zigbee (The ZigBee Alliance) at the access layer and IPv6 as 
network protocol. The WSN sink is connected to the gateway server via a USB link. The latter 
connection serves as a tunnel between the WSN and the gateway server. The gateway server is 
connected to both the WSN and the outside network using Wi-Fi (at the access layer) and IPv4 
(at the network layer). The main role of the gateway server is to promote communication 
between these two networks that are not based on the same network technologies. In fact, a 
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process running in this server keeps track of the packets flowing and transmutes them to fit 
both networks’ packet formats.  

The gateway server is connected to a middle-ware server that masks the heterogeneity of 
the data. It receives the data from the WSN, filters it, transforms it, and stores it. This data is 
then used by the EMS to make decisions on how to control the building for higher efficiency; 
it is also used to give end-users access to real-time consumption information. 

 

 
Figure 3. Network Diagram of the WSN-enabled building 

5. ADVANCED METERING INFRASTRUCTURE (AMI) AND 
RENEWABLE ENERGY INTEGRATION 

The Advanced Metering Infrastructure (AMI) is the SG component that manifests the 
“smartness” in SGs. This is a networking infrastructure that connects SG components and 
allows for real-time dissemination of data. The latter can be either raw data to be processed or 
control commands to carry out specific tasks, e.g., monitoring the operation of SG 
components. 

In a former relevant work (Abid et al. 2013), an AMI architecture, that connects smart 
buildings into SG, has been presented. This consists on the use of wireless mesh networks 
(Akyildiz & Wang 2005) as the underlying networking technology as explicated in Figure 4.  

This architecture deems the SG as a set of micro-grids that are independent of each other, 
and exhibit the main faculty of being able to connect and disconnect to the main SG depending 
on generated electricity and predicted demand. This interconnects four main Components:  

1. Residential Smart Micro-Grid: This consists of residences, along with the 
corresponding electrical appliances.  The appliances are equipped with Zigbee 
sensors and form a wireless mesh network. 

2. Control Plane: This is the back office where all computation and data processing are 
done.  



IADIS International Journal on Computer Science and Information Systems 

38 

3. End user (Home Owner): capable of tracking the energy consumption at his 
residence, and interacting with the Application Server at the Control Plane.. 

4. Electricity Provider: has access to the real-time data collected at the Control Plane.  
The backbone network can be a private one (e.g., operated by the electricity provider) or a 

public (e.g., the Internet). This depends mainly on the degrees of privacy and security to 
maintain.  

This architecture provide a flexibility for a microgrid (e.g residential) to be independently 
managed in connected and isolated mode. The operation of a microgrid is influenced by other 
interconnected microgrids and the “big” Untility grid. Indeed, this proliferation of microgrids 
will influence the future architecture of the smart grid which will be composed of 
interconnected microgrid similar to how the Internet is a mesh of interconnected networks.  
Cloud computing is revolutionizing the way services are being implemented and offered in 
Internet and will do the similar impact in the smart grid.  Cloud computing has the ability to 
implement many services as a platform in smart grid and will virtualize their function, 
allowing for smart grid function virtualization (SGFV).  

 

 
Figure 4. WSN-based Smart Grid Advanced Metering Infrastructure (AMI) Architecture for Smart 

Buildings (Abid et al. 2013) 

6. SMARTS GRIDS AND THE CLOUD: THE INTERFACE 

There is an inherent and synergetic “matching” between SGs and Cloud computing: on one 
hand, SGs are generating Big Data and are in crucial need of storage and processing power. 
On the other hand, Cloud computing has been tailored with the main goal of providing 
compute power (e.g., storage and processing) as a utility. A fact that further eases this 
“matching” is that Cloud computing masks all the burden of deploying and maintaining the 
needed IT infrastructure, e.g., recruiting engineers, maintenance, hardware and software 
purchase, etc. In addition cloud computing provide benefit to meet scalability where elastic 
computing resources are provisioned on-demand according to the actual computing needs.   

In this paper, we propose the use of an HPCaaS (HPC as a Service) Cloud Computing 
Platform SG Big Data processing. Our proposed HPCaaS uses Hadoop (Apache Hadoop) as 
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the clustering platform to store and process data. This uses HDFS (Hadoop Distributed File 
System) for data storage and the MapReduce programming model (Dean & Ghemawat 2004) 
for distributed data processing, and both run on top of a Cloud computing platform: the 
Openstack platform (Open source software for building private and public clouds). The Big 
Data generated by SGs (mainly generated by the SG sensors and meters) falls in the category 
of K-V (Key-value) pairs (e.g., sensor id, timestamp, consumption levels, etc).  

The Hadoop HDFS manages storage and related issues (e.g., chunks replication, failure 
recovery), and the Hadoop MapReduce runs the relevant “jobs” on selected chunks of the big 
data. The proposed architecture is depicted in Figure 5. 

 
Figure 5. Smart Grid and Cloud interface general architecture 

The main idea behind this architecture is to have an appliance server (Data aggregator) 
attached to each smart microgrid (i.e., a set of buildings located in the same geographical 
area). This device has two interfaces: 1. Data aggregator which collects data from sensors and 
meters, and 2. HDFS client which interacts with HDFS, and forwards data, see Fig. 6. 

The data aggregator process receives Key-value pairs from the different buildings and 
forward them to the HDFS client process. The latter communicates with the data aggregator 
process via an IPC (Inter Process Communication) protocol, and establishes a connection with 
HDFS residing in the Cloud.  

 

 
Figure 6. Data Flow Architecture 
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HDFS has two types of nodes: 1. Namenode (the master), which manages the file system 
by keeping relevant files metadata and namespace entries, and 2. Datanodes (workers), which 
are the real workhorses of the system. They store and retrieve files’ blocks upon request from 
the master node (i.e., the namenode). The communications are done via the RPC (Remote 
Procedure Call) protocol. This way, the received K-V pairs will be stored by the HDFS while 
automatically maintaining replication (replication factor is set to 3, by default) and coping 
with node failure. 

On the other direction, the application server issues MapReduce jobs to run on the big data 
chunks stored by the HDFS. This involves four main entities: 

1. The MapReduce Jobclient: resides in the Application server and is responsible of 
establishing the connection with the Hadoop cluster and submitting the 
MapReduce Jobs. 

2. The JobTracker: coordinates job execution by splitting the main job into tasks, and 
delegates them to other nodes (the TaskTrackers) while accounting for two main 
factors: load balancing and location of the files in the HDFS namenodes.  

3. TaskTracker: The MapReduce horseworkers that run the tasks is assigned by the 
jobtaracker. 

4. HDFS: is responsible for providing and sharing the files with the tasktrackers. 
Indeed, HDFS stores data and makes it available for requests and jobs emanating from the 

application server. After running relevant processing (e.g., by executing relevant Hadoop 
MapReduce jobs), the result is forwarded back to the control plane.  

Ideally, the end-user interface will be deployed at the application server. This will allow 
the end-user (e.g., SG monitor) to run specific queries against the data residing in the Hadoop 
cluster. On the other side, the data aggregator will continuously run `“processes” asking the 
Hadoop cluster to store generated data.  

7. HPCAAS PRIVATE CLOUD DEPLOYMENT 

In this section we delineate a blueprint for deploying a real-world HPCaaS private cloud 
deployment. We used the OpenStack open-source Cloud Computing platform (Open source 
software for building private and public clouds), and Hadoop parallel and distributed open-
source system (Apache Hadoop). 

7.1 OpenStack Deployment 

HPCaaS private cloud deployment starts with installing OpenStack. Because we have used 
small experimental setups (in terms of storage and processing), it was sufficient to deploy the 
following OpenStack components: Keystone, Glance, Nova and Horizon. These components 
can provide both data storage and data processing to implement HPCaaS.  

After installing and configuring the KVM Virtualization Hypervisor (The Kernel Based 
Virtual Machine), the first OpenStack component that was installed is the Keystone. This 
component manages Authentication, e.g., by creating relevant tenants (OpenStack projects), 
associated users, and roles. The second OpenStack component, we installed, is the Glance. 
This creates and manages the different formats of virtual machines images. Glance package 
includes glance-api that accepts incoming API requests; glance-database that stores all 



BIG DATA PROCESSING FOR SMART GRIDS 

41 

information about images, and finally glance-registry that is responsible of retrieving and 
storing metadata about images. The third component is the Nova package. This contains  
nova-compute, nova-scheduler, nova-network, nova-objectstore, nova-api, rabbitmq-server, 
novnc and nova-consoleauth. All these components collaborate and communicate with each 
other to create and manage virtual machines (VMs) (Pepple 2011). 

7.2 Hadoop Deployment 

Hadoop deployment starts with identifying the master and slave nodes. For master node, there 
are six files that need to be configured: core-site, hadoop-env, hdfs, mapred-site, master and 
slaves files. Concerning slave nodes, the only files that need to be configured are hadoop-env, 
core-site, hdfs and mapred-site files. These files aim at setting environment variables, defining 
common properties (e.g. HDFS and MapReduce properties), specifying the master and slave 
nodes, setting the number of replicas, etc.  

After configuring all needed files, nodes have to communicate with each other via the SSH 
protocol (Secure Shell). Next, HDFS namenode was formatted. This cleans the filesystem and 
creates storage directories. Finally, the Hadoop cluster can be launched to run jobs after 
starting the HDFS and MapReduce daemons. Detailed Hadoop documentation is provided by 
Noll guidelines.  

8. EXPERIMENTATION 

These experimentations are meant for proof of concept demonstration as well studying the 
cloud resources needed for a typical microgrid/smar grid function and to what extend the 
elastic feature of cloud can be exploited. As the amount of data increase, more compute power 
is needed. However, in certain instance, this compute power would need to be reduced as the 
amount of data decrease, thus taking advantage of the elastic feature of the cloud. Our vision is 
to implement the Energy Information System model described in section 2 in using the cloud. 
Abid et al. (2013) showed the importance of WSNs and middleware design; Khalil et al. 
(2014) deployed a real-word WSN, in a residential area, for energy management; in this paper, 
we show the importance of Cloud services and the necessity of adding Cloud related APIs into 
the middleware. For the purpose of demonstrating the concept, we used a single 8-core server 
(Dell PowerEdge with 6GB of RAM) in which we forked 8 VMs, set them as a HPC Cluster, 
and run relevant experiments. The installed software flavors are Hadoop version 1.2.1 and 
OpenStack (Nova, Keystone, Glance and Horizon) Folsom release. 

The results showed tangible stability with moderate data sizes. However, when the data 
size grows, the virtual cluster could not afford the needed compute power. Thus, we plan to 
deploy a much powerful cluster using multiple servers instead of a single one, especially that 
the concept and the functionalities have been assessed in this work. We will also develop tools 
that keep track of different delays in the network and develop a structure of the networks. This 
structure will give an indication when to grow and shrink resources taking advantage of the 
elasticity model in cloud computing. 

We run several experiments for writing, reading, and sorting benchmarked Big Data. The 
latter is similar in structure to the one generated by SGs. The tested Big Data follows a  
Key-Pair structure, and consists basically of random data formatted as follows: 10 bytes for 
key, 10 bytes for row identifier, and 78 bytes for filler (letters from A to Z) (Noll).  
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8.1 Data Sets 

We used TeraSort and TestDFSIO (Tests for Distributed File System I/O) (Noll). These are 
well-known benchmarks. TeraSort was developed by Owen O’Malley and Arun Murthy, at 
Yahoo Inc. It won the annual general purpose terabyte sort benchmark in 2008 and 2009. It 
does considerable computation, networking, and storage I/O. TeraSort performance metrics 
consist of measuring the average time to sort a given datasets. 

TestDFSIO benchmark is used to check the I/O rate of the Hadoop cluster with write and 
read operations. Such benchmark is helpful for testing HDFS by checking network 
performance, and testing hardware, OS, and Hadoop setup. TestDFSIO performance metrics 
consist of measuring the execution time to write (TestDFSIO-Write) and read  
(TestDFSIO-Read) datasets. 

For TeraSort, we used 100 MB, 1 GB, 10 GB and 30 GB datasets; for TestDFSIO, we used 
100 MB, 1 GB, 10 GB and 100 GB datasets.  

We started experimentation by gradually scaling up the cluster granularity from 3 to 8t 
VMs. We started by 3 as this is the default Replica factor in HDFS; For each benchmark, we 
run three tests for each dataset size, and calculated the mean to avoid any outliers.  

8.2 Results and Analysis 

The results of running TestDFSIO and TeraSort on the cluster’s VM instances are illustrated 
in Figures 7-9. 

For all dataset sizes, the overall performance for running TestDFSIO-Write (see Fig. 7) is 
quasi stable as the number of VMs increases from 3 to, 4 and 5. TestDFSIO-Read exhibited 
quite the same performance in terms of stability when the VM machines granularity is less or 
equal to 5. 

 

Figure 7. TestDFSIO-Write performance 

0,00

50,00

100,00

150,00

200,00

250,00

3 4 5 6 7 8

Ti
m

e 
in

 m
in

ut
es

Number of VMs

TestDFSIO-Write

100 MB 1 GB

10 GB 100 GB



BIG DATA PROCESSING FOR SMART GRIDS 

43 

 
Figure 8. TestDFSIO-Read performance 

Indeed, in Figure 8, we see that reading the different dataset sizes keeps the same 
performance as the number of VMs increases from 3 to 5. However, when scaling up the 
cluster granularity to 6-8 VMs, the performance of both TestDFSIO write and read operations 
decreases for all dataset sizes. We explain this fact by the scarcity of compute power in terms 
of available memory and processing power; especially, that frequent context switches will 
occur as the hypervisor has to frequently switch from a VM instance to another; besides, the 
server has to cope with 3 replicas of the datasets, each is of 100 GB, and since the memory (6 
GB) cannot afford this, the hypervisor has to keep swapping in/out memory images from/to 
virtual memory: a process which is time and resource consuming. 

 

 
Figure 9. TeraSort performance 
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The same applies for the TeraSort operation (see Fig. 9). This shows also a stable 
performance when running TeraSort benchmark on 3-5 VMs, and a  sharp decrease when 
scaling up to 6-8 VMs, for bigger data sets, e.g., 10 GB and 30 GB. 

9. CONCLUSION 

As formerly stated, the aim from these experiments is assessing the operational functionalities 
of the testbed. A testbed with more powerful compute power will definitely cope with larger 
data sets and more VMs; this constitutes the main step ahead in our future work. 

As future work,  we intend to (1) scale up the hardware used in the testbed in order to 
further assess, through experimentation, the HPCaaS performance needed  for processing SG 
data in real-time; (2) elaborate a middleware architecture with specific APIs for gluing 
together the various heterogeneous components of the SG on one hand, and the Cloud services 
on the other; (3) evaluate the structure of the cloud in term of delay and throughput to see what 
smart grid functions could be implemented in the cloud and what functions could be 
implemented locally near the resource. Indeed local versus global processing selection is still 
under investigation by researchers.  
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