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ABSTRACT 

An important part of human intelligence, both historically and operationally, is our ability to 

communicate. We learn how to communicate, and maintain our communicative skills, in a society of 
communicators – a highly effective way to reach and maintain proficiency in this complex skill. 
Principles that might allow artificial agents to learn language this way are incompletely known at present 
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– the multi-dimensional nature of socio-communicative skills are beyond every machine learning 
framework so far proposed. Our work begins to address the challenge of proposing a way for 
observation-based machine learning of natural language and communication. Our framework can learn 
complex communicative skills with minimal up-front knowledge. The system learns by incrementally 
producing predictive models of causal relationships in observed data, guided by goal-inference and 
reasoning using forward-inverse models. We present results from two experiments where our S1 agent 

learns human communication by observing two humans interacting in a realtime TV-style interview, 
using multimodal communicative gesture and situated language to talk about recycling of various 
materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a 
vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including 
manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the 
interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a 
priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures 
from scratch, by observing the humans compare and contrast the cost and pollution related to recycling 
aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can 

perform an unscripted TV interview with a human, in the same style, without making mistakes. 
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1. INTRODUCTION 

One of the most useful skills to evolve in humans is the ability to communicate, which serves 

the function of transferring compressed information between individuals and groups. The skill 

builds on several co-dependent sub-skills and abilities, such as auditory timbre discrimination, 

sequence learning, fine motor control, and context-sensitive abstraction, whose evolution and 

honing over tens of thousands of homo sapiens generations has lead to the diverse use of 

communication observed in modern human society. The best – and possibly only – way to 

learn communication for a human is through observation of social interaction, where the effect 

of language use on oneself and other language users occurs naturally (cf. Petit et al. 2012), 

with practical needs and constraints driving the learning; where vast numbers of successful 
and unsuccessful uses of language variations can be related to one’s own and others’ goals, 

where numerous exceptions and contextualized cues for usage help define and hone the 

meaning of concepts and utterances, and where explicit and implicit usage "experiments" of 

communicative devices can be made directly. If our aim is to create an artificial agent that 

masters the numerous facets and subtleties of human communication this is probably the case 

as well: The agent should be situated in some kind of social context, where it can acquire the 

necessary skills through the same means. This would, however, require a new kind of machine 

learning, one that could not only observe and imitate what other agents do but that could also 

penetrate the agents’ goals, so that the learning could be derived from a deeper understanding 

of the agents’ intentions, allowing the observation to unlock the methods others use for 

achieving their goals. While no principles for such a mechanism have been fielded as of yet, 

our work proposes a way to achieve this.  
We present results from experiments with a new type of architecture and methodology 

aimed at the deep questions of autonomous acquisition of communicative skills. The approach 

relates closely to other challenges in artificial intelligence, such as life-long learning, 
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continuous adaptation, and self-programming (Nivel et al. 2013); the focus in this paper, 

however, centers on communication. Our experiments situate our system in a realtime social 

interaction similar to a television interview – a domain selected due to its inherent properties 

of relatively high complexity and real-world constraints. Even more importantly, the multi-
layered structure of social interaction – both ontologically and temporally, with sounds 

forming words, words and gestures forming utterances, utterances forming speech acts, and 

speech acts and turntaking structures forming social scenarios – includes challenges for which 

no satisfactory solutions exist at present. Our system learns situated multimodal 

communication using a single learning mechanism – no separate learning methods, modules, 

or other exceptions are needed for the various aspects of the scenario, such as gesturing, 

gesture-speech coordination, word order, question-answer paring, turntaking, and the like.  

Based on a new constructivist methodology (Thórisson 2009, 2012) that puts the autonomy 

of the agent as a main priority, we target systems that can bootstrap their learning from very 

primitive beginnings. This type of system has the highest potential for adaptation in light of 

radical changes, both to their own processing resources, their tasks, and their operating 
environment (cf. Thórisson 2013). For this reason we do away with allonomic1 approaches to 

software development, on which all common software development methodologies are 

currently based (where the human programmer provides a system with its algorithms), and 

replace it with a self-programming approach in which the majority of the system, upon 

reaching maturity, consists of code produced by the system itself. At present, an intelligent 

agent in our framework is provided with a small seed consisting of an object ontology, a 

handful of top-level goals, and optionally a couple of domain-related goals to help with the 

bootstrapping  (five, in the case of the TV interview). Due to our agents being situated in a 

social interaction scenario and being engineered to learn continuously, their knowledge is 

acquired incrementally over time, growing directly and solely from their own experience. 

Figure 1. The realtime interaction between a human (interviewer, right) and the S1 agent (interviewee, 
left), in the form of a simple TV interview conducted in the virtual equivalent of a video conferencing. 

Live tracking of the human’s multimodal behavior and speech directly drives the behavior of the avatar; 
S1 controls the other avatar via a software API. On the virtual table between the human and S1 are six 
objects of various materials; the interviewer’s role is to get the interviewee to tell about the recycling of 

these materials, and the comparison of cost, pollution, etc. of creating objects from scratch versus 
recycling objects of the same and different materials 

                                                
1 'Allonomy' is the opposite of autonomy; allonomic controllers may impart some level of autonomy to what they 

control while not being autonomous themselves.  
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The paper is organized as follows. We first give a short introduction to the theoretical 

foundation of our work, then we describe the framework we have developed, followed by a 

description of how this system learns communicative skills by observation. We then describe 

the two experiments we have run, and the results from these.  

2. METHODOLOGICAL FOUNDATION 

To construct highly adaptive systems means we must let go of the idea that we, the designers, 

provide the system with domain- and task-specific algorithms, as this would mean that we 

would have to pick the most important tasks the system is to perform, and proceed to codify 
by hand all information and relevant algorithms the agent is to follow – clearly a condition in 

conflict with the goal of autonomy. Our approach therefore requires us to rule out allonomic 

software methodologies – methodologies that fundamentally rest on hand-coding of domain-

level operational functionality. High levels of autonomy means high levels of domain 

independence, so we also cannot allow ourselves to provide the system mainly with domain-

specific knowledge. Instead we focus, in constructivist fashion, on developing general 

principles to allow the system itself to invent algorithms. And we must go even further, for 

high levels of autonomy means that the system we target must constantly be learning, by 

training itself on appropriate tasks and subtasks, also after it “leaves the lab”. As it turns out, 

the term “algorithm” may not be entirely appropriate for what our autonomous system is 

learning, because even on sequential repeats of the same task the system may be modifying 

how it does it (cf. Wang 2006), from the smallest to the largest subtask. In fact, in our 
constructivist approach the system development task becomes that of designing a meta-control 

scheme that, instead of providing hand-coded solutions to specified tasks and subtasks, must 

give the system enough flexibility and initiative to propose subgoals on its own, based on the 

drives (highest-level goals) provided by the system's designers, and model its experience in a 

way that continuously increases its ability to explain (by prediction) both its own behavior and 

that of its environment. 

Our constructivist AI methodology (CAIM) is outlined in Thórisson (2012, 2009), in Nivel 

& Thórisson (2009) and in Thórisson & Nivel (2009a, 2009b); here we give a quick overview 

as relates to the present work. CAIM sprang out of two separate threads that are co-related. 

The first is the view that intelligent beings construct their own knowledge from experience. 

Sure, inborn principles guide human learning, but evidence suggests that producing effective 
thinking requires interplay between a mind and its environment. This observation is where 

Piaget’s constructivist proposal originated, and his theory of cognitive stages (Piaget 1950). 

The second is a view of autonomy that sees intelligence as an extreme form of adaptation 

capabilities, a view that sees any intelligent system equipped not only with the ability to 

follow rules, but to figure out the rules. Defining mechanisms of human minds, such as the 

ability to discover, understand and abstract facts and causal chains, to make analogies and 

inferences, and to learn a large amount of vastly different skills, some of which are historically 

brand new (cf. space walks, Internet browsing, and flying airplanes), make it clear that 

providing knowledge up front for these skills takes more than inventing effective algorithms 

for a few specific tasks – it requires something more general. Paraphrasing Wang’s (2004) 

analogy, to get generality a small set of hand tools won’t do, what we need is a hand.  
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The meaning of autonomy is defined in part by the handling of obstacles; greater 

autonomy means that a better handling of obstacles, in arity, time, and/or complexity. A major 

source of obstacles for natural intelligences is the complex, nondeterministic nature of the real 

world, and numerous resource constraints that prevent actors from being able to spend infinite 
amounts of time thinking. The world has an ever-ticking real-world clock, and energy 

constraints limit natural computers (brains) to re-structuring themselves into topologies that 

are supported by the laws of physics. In fact, physical constraints are the reasons for why 

intelligence arose in the first place. Limitations of computation mean that an embodied agent 

situated in a complex environment can neither be assumed to process every input available in 

its environment nor to follow every thought to its ultimate conclusion: Real-world agents do 

not have the resources to accomplish all the jobs they ideally should or could, given their 

goals, due to limited computing and memory capacity. The assumption of limited resources 

has fundamental implications for our approach and the design of our auto-catalytic, 

endogenous, reflective control architecture AERA. Similar to Wang's NARS (Wang 2011, 

2006), our approach centers on assumptions of self-bootstrapping from incomplete knowledge 
and insufficient resources (Thórisson 2013, Nivel et al. 2012, Wang 2011). 

Pure resource-bounded autonomous constructivist systems do not exist yet in practice, but 

our system may be the purest to date, and almost surely is the first one that has been 

implemented and thus capable of providing evidence for the practicality of this otherwise 

theoretical stance.  

3. PRINCIPLES FOR ACQUISITION OF COMMUNICATIVE 

SKILLS 

Our approach to knowledge representation has its roots in non-axiomatic term logic and 

model-driven reasoning. Since knowledge in our agent is established on the basis of 
experience, truth is not absolute but can only be established to a certain degree and within a 

certain time interval. In our approach the simplest term thus encodes an observation, and is 

called a fact (or a counter-fact indicating the absence of an observation). A fact carries a 

payload (an observed event), a likelihood value in [0, 1] indicating the degree to which the 

fact has been ascertained and a time interval in microseconds, the period within which the fact 

is believed to hold (or, in the case of a 'counter-fact', the period during which the payload has 

not been observed). Facts have a limited life span, corresponding to the upper bound of their 

time interval. Payloads are terms of various types, some of which are built in the running 

system, the most important of these being sensory input, prediction, goal, command, 

success/failure, internal inputs (traces of the system’s execution, enabling reflectivity), and 

performance measurement. Additionally, any of these types can be pre-defined by the 
system’s programmer. 

Except when the agent is in initial stages of bootstrapping (which should only happen once 

for each new environment or domain), a lot of its knowledge will be composite, that is, 

relationships and combinations between small "atomic" knowledge "bricks". In the case of 

natural language, sentences are structured out of sequences of words, with fairly complex 
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relationships and rules (generally called 'grammar'); words are constructed out of phonemes2 

(and letters, which have a rather complex relationship to phonemes).  

To extract such knowledge from observing language-using humans in the real world the 

agent must have the ability to work with partially correct hypotheses about the "rules"3 that 
guide the process of constructing a sentence with a particular meaning. To this end a language-

learning agent would need to represent its experience as contextualized knowledge structures 

of some kind, with variable levels of complexity, which would allow it to change the 

relationships between the knowledge structures previously acquired in various ways at various 

levels of granularity. For instance, an incorrectly represented abstraction of how to pair nouns 

and verbs so that others understand what we mean might be eradicated when more examples 

of the various ways of its pairing are observed. The speed would be dependent on the 

efficiency of the agent's processes for this purpose, and this is our task here: To implement a 

system that can produce the necessary hypotheses for how its body and its environment works 

– in our case how natural language is used – and representing it in a way that allows 

modification to move the system towards increased accuracy. In this respect our work is 
compatible with e.g. that of Dominey & Boucher (2005), who demonstrated a robot learning 

language from limited domain and language-specific knowledge; our work goes further by 

proposing general principles for extracting meaning from observation, as described below (see 

also Nivel et al. 2014, 2013).  

With an aim of generality we wanted to find a representation amenable for representing all 

kinds of experience; one that could be used for reasoning operations, and that would scale well 

by growing with vast amounts of cumulated experience – a homogenous representational 

scheme. Knowledge in our approach is composed of what we call facts (be they past, present, 

predicted, desired or hypothetical) and of executable code – called models. Models can 

generate new knowledge, for example predictions, assumptions, and goals, and are executable, 

executed at runtime by a virtual machine, the Executive. Our models are of low granularity, 

referred to as peewee-size (see Thórisson 2012, Thórisson & Nivel 2009a), each comparable in 
size to a SOAR’s production rule (cf. Laird 2012).4 Low granularity better supports 

knowledge plasticity than high granularity since modifications of small parts are less likely to 

have detrimental, unforeseen side-effects, and makes is easier to add/remove small parts than 

bigger parts, since this does less to the system. Their semantics are also simpler, and each 

one’s effect on the entire system is easier to trace. Furthermore, peewee granularity means that 

higher levels of combinatorics are leveraged.  

Representing time is of course necessary for producing timed behavior; for natural 

language time must be manipulatable at several scales, from large-scale composite operation 

(e.g. achieving a mission such as doing a TV interview) to intermediate-size actions (e.g. what 

utterance will elicit a desired answer/information from an interlocutor) to the smallest levels of 

individual operations (e.g. producing a prediction). This pervasion of time is a necessary 

                                                
2 'Phoneme' is a construct hypothesized by humans; here it is used as shorthand for the already-categorized sounds 

that can be used to convey meaning in a human natural language in a modular way. Our agent is of course not 
bound to such human-hypothesized concepts, as it generates its own knowledge based entirely on its own 
experience and capabilities, provided a small seed to bootstrap the process. 

3 The effective ("correct") use of natural language might be formalizable as explicit rules, but natural language is 
primarily a vehicle for getting things done, and as such may not be so unlike any task with complex contextual 
dependencies and relationships between its atomic operands.  

4 While our models bear a similarity to production rules in their surface structure, having e.g. a right-hand side and a 
left-hand side and directly supporting reasoning, significant differences exist in other respects, including our models 
fusing forward and inverse control modeling supporting simultaneous and parallel forward-backward chaining, and 
a deep representation of time. 
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requirement of any system that must (a) perform in the real world and (b) model its own 

operation with regards to its expenditure of (temporal) resources. Considering time values as 

intervals allows us to encode the variable precision and accuracy needed to deal with the real 

world, for example, sensors do not always perform at fixed frame rates and so modeling their 
operation may be critical to ensure reliable operation of their controllers and models that 

depend on their input, and the precision for goals and predictions may vary considerably 

depending on both their time horizons and semantics. Last, since acquired knowledge can 

never be certain, one can assume that "truth" – asserting that a particular fact holds – can only 

be established for specific periods with varying degrees of temporal uncertainty. 

4. SITUATED COGNITIVE CONTROL 

Being equipped to learn natural language in situ in a social situation requires an artificial agent 

be endowed with many complex cognitive functions, including – among others – the ability to 

direct its own attention to the right things at the right time (cf. Helgason et al. 2014, Ognibene 

et al. 2013, Helgason et al. 2012, Demiris & Kadhouri 2006), relate spoken words and sounds 

to contextual actions and cues (cf. Dindo et al. 2010), and to interpret the behavior of co-actors 

as dependent on its underlying goals and intentions (cf. Pezzulo 2012, Dindo et al., 2011, 

Dennett 1987). As it bootstraps its language knowledge (from possibly meager beginnings) it 

needs to be capable of classifying events based on its own incomplete knowledge of the world 

at any point in time, in a way that it can easily update its knowledge based on gained 

experience.  
In our approach, communicative learning, planning, and action execution are emergent 

processes that result from the same set of low-level processes: the execution of fine-grained 

programs that are automatically generated, are reusable, and are shared system-wide, 

collectively implementing functions that span across the entire scope of the system’s operation 

in its environment. The most prominent program in our system is a model. A model is the 

fusion of one forward and one inverse model, according to the common terminology of control 

theory (cf. Wolpert & Kawato 1989), and generates both goals and predictions; some other 

programs monitor their success or failure and are thus able to reinforce the system’s 

confidence about their effectiveness. Hierarchies of models represent composite knowledge 

and skills. The acquisition of hierarchies ameliorates attention by improving the agent’s ability 

to anticipate, thus driving information acquisition more closely in line with contextual cues.  
Knowledge in our system is operationally constructive: Models represent the causal 

relationships between observed events, be they external (sensory, i.e. reflection of the 

environment's states) or internal (reflection of the system's own states and operation): These 

are the tiny elementary executable constructs (procedural knowledge) that implement the 

system's ability to predict and to act in a domain. Learning a skill consists of learning models 

and their context and sequence of execution. A single model has three roles, (a) enabling 

predictions about what “may happen next”, (b) suggesting specific ways to achieve a goal and, 

(c) making up assumptions, i.e. that while not having been observed, assert with some degree 

of confidence that some facts should hold given the current knowledge accumulated by the 

system. As practiced in control theory, hierarchies of low-level forward-inverse models (our 

models) constitute controllers that specify behaviors addressing environments of higher levels 
of complexity. Hierarchies also compress knowledge: The execution of models is a first class 
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input and captures in an abstract form (trace of computation) an otherwise complex state 

specification. Models thus contribute to build up increasingly abstract relationships, grounded 

in the internal system's operation ranging from surface perception/actuation complexes, to 

deeper (system-wise) operational semantics. At any point in time in a running system all 
currently relevant models are executed simultaneously in both of these roles, in parallel, in 

vast quantities in order to narrow down the system's options. Judgment of the system’s 

performance relies on the continual self-assessment of its models' performance, and this 

controls learning: Learning happens continuously and is triggered by unexpected goal 

achievement or by prediction failure – learning triggering events. Upon either event, model 

candidates are assembled from the recorded history of salient inputs (inputs that proved of 

high value in the past for solving any goal pursued by the system) and fielded immediately – 

their relevancy at any point in time, as well as their lifetime, being sanctioned by their 

expected future performance. Bad models are discarded and/or replaced by better ones.  

In our view, high-level processes (planning, attention, learning) influence each other 

reciprocally. For example, learning better models and sequences thereof improves planning; 
having good plans means that a system will direct its attention to more (goal-)relevant states, 

and this means in turn that learning is more likely to be focused on changes that impact the 

system’s mission (e.g. correct identification of novelty), which on average increases its 

chances of success. These high-level processes are dynamically coupled, via the low-level 

processes, as they both result from the execution of the models. The system allocates 

computational and time resources to learning processes based on the progress of learning, i.e. 

the first derivative of the triggering events' rate. 

At the heart of our approach is the cognitive control that results from the continual value-

driven scheduling of reasoning jobs, the latter being small programs that perform the forward-

inverse execution of models, monitor the outcomes of predictions and goals and build new 

models, among other tasks. High-level cognitive processes are grounded directly in the core 

operation of the machine, giving priority to reasoning jobs that process predictions and goals, 
using two complementary control schemes, top-down and bottom-up. Top-down scheduling 

allocates resources by estimating the global value of the jobs at hand, and this judgment 

results directly from the products of cognition – goals and predictions. These are relevant and 

accurate to various extents, depending on the quality of the knowledge accumulated so far. As 

the latter improves over time, goals and predictions become more relevant and accurate, 

allowing the system to allocate its resources with a better judgment; the most important goals 

and the most useful/accurate predictions have priority, the rest being saved for later processing 

or even discarded, to save resources. In that sense, cognition controls resource allocation. The 

second control scheme is bottom-up: Resource allocation controls cognition. Should resources 

become scarce, the scheduling process dynamically narrows the system’s attention to the most 

important goals/predictions the system can handle, trading scope for efficiency and therefore 
survivability – the system will only pay attention to the most promising (value-wise) inputs 

and inference possibilities. If the resources become more abundant the system will start 

considering goals and predictions of less immediate value.   

The bootstrap code – the initial seed for the system – contains (among other things) top-

level goals (drives) and top-level models. A drive is an “innate” goal given by the 

programmer, whose semantics can also be those of a constraint; it is a goal whose payload is a 

fact that cannot be observed directly – think for example of the drive “keep operating 

successfully”: the environment does not produce explicit direct evidence of its achievement, 

but several indicators can be combined to infer it. A top-level model is handcrafted for giving 
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the system a way to entail the success (or failure) from an observable (such an observable 

could be “your owner gives you a reward”). Due to being data-driven, drives and top-level 

models form together the system’s motivation, providing a top-down impetus for the system's 

running, while sensors provide an influx of data, driving its operation bottom-up.  
A more comprehensive description of these aspects of our system, as well as others, can be 

found in Nivel et al. (2014, 2013), Nivel & Thórisson (2013), Nivel & Thórisson (2014), and 

Steunebrink et al. (2014). 

5. EXPERIMENTS WITH NATURAL COMMUNICATION 

The goal of the two experiments, E1 and E2, described here was to assess the ability of our 

first agent, S1 implemented in AERA, to learn the pragmatics, semantics, and syntax of 

human natural communication. We wanted an appropriately complex task that put a measure 

on S1's capability to autonomously disentangle a wide variety of causal relationships, 

sufficient to convince us about the generality of its knowledge acquisition and generalization 

capabilities. Human natural multimodal communication contains a wide variety of data types 

at two orders of magnitude of time. We defined a scenario that included considerable spatio-

temporal and language behavior complexity: a dyadic mock-television interview. In the 

experimental setup two humans interact for some time, allowing S1 to observe their behavior 

and interaction in realtime; S1's task is to learn how to conduct the interaction in exactly the 

same way as the humans do, in either role of interviewer or interviewee. In E1 the interviewer 

asks the interviewee to pick up objects and move them to new locations on the table between 
them (Table 1), the interviewee moves the objects as requested but does not speak – a kind of 

put-that-there with learning (Bolt 1980); in E2 the interviewer asks numerous questions about 

the recyclability of the objects on the table between them, the interviewee giving informed 

answers to these (see Table 2). In E2 both interviewer and interviewee use deictics of various 

kinds and some forms of body language (see Table 3). A category system for non- verbal 

behavior was adopted from  c rew (    ), and verbal categories from  romberg   Landr  

(1993). The transcribed records were then analyzed using Theme 5.0 (Magnusson 2006).  

The knowledge given to S1 is represented as a small set of primitive commands for its 

drivers (arm joints and speech output) and categories of sensory data (speech, prosody, and 

joints/geometry), along with a few top-level goals such as "pleasing the interviewer" 

(operationally defined as the interviewer saying "thank you" or asking a new question) and 
"getting the interviewee to speak" (operationally defined as production of speech). The full 

specification of the seed for the two experiments can be found in Nivel & Thórisson (2013).  

S1 observes the realtime interaction between the two humans in a virtual equivalent of a 

video-conference: The humans are represented as avatars in a virtual environment – to allow 

the interaction to proceed naturally, without any artificial protocols, each human sees the other 

as a realtime avatar on their screen. Their head and arm movements are tracked with motion-

sensing technology (with sub-centimeter, sub-second accuracy and lag-time), their speech 

recorded with microphones. Signals from the motion-tracking are used to update the state of 

their avatars in realtime, so that everything one human does is translated virtually instantly 

into movements of her graphical avatar on the other's screen. Between the avatars is a desk 

with objects on it, visible to both participants. This is the case in both the human-human 
condition and the human-agent conditions (agent taking either role). In both experiments we 
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had S1 observe the humans until it accurately predicted all major event types observed in the 

dialogue (~2.5 minutes for E1 and ~20 hours for E2). We then had S1 interact with the 

humans for a sufficiently long period to produce videos (~10 minutes for E1, ~15 minutes for 

E2) that could be analyzed for t-patterns (Magnusson 2000); recordings of S1 interacting in 
either role with one of the humans (same as who participated in the human-human scenario) 

thus formed the basis for data analysis. 

4.1 Experiment 1 (E1) 

The objects in E1 that the interaction revolves around are: two blue cubes, one red cube, one 
red sphere, one blue sphere. The seed containing all initial (hand-coded) knowledge consisted 

of a set of primitive commands (move hand, grab, release, point at) and a set of dimensions for 

the input space (object type, color, actor’s role, speech). The seed also includes initial 

knowledge that models the consequences of invoking the primitive commands: these models 

are for example explaining how the position of the system’s hand is affected by invoking the 

command move hand and how a hand and an object are linked together after invoking the 

command grab. The natural language used in E1 consisted of a fixed set of sentence fragments 

(see Table 1). The seed for S1 in E1 is described in greater detail in Nivel & Thórisson (2013).  

Table 1. The words and word order allowed in E1. The human participants were asked to "interact 
normally" to achieve their tasks (meaningless and nonsensical sentences – e.g. a sentence starting with 

"Take it ..." as a first sentence in an interaction, which had no prior referent for the ellipsis – did 
therefore not occur). We did not provide our S1 agent with any grammar or words in E1 

Words Word Order 

verbs: put, take 
nouns: sphere, cube 
adjectives: blue, red 
adverb: there 
determiners: a, the 
pronoun: it 
conjunctions: and, ... 
interjection (ack): thank you 

Utterance: (Part1), Part2 
Part1: take, [a | the] noun], (conj) 
Part1: take, [it | [a | the] noun], (conj) 
Part2: put, [it | [a | the] [blue | red] noun], there, ..., thank you  

(Silence of some measurable length is indicated as "..."; 
parenthesis means that an element is optional.)  

 

Results show that the performance of S1 in E1 matches the human-human scenario very 
closely, and S1 only needed to observe the humans for around 2.5 minutes before its 

performance was error-free in either role. A subsequent inspection of S1's realtime 

performance for 10 minutes, in realtime interaction with humans under the same operating 

conditions as in the human-human scenario, revealed no mistakes, restarts, or self-corrections 

in the interaction on behalf of S1 – it performed flawlessly and completely error-free. The 

system acquired and generalized interaction skills to a sufficient level to allow it to perform 

100% error-free communication of the same nature and complexity as that observed in the 

human-human interaction.  
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Table 2. Basic statistics in E1. In E1 S1 only has to observe the human interaction for about 2.5 minutes 
before it is able to predict accurately their behavior, and subsequently assume either role without making 

any errors. 

Observation Time # turns  observed # errors after observation period 

~2.5 minutes ~17 0 

 

S1 learned the sequences of orders (“take a blue cube...” then waiting for the interviewee 

to comply before adding “...and put it there.” and pointing with a finger to a location on the 

table), and it learned to do this with a series of different targets (e.g. a blue cube first, then a 

red sphere), as demonstrated by the human actors – the latter of which results from the 

hierarchization of control via model affordances. S1 identified the causal relationship between 

deictics and utterances (e.g. “there” correlated with pointing gestures) – this is an example of 
learned structural hierarchy – as well as ellipsis (“put it there”). The pronoun “it” was learned 

to identify the object that draws the most attention (in terms of learned job priority), i.e. the 

target of the most valuable goals (picking an object is a learned pre-condition on the next step, 

moving it to some location, to earn the reward) – this being an example of value-driven 

resource allocation steering cognition (and vice-versa); it matches exactly how humans used 

ellipsis in the observed interactions 

 

 

Figure 2. Example time series excerpt of interaction between human (interviewer) and S1 (interviewee) 
spanning seven seconds. In this interaction the human looks at an aluminum can and says “Tell me about 
this object,” simultaneously pointing to the can with an index finger (frames 2, 3), then rests (frame 4). 

Approx. 600 millisecs later S1 gazes at the can and replies, grabbing the can and lifting it up, “This is an 
aluminum can,” (frames 5, 6) puts it down again (frames  , 8) and continues: “The main ingredient in 
aluminum is bauxite”. This short sequence is very similar – but not identical, neither in timing nor 
movements of either party – to some sequences S1 had observed in the human-human interaction. 
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4.2 Experiment 2 (E2) 

Given the success of E1, in E2 we increased the complexity of its task as follows: The 

scenario included all communicative behavior of E1, with a considerable increase in both 

spatial and language complexity. In particular, the language component in E2 included much 

longer and more complex sentences, and both interviewee and interviewer spoke, in full 

sentences and complete communicative acts. The vocabulary was 100 words; S1 was given no 

kind of grammar, nor a list of permissible words.5 On the desk between the interviewer and 

interviewee lay a set of (virtual) objects: aluminum can, glass bottle, plastic bottle, cardboard 
box, newspaper and painted wooden cube. As before, the task of the participants is to talk 

about these objects, in particular, the interviewer's task is to ask the interviewee about the 

materials of which the various objects consist, and the pros, cons, cost, and methods for 

recycling them (Table 3). As in E1, the interviewee must understand the utterances of the 

interviewer to a sufficient degree to produce the desired actions, in this case long explanations 

about the pros and cons of recycling various kinds of materials, using deictic references, 

ellipsis, and standard human dialogue and turntaking skills (collaborative, non-overlapping 

communicative acts) (cf. Thórisson 2008, 2002). While the humans in the experiments are not 

trained actors and their behavior not stylized, their interaction was nevertheless correct in all 

major aspects – all question-answer pairs were correct and consistent. S1 thus did not have to 

deal with incorrect use of language, which would undoubtedly bring the observation time well 

above 20 hours. 

Table 3. Some examples of the unscripted sentences produced in by the human participants in realtime 

dialogue in E2 

Which releases more greenhouse gasses when produced, [an aluminum can or a glass bottle | an 
aluminum can or a plastic bottle | a plastic bottle or a glass bottle]? 

What [else | more] can you [tell, tell me, tell us, say] about [this | that | it]? 

There are many types of plastic. 

Tell [me | us] about this [object | thing | one]. 

More energy is needed to recycle a plastic bottle than a can of aluminum.  

Compared to recycled plastic, new plastic releases fifty percent more greenhouse gasses.  

More energy is needed to recycle a glass bottle than a can of aluminum.  

A glass bottle takes one million years to disintegrate completely in the sun. 

Glass is made by melting together several minerals. 

A recycled aluminum can pollutes (only) five percent of what a new [can | one] pollutes. 

Recycling an aluminum can costs only five percent of a new one. 

Compared to recycling, making new paper produces thirty-five percent more water pollution. 

This is a cube made from unpainted wood.  

 

                                                
5 Due to the number of commission errors in the speech recognizer, however, its output was filtered by the set of 100 

words. 
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The results of E2 are summarized in Tables 4 and 5, and Figures 4 and 5. In E2 S1 learned 

everything that it observed in the human-human interactions, and can perform an equivalent 

interview in either role of interviewer and interviewee.6 The full socio-communicative 

repertoire exemplified in E2, with additional complexity in deictic gestures and grammar, 
acquired autonomously by S1 after an observation period of approximately 20 hours, has been 

correctly learned, with no mistakes in its subsequent application, including timing of all 

actions (Table 4). As can be seen by comparing examples of human-S1 interaction (Figures 4, 

5) with human-human interaction (Figure 3), behavioral patterns are highly significant and 

match closely the human-human condition, both in timing and components; the larger patterns 

connecting the two parties are virtually identical; disconnected smaller patterns in the S1 

conditions indicate a slightly larger variation in these interactions than in the human-human 

condition.7 As can also be seen clearly by simple visual inspection of the resulting videos, S1 

has mastered the role of both interviewer and interviewee perfectly. T-pattern analysis 

revealed that the largest pattern consisting of non-overlapping hierarchical sub-patterns and 

found in all conditions was made up from 49 events (leaf nodes) occurring in the same order 
with statistically significant event timing similarity (p < 0.005). This largest pattern explained 

77% of the total time of the interaction in the three conditions.   

Table 4. Basic statistics in E2 

Observation time # turns  observed # errors after observation period 

~20 hrs ~8000 0 

 

Figure 3. Example of common and statistically significant patterns seen in human-human condition in 
E2, involving question-answering, head direction, and hand activity (p<.05 or better). Here, the 

interviewer first asks a question, looks at the table, then looks back at interviewee, after which the 
interviewee looks at the table and begins to answer, then looks back at the interviewer. (Legend: Hq = 

interviewer; Ha = interviewee; ask = a question is asked; h_table = face oriented towards the objects on 

the table; h_other = face oriented towards interlocutor; reply = reply is produced. Timescale is in 
milliseconds; 5:48 mins total.) 

                                                
6 Videos of the interaction can be found on www.humanobs.org and on youtube.com on channel CADIAvideos. 
7  Note that t-pattern analysis is a mechanical mathematical procedure with no semantic labels; thus, t-patterns 

produced and displayed in these figures do not reflect any natural ordering such as questions preceding answers – 
events are simply labeled events with a beginning and end. See Thórisson et al. (2013) for an in-depth description of 
the t-pattern analysis used here.  
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Figure 4. Example of common and statistically significant 
patterns seen in S1-as-interviewer condition in E2 (p<.05 or 
better). Compare this to human-human condition in Figure 
3 (see text). (Legend: Hq = interviewer; Ha = interviewee; 
h_other = face oriented toward interlocutor; at_rest = body 

is at rest; h_table = face oriented towards the objects on the 
table; reply = answer to a question is produced; ask = a 

question is being asked. Timescale in milliseconds; 6:36 
mins.) 

Figure 5 - Example of common and statistically significant 
patterns seen in human-interviews-S1 condition in E2, where 
questions are followed by a new question (p<.05 or better). 

Compare this to human-human condition in Figure 3 (see text). 
(Legend: Hq = interviewer; Ha = interviewee; h_other = facing 

interlocutor; at_rest = interlocutor at rest; reply = a reply to a 
question is produced; ask = a question is asked. Timescale is in 

milliseconds; 5:18 mins total.) 

Table 5. Summary of results obtained in Experiment 2 (E2). S1 has learned how to conduct an interview 
with a human, and can perform flawlessly in either role of interviewer and interviewee after around 20 
hours of observation, producing grammatically, semantically, and pragmatically correct utterances in 

interactions spanning minutes. Our S1 agent was not provided with any grammar or words 

 

Category 

What Has Been Learned Result 

Interview 
gross 

structure 

S1 has learned how to structure dialogue in an 
interview, as observed in the human-human 
interaction. S1 has learned roles of both interviewer 

and interviewee from observation, having been only 
provided with the top-level goals for either, and can 
perform them both. S1 also learned to use interruption 
to keep the interview within the allowed time limits.  

S1 can conduct dialogue with a human 
efficiently and effectively, as interviewer and 
interviewee, in a way that is virtually identical 

to human-human interaction. Appropriate and 
correct actions taken, given the behavior of 
either role.  

Turn-taking S1 has learned the basic skills of turn-taking from 
observation, as plainly obvious in the videos, and 
clearly demarcated in turn-taking patterns shown by t-
pattern analysis. In E2 the interview includes gestures 
and speech for both roles. Turn-taking is slightly 

slower-paced than typical human-human interaction. 

S1 efficiently and effectively takes turns, 
asking questions at the right times (as 
interviewer) and answers timed correctly (as 
interviewee). The style and action repertoire is 
precisely that observed in the human-human 

condition.  

Explicit 
manual 
deictics 

S1 has learned to use three kinds of deictics: pointing 
by finger, by palm, and picking up and putting down 
an object in synchrony with speech. Successful 
resolution of a manual deictic gesture by the 
interviewer allows interviewee to produce correct 
answer to questions, and to use it reciprocally when 
replying.  

Both the timing and form of the gestures is 
appropriate for the context. Resolution of a 
manual deictic gesture by the interviewer 
allows interviewee to place objects in the right 
location, and to pick out a referenced object 
out of the five. 
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Ellipsis Use of pronoun "it" and "the [X]" (e.g. "Take the 
cube" in the beginning of a new instruction) is 

correctly used to reference (as interviewer) / 
interpreted (as interviewee) an object mentioned 
earlier.  

S1 has learned to use ellipsis in both sentence 
interpretation and generation. Successful 

resolution of ellipsis by S1 as interviewee 
allows it to place objects in the right location, 
and to pick out a referenced object out of the 
five.  

Sentence 
construction 

S1 constructs all sentences correctly. Correct 
combination of dialogue events to allow correct uses 
of pronoun and adverb, supporting disambiguation/ 
indication of what should be done. 

S1 can construct sentences in either role of 
interviewer and interviewee, based on those 
observed in the human-human interaction. The 
sequence of words is produced using 

generalized models acquired autonomously 
from observing the human interaction. 

Constructing 
proper answer 

to questions 

When the interviewer asked a question, not only were 
the gestures and speech interpreted for the correct 
response, the reply constructed was appropriate to the 
question.  

Given the numerous valid questions that can be 
asked in E2, S1 replies with an appropriate and 
correct utterance.  

6. CONCLUSION 

We have demonstrated an implemented architecture that can learn autonomously many things 

in parallel, at multiple time scales. The results show that the AERA-based S1 agent can learn 

complex multi-dimensional tasks from observation from only a small ontology, a few drives 

(high-level goals), and a few initial domain models to support autonomous bootstrapping on a 

complex task. Human dialogue is an excellent example of the kinds of complex tasks current 

systems are incapable of handling autonomously, and to our knowledge no prior architecture 

has demonstrated comparable results (cf. Franklin et al. 2013, Laird 2012, Wang 2011).  The 

fact that no difference of any importance can be seen in the performance between S1 and the 

humans in simulated face-to-face interview is an indication that the resulting architecture 

holds significant potential for further advances, and that our methodology (Nivel et al. 2013, 
Thórisson 2012) is a way for escaping the constraints of current computer science and 

engineering software methodologies when aiming for artificial general intelligence and 

increased systems autonomy. However, in its current incarnation AERA is entirely dependent 

on observation, as learning is exclusively triggered by unexpected goal achievement, or a 

prediction that turns out to be wrong – i.e. by surprise. This limits the acquisition of 

knowledge to phenomena that are directly observable – hidden causation is difficult for the 

current system to figure out, as are other kinds of inexplicit relations (similarity, equivalence, 

etc.). Elsewhere we have argued that curiosity results from the need to overcome the 

limitations imposed by the scarcity of inputs (Steunebrink et al. 2013); we plan to expand the 

types of programs to implement a richer set of inferences from which curious behaviors can be 

devised and planned, whenever the system has resources to spare. One of the main directions 

of our planned near-future work is set toward building more prototypes to assess the generality 
and scalability of our system. 
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