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ABSTRACT 

In order for computer generated imagery to recreate the characteristic visual appearance of phenomena 
such as smoke and fog it is necessary to compute the way in which light interacts with participating 
media. In this work we present a novel technique for computing volumetric single scattering lighting 
solutions for particle-based inhomogeneous participating media data sets. We seek to calculate 
volumetric lighting solutions for particle-based data sets as such data sets have the advantage of being 
spatially unbounded and relatively unrestricted with regard to memory as compared to uniform grids. In 
order to perform the calculations which are required for computing such a lighting solution, we introduce 
a novel octree based data structure. We refer to this new data structure as a density octree. The design of 

the density octree allows for efficiently computing light attenuation throughout the spatial extent. Using 
our data structure, we are able to produce high quality output imagery of arbitrary particle data sets in the 
presence of arbitrary numbers of lights.  
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1. INTRODUCTION 

One of the most compelling aspects of computer graphics is the rendering of so called 
participating media phenomena such as smoke, fog and clouds. These phenomena are referred 

to as participating media in that their presence in a virtual scene to be rendered affects the 

transfer of light between the solid surfaces and the camera. Aesthetically pleasing treatment of 

these phenomena is critical to achieving high quality, realistic computer graphics imagery that 

are comparable to the photograph in Figure 1. This paper presents a high quality, temporally 

coherent and computationally efficient technique for rendering such participating media. 

Specifically, we introduce a new method for computing volumetric lighting solutions for 

participating media which is modeled by particle data sets, as opposed to traditional grid based 
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representations. We seek to render particle-based participating media because modern fluid 

dynamics solutions use particle based data sets, instead of traditional grid-based methods.  
 

 

Figure 1. Particle media example from real photography 

The primary contribution of this paper is a novel technique for computing single scattering 

volumetric lighting solutions for non-homogeneous particle-based participating media data 
sets consisting of arbitrary numbers of particles for an arbitrary number of lighting types in an 

arbitrary volume. The technique presented exhibits logarithmic complexity with respect to the 

number of particles and linear complexity with regard to the number of lights. This 

performance characteristic is achieved by modelling the particle density within the spatial 

extent using an octree. 

 

  

 

Figure 2. Images rendered using the algorithm described in this paper. 
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The density octree allows for computationally efficient evaluation of attenuation along 

each light path between the particles and the lights in the data set. Our work extends that 

conducted by Knoll, who uses a similar octree method, however only to represent solid 

geometry (Knoll 2008).  The volumetric lighting software routines developed for this paper 
have been included in the Exocortex Fury renderer(Madill, Houston 2010), a production ready 

product and has been used in productions.  

In Section 2, we begin by establishing a theoretical basis which describes the various types 

of interactions which light may have with participating media and a short survey of relevant 

research is provided.  In Section 3 we discuss the system architecture and the features it 

allows. In Section 4, we present our performance results and a selection of example output 

images. We conclude with a discussion of directions for future work and conclusions in 

Sections 5 and 6, respectively. 

2. BACKGROUND 

In general, computer graphics solutions rely upon the assumption that the scenes to be 

rendered are made up of a collection of solid surfaces existing in a vacuum. This assumption 

greatly simplifies rendering since, in a vacuum, radiance (the measure of brightness and color 

of a single ray of light (Akenine-Moller et al, 2008)) is constant along any path between the 

surfaces, lights and virtual cameras. However, this assumption, while beneficial in terms of 

reducing computational complexity, has the shortcoming of preventing the rendering of effects 

such as attenuation and scattering of light due to participating media such as fog, smoke and 
other atmospheric phenomena.  

To capture the appearance of such phenomena, we must use those techniques which 

calculate the interaction of the light with the participating media present in the scene. 

Participating media is matter, such as water droplets (in the case of fog) or dust particles (in 

the case of smoke), which will affect the behavior of light by changing the direction in which 

it travels and the amount of energy it carries due to processes such as scattering and 

absorption.  For a complete treatment of the topic we refer the reader to the comprehensive 

resource, Physically Based Ray Tracing (Pharr & Humphreys, 2004).  Next, we introduce the 

main ideas of Participating Media.  

2.1 Participating Media Interaction Processes 

Participating media is characterized as being either homogeneous or non-homogeneous in 

nature. A homogeneous media is uniform throughout the scene whereas a non-homogeneous 

media spatially varies in properties such as density, color or other attributes.   Four main 

processes affect the distribution of radiance in a scene in the presence of some participating 

media (Chandrasekhar, 1960): 
Absorption - Absorption is the process by which radiance interacts with participating 

media reducing the total transmitted radiance. Absorption is measured using the absorption 

coefficient α which is the probability that light is absorbed per unit distance traveled in the 

medium. In the case of a non-homogeneous medium this absorption coefficient may be 

spatially varying, whereas it will be uniform in a homogeneous medium 
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Emission - Increases the amount of radiance traveling along some path through a 

participating medium due to the conversion of energy into visible light by chemical, thermal 

or other means. For example, consider a candle that releases energy, some of which will be in 

the form of visible light as wax particles burn and emit light. 
Scattering - As a beam of light passes through some participating media, it may intersect 

with the particles that constitute that media. This interaction can cause the light to change the 

direction in which it is traveling. The effects of this scattering are twofold. The first outcome 

is that the total radiance will be reduced due to the out-scattering of light energy. However, it 

is also possible that light will enter the medium and be scattered such that it increases the total 

radiance which reaches the virtual camera. This outcome, where the total radiance is 

increased, is referred to as in-scattering 

2.2 The Equation of Transfer 

The equation of transfer is the fundamental equation that governs the behavior of light in a 

medium that absorbs, emits and scatters radiation (Chandrasekhar, 1960). It accounts for all of 

the volume scattering processes, which are; absorption, emission and in- and out-scattering. 

These factors provide an equation that describes the distribution of radiance in an 

environment. In fact, the light transport equation is a specialized case of the equation of 

transfer, which has been simplified by the removal of consideration of participating media and 

specialized only to scattering from solid surfaces. (Arvo, 1993) 

The equation of transfer is an integro-differential equation that describes how the radiance 
along a beam changes at a point in space. It can be transformed into a pure integral equation 

that describes the effect of participating media from the infinite number of points along a line. 

It can be derived in a straightforward manner by subtracting the effects of the scattering 

processes that reduce energy along a beam (absorption and out-scattering) from the processes 

that increase energy along it (emission and in-scattering). 

If a ray (p, ω) intersects a surface at some point p0 at a distance t along the ray, then the 

integral equation of transfer is: 

                                 
               

 

 
    (1) 

where p0 = p + tω is the point on the surface and p’ = p + t’ω are points along the ray.  This 

equation describes the two effects that contribute to radiance along the ray. First, reflected 

radiance back along the ray from the surface is given by the term L0, which gives the emitted 

radiance and reflected radiance from the surface. This radiance may be attenuated (Tr) by the 

participating media; the transmittance from the ray origin to the point p0 accounts for this. The 

second term accounts for the added radiance along the ray due to volume scattering and 

emission, but only up to the point where the ray intersects the surface; points beyond the 

surface don't affect the radiance along the ray.  

2.3 Volume Representation 

In order to render participating media, its properties must be tracked throughout the spatial 

extent of the volume in which it resides. The two common means by which this is achieved 

are the traditional, and popular, use of Eulerian (grid-based) methods (Stam, 2003, Bridson, 

2008).  As well, Lagrangian (particle-based) methods are used, and they can be further 
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categorized into vortex (Yaeger et. al, 1986)(Gamito et. al. 1995)(Angelidis & Neyret 

2005)(Park & Kim 2005) and hydrodynamic (Desbrun 1996)(Miller et. al. 2003)(Premoze et. 

al, 2003) based methods. 

Particle based methods have the advantage of not needing to use computer memory in 
order to store information about zero density grid cells. For example, consider a large room 

through which a cloud of smoke is traveling (say from a lit cigarette). Using a uniform grid, it 

would be necessary to have memory tracking that there is no smoke present in the vast 

majority of the spatial extent. It is possible that a situation may arise in which it is not possible 

to use a fine enough uniform grid to resolve the fine details of the smoke without exhausting 

available memory. In contrast, a particle based system only needs to store the information 

about the location of the particles that are actually representing the smoke. 

It should be noted, that in the case of a uniform volume of participating media, it may not 

be ideal to use a particle representation. However this scenario rarely arises in practice and in 

the extreme case of a fully homogenous volume, there exist more efficient methods for 

rendering such homogenous participating media data sets.  

2.4 Ray Marching 

Except for cases where participating media is homogeneous and has a uniform isotropic 

scattering function, the volume rendering function is solved using numerical integration. This 

integration can be performed using a technique called ray marching (Levoy 1990)(Perlin & 

Hoffert, 1989)(Ebert et. al. 2002) which takes steps through the participating media and 
evaluates at each step. The amount of light reaching the camera is the summation of each 

segment evaluation.  Introduced by Bridson (Bridson 2003), ray marching using the sparse 

block grid is a two level data structure which balances the benefits of spatial subdivision 

against the costs of the potentially deep hierarchy of an octree. A first top level coarse grid is 

allocated to encompass the scene extents. Then, if some coarse region is necessary (because 

there is some data in the region) the second level high resolution grid is allocated. In his thesis 

Bridson details how the sparse block grid achieves O(n2.25) memory utilization as compared 

to an octree which is O(n2) and a uniform grid which is O(n3). While this is slightly higher 

than the octree, the sparse block grid does maintain the O(1) access time characteristic as 

compared to O(logn) for the octree. Thus, based upon its relatively more efficient memory 

utilization, the sparse block grid is a popular choice for data storage when using traditional ray 
marching techniques. However, although using the sparse block grid does ameliorate the 

memory issue associated with dense grids, traditional ray marching still has its own set of 

limitations. Notably, interpolations must be used at sample points and further care is required 

to efficiently distribute samples across the rendering volume, not always possible with particle 

simulations. 

3. THE SYSTEM 

Our goal is to create a system that can render volumetric lighting effects in a time efficient, 

physically plausible manner. To be clear, we say those volumetric lighting effects are: 

 Light attenuates as a result of interaction with inhomogeneous participating media 

 Solid objects block light thereby forming volumetric shadows 
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 Support for an arbitrary number of lights 

 Support for conventional computer graphics light types, such as point and spot 

lights 

Our rendering system models non-homogeneous participating media using particle data 
sets. We elect to use particles for modeling participating media so that our simulations are 

spatially unbounded and grid free. By not using a grid-based system, we significantly reduce 

our memory requirements. The above requirements, with regard to lighting and particle data 

sets, present a unique rendering challenge. In order to achieve our lighting objectives, we must 

solve two density integrations for each particle: 

 Find the attenuation of the light reaching the camera from a given particle 

 Find the attenuation of the light reaching a particle from a given light source 

We make the observation that use of GPU hardware is an excellent solution to Problem 1. 

Using the alpha blending functionality built into GPU hardware, we can solve the forward 

density integration per particle for millions of particles at interactive rates. Even including the 

computation required to achieve the particle depth sorting which is required to obtain correct 
alpha-blending, the forward density integration process is a relatively computationally 

inexpensive task. 

As a result of using the standard GPU pipeline for our forward density integration, it is 

possible to integrate other GPU based rendering techniques into our volumetric lighting and 

rendering system. For example, we implement a pre-existing GPU based technique [35] to 

include motion blur and depth of field into our system. We explain in greater detail the means 

by which these effects are achieved in section 3.6.  

The rendering process begins with the lighting computation. Presently, the lighting 

calculation is conducted using the CPU for ease of programmatic implementation. Once 

computed, the lighting data is added to the vertex buffers in memory which represent the 

particles. Once the lighting data is added to the vertex buffers, they are sent to the GPU for the 
final rendering as outlined in Figure 3. 

 

 

Figure 3. Particle rendering pipeline 

We continue by explaining the lighting process and then outline the process used to create 

the final image using the GPU.   

3.1 Single Scattering Volumetric Lighting Calculation 

We determine how much light reaches a particle from a light source by integrating the density 

along a ray constructed between the particle and the light source. Performing density 

integrations on particle based participating media is a challenge as there is no immediately 
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available grid representation of the density upon which a ray marching density integration can 

be performed. Instead, we use a novel octree based data structure which contains the particles 

as our density integration acceleration structure. We refer to this data structure as the density 

octree. 

3.1.1 Density Octree 

In order to accelerate the volumetric lighting calculation, we use a novel octree construction 

approach in order to reduce the number of ray-particle intersection tests that are required. The 

density octree is a loose octree (Figure 4) which is created using a subdivide as needed rule 

(Wilhelms and VanGelder, 1992). Our goal in setting up the subdivision rule is to equally 

balance the amount of time spent performing tree traversal bounding-box intersection and 

particle intersection tests. If too deep a hierarchy is created then too much time will be spent in 

traversal, conversely too shallow a tree results unnecessary particle intersection tests. 

The density octree is created by inserting the constituent particles of our data set into an 
octree. In the standard manner, the particles are placed into the lowest octree node which they 

fit. However, in order to ensure that particles are concentrated in the leaves, we consider the 

particles to be a single point in space, as opposed taking their radius into account when 

determining which node they reside within. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Loose octree allows shapes to overlap cells (b) Octree formed through three subdivision 
iterations (https://en.wikipedia.org/wiki/File:Octree2.svg)  (c) Example of a light ray, shown in red, 

intersecting a cross section of a density octree 

This creates a loose octree in which the stored particles actual radius may overlap the 
boundaries of a given octree node. We ensure this concentration of particles in the leaves for 

performance reasons. As it is computationally cheap to traverse the tree compared to 

performing ray-particle intersection tests, we wish to minimize the number of potential  

ray-particle intersection tests that will be required. 

The density octree begins as a single cell which is then subdivided only when a user 

selected density is reached, as measured by the number of particles residing in a given cell 

(See Figure 4). Unlike a conventional grid, the density octree has the desirable characteristic 

of only requiring memory in those areas of the scene where density information exists in the 

original particle data set. In the case of an animated sequence, the density octree is only built 

once per frame in which particles or other scene objects change their position. The same 

density octree is used for each light. In this way, the small setup time associated with creating 

the density octree is amortized across the number of lighting passes required.  
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3.1.2 Lighting Evaluation 

Integration of the density octree is performed via ray casting. A light ray is constructed 

between some particle and the light source that is currently being evaluated. This light ray is 

then intersected with the nodes of the octree in a recursive, top-down manner. This analytical 

ray casting approach achieves computational efficiency in that Ray-Axis Aligned Bounding 

Box (AABB) tests are only required at the boundaries of the density octree nodes. This is in 

contrast to ray marching, where it is often the case that multiple steps might be performed 

within a given uniform grid cell. By performing the intersection tests only as necessary, 

performance is increased. At each density octree node that the light ray intersects, the light ray 

is then intersection tested against those particles residing in that node. When the ray intersects 

a particle, the attenuation of that particle is added to the accumulated attenuation. Finally, once 

the total attenuation along the light ray has been accumulated, the total density is used to 

compute the amount of light reaching the particle. 

3.2 Intersection Testing Routines 

We use the optimized ray-AABB intersection presented by (Williams et al., 1992) We use the 

following optimized ray-sphere intersection presented in (Akenine-Moller et. al. 2008) Our 

ray-sphere intersection routine calculates the distance between the closest point on the line 
segment and the particle center. Using this distance, we are able to apply a scaling to the 

particle density based upon the extent to which the light ray intersects the particle radius.  By 

having a gradual relationship based upon distance, we eliminate visual glitches that result from 

otherwise binary intersect/not intersect calculations.  This is modeled as a Gaussian 

distribution.  

3.3 Temporal Coherence 

In order for our system to be used for computing volumetric lighting solutions for animations 

we must ensure the results that are coherent between frames. This entails that there is no 

flickering or visual artifacts between frames of animation. As we are computing an exact 

solution on a per particle level and scaling our particle density based upon the extent to which 

a light ray intersects a particle, temporal coherency is an inherent property of our algorithm. 

  
(a) (b) 

Figure 5. Shadows that scene geometry cast onto volumetric media (a) concept (b) actual render. 



IADIS International Journal on Computer Science and Information Systems 

104 

3.4 Solid Geometry Volumetric Shadowing 

So far our discussion has pertained primarily to calculating the interaction of light with 

participating media. However, we also want to take into account the presence of solid surfaces 

within the scene. In order to achieve this aim, we build a bounding volume hierarchy spatial 

data structure on the solid geometry. Our bounding volume hierarchy implementation is based 

on the code provided by Shirley et al. in his ray tracing book (Shirley et. al. 2003). Prior to 

conducting a full attenuation calculation using the density octree, the given light ray in 

question is tested against the solid geometry bounding volume hierarchy. If the light ray 
intersects a solid surface then no light will be reaching that point and it can be concluded that 

the illumination for that particle is zero without further computation as Figure 5 illustrates. 

3.5 Performance Enhancements 

The primary means by which our volumetric lighting algorithm achieves its computational 
efficiency is the use of the density octree which ensures that only the minimum of required 

ray/particle intersection test calculations are performed. However, we also implement our 

solution using early termination when transmission has attenuated to zero on top of a multi-

threaded (Reinders, 2007) implementation.  Additional user configurable parameters for the 

system are presented in Table 1. 

Table 1. A range of parameters are provided which allow the user to tweak the output of our system.  

Parameter Effect 

Shadowing Density Increasing this value results in light reaching zero intensity in fewer ray-
particle interactions. 

Solid Geometry Shadow Intensity 
 
 
Particle Sub Sampling 
 

 
Particle Intersection Test Size 
 

This allows the user to set the shadow intensity to values greater than zero 
in order to achieve a more subtle shadowing effect that is closer in 
appearance to the results achieved with a multiple scattering solution. 
Allows the user to select what percentage of the total particle data set to be 
included in the density octree.  The sub-sampling is performed by taking a 

uniform random distribution sampling of the input data set. 
By adjusting this size to be larger, it is more likely that a ray will intersect 
with the particles resulting in light reaching zero intensity in fewer steps 

3.6 Forward Density Integration using GPU Hardware 

In order to determine the amount of light reaching the camera along some viewing ray we 

must evaluate the out-going radiance from each particle along that ray taking into account the 

cumulative attenuation due to the proceeding particles along the viewing ray. This cumulative 

attenuation is calculated using the GPU hardware alpha blending functionality. In order to 

render correctly alpha blended particles using the GPU, we must sort the vertices that 

represent those particles. Sorting is performed based upon the vertices distance to the camera. 

Once the particles are sorted they are uploaded to the GPU in order to be rendered.  A custom 

geometry shader is used which expands each single vertex into a set of four vertices which 

represent a quad facing the camera centered around the original vertex position. By varying 
the size of the generated quad it is possible to have user selectable particle sizes. Furthermore, 

because UV coordinates for the quad are generated by geometry shader it is possible to map 
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arbitrary particle color and opacity maps to the quad. Having adjustable particles sizes is 

convenient in that it allows for smoothing to be performed by using larger than a single pixel, 

low opacity particles. 

We further detail the methods by which we produce two characteristic cinematic effects, 
motion blur and depth of field, which are essential for compositing particle renderings into 

special effects shots for film and television. By varying characteristics such as size, opacity 

falloff towards edges and shape of the quads created in the geometry shader we obtain these 

effects, as detailed in the following sections. The ease with which our algorithm is added to 

existing particle rendering solutions is amongst its strengths. 

 

 

 

 

Figure 6. A basic scene being rendered (left), with motion blur (center) and depth of field (right). 

3.6.1 Motion Blur 

Motion blur results from the rapid movement of the camera or the scene being viewed such 

that during a single exposure multiple views of the scene occur. Using the geometry shader 

stage it is possible to efficiently simulate a motion blur effect. This is accomplished by 
modifying the shape of the quads that are produced. By creating rectangular quads of varying 

dimensions, where elongation correlates to greater particle speed, a motion blur effect is 

achieved. 

3.6.2 Depth of Field 

Depth of field is the distance between the nearest and furthest objects in a scene that appear 

acceptably in focus in a rendered image. By adjusting the depth of field it is possible to direct 

the viewers attention to that potion of the scene which is in focus. In a manner similar to that 

which is used for rendering motion blur, it is possible to use the geometry shader to create a 

depth of field effect. This is accomplished by varying the size of the quad based upon its 
distance from the focal point. Additionally, the drop off curve which controls the particle 

opacity is modified to simulate the effects of depth of field. 
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4. RESULTS 

In order to calculate the lighting for a given particle it is necessary to perform a density octree 

traversal which is a logarithmic time complexity operation on average. If multiple lights are in 

the scene then the lighting solution is computed sequentially for each light and the amount of 

illumination is aggregated. We have found that the results of our performance evaluations are 

congruent with the theoretical bounds of our system.  We assess our new rendering algorithm 

using a range of quantitative and qualitative metrics. Our quantitative metric is processing 

time.  The purpose of these quantitative experiments is to examine the performance 
characteristics for the primary rendering time factors; the number of particles, the number of 

lights and the output resolution.  

As our point of comparison for both our quantitative and qualitative evaluations, we have 

selected Krakatoa (Thinkbox 2014), an industry standard particle rendering system produced 

by Thinkbox Software. Krakatoa performs lighting calculations using a deep shadow maps 

based approach.  All of our tests have been con-ducted on the same hardware consisting of a 

standard desktop personal computer with a single Intel i7 quad core hyperthreaded processor 

running at 2.67GHz and 12GB of RAM. Our system uses the GPU for final display, but like 

Krakatoa, the CPU is used for the lighting calculations making our comparisons relevant and 

fair. 

4.1 Quantitative Performance 

Our first performance evaluation explores raw particle throughput in terms of how much time 

is required to light a given number of particles and for a number of lights with a consistent 

number of particles. We observe that our system is characterized by a logarithmic time 

increase with respect to the number of particles. This is expected, as our density evaluations 

are performed on an octree based data structure. 
Both our system and Krakatoa exhibit a linear performance relationship between the 

number of lights present in the scene and the time required to compute a lighting solution.  

These results are clear in Figure 7.  

 

  

Figure 7. Time to calculate (a) a lighting solution for a single light given some number of particles. (b) a 
lighting solution for a given number of lights on a scene of 250,000 particles. 
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Figure 8. Time required for (a) rendering a given output frame size for a scene consisting of 250,000 

particles and one light.  (b)  to compute lighting for a single light in a scene of 1,000,000 particles for 
various density tree coarseness settings.   

Our volumetric lighting, motion blur and depth of field calculations are independent of 

output image size, as shown in Figure 8. This is because all our lighting computation is 

performed using the output resolution independent density octree. As such, no additional 

computation time is required for higher resolution output. In contrast, we observe that 

Krakatoa appears to exhibit a quadratic increase in time required to render as output frame size 
increases. Given that the performance of our algorithm is independent of resolution, it is a 

good choice in situations where modern high resolution frames are required. 

As our system provides better results with fewer particles, we demonstrate in Table 3 that 

we also provide a tangible improvement in speed  While a rendering at 100% of particles 

using the proposed solution provides a marked improvement in speed, there is also a 

significant qualitative improvement.  This allows our system to be able to use fewer particles 

for the same qualitative output compared to Krakatoa.  In essence we could use 50% of the 

particles in the proposed system and get similar qualitative results to using 100% of the 

particles yet gain a threefold improvement in processing time. 

Table 3. Performance results for various percentages of total particles included in density tree. Krakatoa 
numbers were obtained by reducing the number of particles in the source data set. 

# particles Proposed Solution Krakatoa 

100% 10.4 s 17.8 s 

50% 
10% 

5.5 s 
3.5 s 

9.0 s 
2.2 s 

4.2 Qualitative Performance 

Although raw performance statistics are an important metric of the utility of a rendering 

system, ultimately the final criterion is the quality of the output imagery. To this end, we 

examine several real world scenes and compare the output of our system against Krakatoa. 

The smoke plume data set (rendered in Figure 9) consists of 350,000 particles. Note how 

Krakatoa is unable to produce a smooth lighting solution with the number of particles 

provided. In contrast, our system, which calculates the lighting at each particle and is able to 
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scale particles sizes while maintaining a correct lighting solution, is able to produce a smooth 

lighting solution. Using our algorithm, it is possible to achieve higher quality results using 

fewer particles. In practice, requiring fewer particles to achieve acceptable visual quality 

means that our system out performs Krakatoa on typical rendering tasks quantitatively.  
Although a full evaluation with human subjects could not be presented, we believe the 

proposed system is qualitatively better as well.  (See Figure 9). 

  

Figure 9. Smoke plume data set (350,000 particles) rendered with proposed (left) and Krakatoa (right). 

Additionally, our system is able to calculate the shadows that would be cast by 

participating media onto arbitrary scene geometry, as shown in Figure 12. The shadow map is 

output as a separate floating point image buffer which can be composited into original frame 

buffer using standard image compositing tools. 

4.3 Manipulations to allow Better Qualitative/Quantitative 

Performance 

As the results show, our rendering system, based around our novel particle based participating 
lighting algorithm, is able to achieve high quality output in an efficient and time competitive 

manner as compared to a current industry particle rendering tool. As explained in the 

introduction of this section, in the default configuration, our system is logarithmic in time 

complexity with regard to the number of particles. However, based upon our observation that 

it is unnecessary to use the entire data set in creating the density octree we can continuously 

reduce the amount of particles included in a subsampled set such that our run time can be 

adjusted so that it is closer to linear in characteristic (by sub sampling particles by factor of log 

N)/ 



PARTICLE-BASED PARTICIPATING MEDIA RENDERING USING DENSITY OCTREES 

109 

 

Figure 10. Effects of changing percentage of total particles included in the density tree for a 3,000,000 
particle data set (left: proposed system, right: Krakatoa).  Runtimes for renders are outlined in Table 3. 
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Figure 11. Effects of increasing output particle size on the same lighting solution.  (render time is 
constant) 

 

Figure 12. Effects of increasing the particle density. In all cases, render time remains constant. 
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5. FUTURE WORK 

The following sections present a selection of areas which we identify as future avenues of 

development to continue improving our existing system. 

5.1 Level of Detail 

In regions further from the camera, it is not necessary that the lighting calculations be as 

accurate since the viewers will not be able to as readily see detail in those areas. Using our 

algorithm it would be possible to automatically adjust the level of detail by making the 

percentage of total particles used in ray-particle checks a function of the distance to the 

camera. For example, consider some density octree node located near the camera which 

contains one hundred particles. In this case, since the density octree node is located close to 

the camera we would want the most accurate lighting calculation possible, so all one hundred 

particles would be ray-sphere tested. However, consider some density octree node which is a 
significant distance away from the camera. In this case, we might only perform ray-sphere 

tests for a representative sub-portion of the particles in the density octree node. In this way, 

full computation would only performed in those regions which it is required. 

5.2 Multiple Scattering 

At present, our system only calculates the single scattering component of volumetric lighting. 
A further extension would be to develop a method by which it would be possible to efficiently 

utilize the spatial density information provided by the density octree in order efficiently 

calculate the multiple scattering component of volumetric lighting. 

5.3 Ambient Occlusion 

Given the spatial locality information provided by the density octree it should be possible to 

create a fast ambient occlusion calculation process. This would be useful for creating various 

artistic effects as well as fast approximations of multiple scattering when a fully calculated 

result is not required. 

5.4 Particle Replication  

One of the issues when working with particle based simulations is that it often takes more time 

to calculate the particle dynamics than it does to render those particles. As a result, rendering 

systems can be underutilized because it is not possible to simulate enough particles to fully 

load the particle rendering systems. In order to alleviate this problem, it would desirable that a 

particle rendering system could take a base set of particles which represent the structure, 

movement and other characteristics of the original simulation and then add additional particles 

at render time which further enhance the final output. 
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6. CONCLUSION 

As the results show, our rendering system, based around our novel particle based participating 

lighting algorithm, is able to achieve high quality output in an efficient and time competitive 

manner as compared to the current industry standard particle rendering tool. In the default 

configuration our system is logarithmic in time complexity with regard to the number of 

particles. However, based upon our observation that it is unnecessary to use the entire data set 

in creating the density octree we can continuously reduce the amount of particles included in a 

sub sampled set such that our run time can be adjusted so that it is closer to linear in 
characteristic (this can be done by sub sampling particles by factor of log N) 

In our qualitative evaluations, we found that our system produces higher quality outputs 

with less particles than Krakatoa. As a result of requiring fewer particles for the same output 

quality, our system achieves comparable or better performance in practical usage scenarios. 

Requiring less input particles is a major advantage in that it reduces the amount of disk space 

required to store the data sets. Perhaps even more importantly, because less particles are 

required for rendering, it is not necessary to simulate as many particles at the outset of the 

production process. As this simulation step is routinely amongst the most expensive in terms 

of computation time, our system with its lower particle requirements, is an attractive option 

for production rendering pipelines. 

The effect of sub-sampling was examined. Even with only 10% of the original data set 

being used in the density octree, our system still provides meaningful, albeit coarse 
information about the lighting in the scene. Krakatoa on the other hand fails to provide much 

meaningful lighting data once the input data set is reduced.  This makes our system viable for 

quick visualization and allows artists many more development iterations. By varying 

characteristics such as size, opacity falloff towards edges and shape of the quads created in the 

geometry shader we obtain effects such as motion blur and depth of field.  The ease with 

which our algorithm is added to existing particle rendering solutions is amongst its strengths. 
Furthermore, our system seamlessly integrates the calculation of volumetric particle 

shadows and the shadows that are cast by participating media onto any arbitrary scene 

geometry. As our lighting calculation is independent of output resolution, there is no 

additional expense for higher resolution output images. The user parameters of system which 

control the particle size and density can also be adjusted without affecting computation time.   
Although not real-time, the reduction of particles that maintain realistic rendering of 

participating media suggests that an optimized implementation may make the proposed system 

useful for next generation gaming platforms. 
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Figure 13. High resolution render exhibiting volumetric media casting shadows no solid scene geometry. 

 


