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ABSTRACT 

The non-negative matrix factorization provides a valuable tool for the analysis of positive data by 
representing it as an additive linear superposition of a small number of non-negative basis elements. This 
property allows the base elements to be interpreted in the same domain as the input data. The problem 
though lies in the ambiguity of equally valid solutions from which only one is obtained. Its selection 
depends on the initialization of the applied factorization algorithm or further constraints.  
We propose a new approach which is based on sampling the set of valid factorizations, given one initial 
solution. First we derive a parameterization of the set of valid solutions by means of a strong 

membership oracle. This function returns true if a parameter tuple represents a valid solution and false 
otherwise. Furthermore, we present an algorithm that explores and samples parts of the non-convex 
solution set. To assist the otherwise automatic process and to alleviate the drawbacks of sampling a non-
convex space, we provide a graphical user interface that puts the user in the loop. From an initial set of 
samples the user is allowed to select elements that serve as the starting point for subsequent samplings. 
With this browser-like tool a steering of the sampling of the NMF can be performed without further 
knowledge on the underlying algorithm and without the need to express possibly hard to formulate 
constraints. An evaluation of the sampling procedure reveals promising results for a factorization of data 

in up to 4 basis elements. 
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1. INTRODUCTION 

Non-negative matrix factorizations (NMF) have a wide range of applications in the domain of 

data mining and understanding, for example in text mining, analysis of emission spectra, 

micro array analysis or music transcription. Given a set of non-negative data like documents, 

measured amplitude spectra or images, the NMF aims to find a small set of elements that serve 
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as a linear basis to approximate the complete data. In contrast to other widely used techniques 

like PCA or SVD this basis is constrained to be non-negative and thus rendering it meaningful 

in the domain of the original data. For example the basis of a set of images can be understood 

as images as well. 
For factorizations in general, discrete data points are arranged column-wise in a matrix. 

Given   observations with size   each, the resulting data matrix is     

   
. NMF 

factorizes this matrix into two matrices   and   with possibly lower rank   such that    

        where   is called the basis factor while   is the weighting factor plus a residual 

matrix  . This implies an interpretation of the observations in   as an additive linear 

superposition of the basis elements encoded in the columns of  . For specific types of data, 

such as absorption spectra, this assumption is physically sound. For the remainder of this 

paper we assume the residual to equal the zero matrix, thus a data matrix   can be fully 

described by    . 
Besides probabilistic approaches, NMF algorithms usually formulate the problem as an 

optimization task that minimizes the residual with respect to some distance or divergence 
measure, for example Euclidean distance (Lee, 1999). In general the optimization problem is 
highly non-convex, and many pairs of   and   matrices exist that approximate the data 
equally well (in fact, under special circumstances the problem can be convex, see Esser, 2011 
for more details). Existing solvers impose additional constraints in the optimization to obtain a 
unique solution, e.g. sparseNMF (Hoyer, 2004) favors solutions where each observation is 
approximated by a small number of the basis elements in  . Whereas the detNMF 
(Schachtner, 2009) algorithm seeks basis vectors that are as close to the data as possible. 
However, especially in the field of data mining, constraints like the aforementioned might be 
impossible to formulate, because the scientist only has a fuzzy idea of them or he might not be 
able to formulate them mathematically. 

We propose a complementary approach which is based on a sampling of the set of possible 
factorizations. Because of its non-convex nature, this is a challenging task. Without further 
constraints it is considered impossible to achieve a guaranteed coverage of the complete set. 
Our solution alleviates this problem in two directions: via a region growing process that 
occupies as much space as possible and by putting the user in the loop. After a sampling of a 
part of the solution space, the user is presented with representative solutions to steer 
subsequent sampling processes into new parts of the solution space. This makes it possible to 
get desired solutions without a complete sampling of the (unknown) space. Instead of using 
one factorization method and hoping for the best, it is possible to enumerate many 
factorizations and let the user subsequently steer to a solution that meets his criteria. Section 6 
explains this user interface in greater detail.  

Our main contributions are: 

 Based on an initial factorization, we define a parameterization of the solution space. To 
test a parameter tuple for the membership of this parameter space we define an oracle 
function that returns true if a parameter tuple leads to a valid factorization and false 
otherwise, 

 Given such an oracle we present a novel sampling technique for non-convex sets that 
generates a uniform sampling of a part of the solution space via region growing and 

 We present a user interface to guide the sampling process of a part of this non-convex 
space into desired regions. The tool follows the metaphor of selecting solutions and 
locking parts of one solution and thus allows even a novice in the field of NMF to find a 
desired solution without the need to expose the underlying factorization and sampling 
algorithms. 
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The remainder of this paper is organized as follows. In section 2 related work is reviewed. 

Sections 3 to 5 comprise the major part of this work. In Section 3, a parameterization of the set 

of factorizations for one dataset is derived. The sampling technique is explained in section 4 

and evaluated in section 5. Section 6 provides an overview of the visual component. A 
conclusion is given in section 7. 

2. RELATED WORK 

Although to the best of our knowledge, no directly comparable work exists, much work has 

been done in the field of NMF itself and the analysis of its ambiguity. Many efficient 
algorithms have been proposed beginning with the algorithms of Lee and Seung in (Lee, 

1999). Donoho and Stodden define criteria under which a factorization delivers correct results 

(Donoho, 2003). Plis et al. show that a unique factorization cannot be guaranteed under the 

presence of correlated noise (Plis, 2010). Laurberg and Hansen (Laurberg, 2008) analyze 

conditions for unique factorizations and show that a factorization is not unique if an additive 

offset is applied, that means if none of the weight coefficients in one row of the weighting 

matrix   is zero. In our work we exploit this finding to generate non-unique test data sets. 

The proposed solution shares properties with work that is settled in the field of interactive 

optimization. While the underlying process differs significantly, a strong similarity exists from 

the user’s perspective; the interactive search for a desired solution, given initial data and 

constraints. In the work of Klau et al. this problem is referred to as “Human guided search” 
(Klau, 2010). They present an interactive tool where the user plans routing and layout tasks for 

vehicle routing that are then further optimized to comply with previously defined constraints. 

The work of Malinchik et al. (2004) is settled in the field of Interactive Evolutionary 

Computation that is especially suited for problems where the optimization tasks are unclear. A 

study is described in which the user is presented different solutions of a point clustering result 

to be rated. The underlying algorithm uses this information to apply evolutionary strategies 

like combination and mutation in order to find the best solution. In the work of Bhuiyan et al. 

(2012) a tool is presented that aims for the identification of frequent patterns in data by 

allowing the user to make a binary decision between presented samples of data. The complete 

data set is considered unknown and only samples can be obtained on demand. A sampling 

strategy is applied that adjusts heuristics based on the made decisions. While the concept of 
sampling unknown spaces is related to our work we do not adjust heuristics in this sense. 

Another noteworthy reference is the work of Chimani et al. (2005) where they show a case 

study in large-scale human-in-the-loop optimization for selected problems. They conclude that 

an appropriate visualization that disrupts the users input only minimally after reoptimization is 

one crucial property of a good visual optimization. 

In general, the sampling of sets where only a membership oracle is given, is the common 

basis of a variety of problems. Among others, it is the foundation of many Monte-Carlo based 

volume approximation algorithms. Widely used methods include rejection-sampling 

approaches as in (Press, 1990) that produce good results in low dimensions but are prone to 

fail for high dimensional spaces. Random-walk methods have been a subject of study over the 

last decades and led to a variety of approaches, suited for convex spaces, such as different 

Markov-Chain-Monte-Carlo methods like hit-and-run (Kiatsupaibul, 2011) or simulated 
annealing approaches (Lovász, 2003). A comprehensive survey of volume approximation 
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algorithms based on oracles and sampling can be found in (Simonovits, 2003). Evolutionary 

algorithms, such as Gaussian adaptation where a multidimensional Gaussian is adapted to an 

unknown space are used, for example, in network optimization tasks (Kjellström, 1969), but 

are of limited use for non-convex spaces either.  
In the case of non-convex sets, not much work is available. An approach based on a 

combination of global and local sampling techniques as described in (Zamora-Sillero, 2011) is 

used to estimate a parameter set for systems biology. The process is split in two phases: a 

global exploration where ellipsoids are fitted into a non-convex space and a local uniform 

sampling in the inner of these primitives. Although it shares ideas with the method proposed 

in this work it is rather hard to implement and not suited for higher dimensions as it suffers 

from the decay of volume for high-dimensional ellipsoids.  

As will be seen, the visual tool incorporates a set of standard visualization techniques, such 

as parallel coordinates which has gained a greater attention through the work of Alfred 

Inselberg (2010). 

3. PARAMETERIZATION OF NMF-FACTORIZATIONS 

In order to sample the solution set, a parameterization of possible solutions is defined. Let   

be the column-wise basis and   be the matrix of linear coefficients with rank   of a data 

matrix  . In general other matrices    and    exist that reconstruct the same data matrix. 

These factors can be derived from rank   matrices   and   through an invertible 

transformation matrix        as 

 

                             .                                             (1) 

 
This means, given a basis matrix  , its corresponding weighting matrix   and a 

transformation matrix  , a new factorization with a basis matrix    and a weighting matrix 

     can be obtained. 

Clearly, not all invertible matrices   lead to non-negative factors    and   . Therefore we 

define the notion of a valid transformation. 

 

Def. 1: An invertible matrix        is called valid with respect to a non-negative 

factorization   , iff      and       . The set of all valid transformations is 

called the transformation set. 
 

These transformation matrices and the set of basis factors are in a one-to-one relation 

through      . Among others, this includes all non-negative invertible transformations with 

non-negative inverse. It can be shown that this is exactly the class of pure scaled permutation 
matrices (Minc, 1974). We call these matrix components the trivial transformations as they do 

not reveal anything compared to the initial factorization   ;  while scale matrices only apply a 

constant factor to each of the base vectors, permutation matrices rearrange their order. In fact, 

permutations and scaling of otherwise identical solutions hinder the process of visual 

inspection of the solution set and should not be part of the final transformation set. The 

remaining transformation set is defined as follows: 
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Def. 2: The set      that does not scale or permute the columns in   is called the relevant 

transformation set. 
 

As will be shown in the following subsection, the degree of freedom of a relevant 

transformation matrix for a factorization with rank   reduces from     to        . Storing 

these degrees of freedom in a tupleleads to the notion of the valid parameter set: 

 

Def. 3: The set of        -dimensional parameter tuples that lead to relevant 

transformations      is called the transformation parameter set.  
 

This set in turn stands in a one-to-one relation with the relevant transformation set. 

Elements from this parameter set are to be sampled in the remainder of this work. They 

generate the elements from the relevant transformation set which in turn generate a subset of 

the solution set that does not scale or permute columns of  . In conclusion the relationship 

between the transformation parameter set, the relevant transformation set and the transformed 

base matrices can be expressed as: 

 

                                                                                        (2) 

 

The membership of the transformation parameter set is expressed through a function 

      true or false which is called an oracle and returns true if a parameter tuple   leads to 

a relevant transformation matrix. 

It is composed of  

(1) a function      that maps a parameter tuple            to a     transformation 

matrix while ensuring a constant scale,  

(2) the permutation oracle          that returns true if the resulting factors       and 

        do not contain permutations of   and  , and  

(3) the NMF-oracle        . 

Their composition is defined as: 

                                                                                              (3) 

 

Algorithmically, a parameter tuple is first converted to a transformation matrix and then 

checked for validity with respect to the permutation oracle and the NMF-oracle. While the 

NMF-Oracle is naturally given by checking every entry of    and      for non-negative 

entries, the function      and the permutation oracle have a more complex nature. 

3.1 Independence of Scaling 

In this step, a     matrix is constructed from a         dimensional parameter tuple. 
Note that this matrix does not have to be a valid transformation. This property is checked in a 

later step, using the NMF-Oracle      as can be seen in equation 3 above.  

In order to have a constant scale on the column vectors in the basis matrix  , they are 

constrained to have unit-length. This must also be true in the transformed basis factors    and 

thus forbids a scale in  , which is the desired property of this step.  

From a given parameter tuple           , a transformation matrix is constructed, that 

preserves unit length in the transformed factor        . This means the equation       
           , where   is a     matrix with ones on the main diagonal, must hold. To 
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achieve this property, the transformation is generated from two factors: a pre-transformation 

  , which is purely derived from the initial factorization, such that      
         and the 

main transformation   , defined by the parameter tuple  , which preserves the unit length. 

The final transformation is then defined as the product       . To obtain the pre-

transformation   , the covariance matrix of the initial basis matrix is decomposed using an 

eigenvalue decomposition. Let this decomposition be given as         . Then    is 

defined as          .  

Proof:  
     

          
         

    
          

                          
                        
             

         

In geometric terms,    is the back transformation from an ellipsoid spanned by the 

columns of   to a unit hypersphere. To preserve the unit length of     after multiplication 

with   , the columns of    must also have unit length. This reduces the degrees of freedom in 

   from     to         because one entry per column is dependent on all other column 

entries. For the construction of a  -column vector with unit length from an arbitrary      -
column vector, an inverse stereographic projection is used that, among other advantages, does 

not suffer from the sign ambiguity of the naïve way to calculate a unit-length  -vector from 

      elements. Its inverse operation, the stereographic projection, is a well-known mapping 

technique that projects points from a sphere onto a plane. It is bijective and, except for one 

point, which is called the projection point, defined everywhere and vice versa. As projection 

point, the negated vector of ones is chosen as this can never be a column of a valid 

transformation matrix. Let                 be a function that performs this inverse 

stereographic projection. To generate a transformation matrix from the parameter tuple 

          ,     subsequent elements of   are combined to a vector for the inverse 

projection to form a column of   . Overall, the function   to generate a transformation matrix 

from a parameter tuple has the following form: 

                                                                                       (4) 

3.2 Independence of Permutations 

In order to restrict the permutation freedom, only those matrices   are considered valid that, 

under all permutations of columns in   , minimize the difference to the untransformed 

matrix. In other words, when permuting    with a permutation matrix   the minimal 

difference between   and     is found for   being the identity matrix:              
   2. 

For this constraint to be applicable we assume that the basis vectors in   differ enough, 

such that a permutation of two or more vectors yields a greater distance to the transformed 

matrix   . The minimization problem can be efficiently computed by expressing it as a linear 

sum assignment problem (LSAP). Widely-used algorithms exist for this combinatorial 

problem, for example the Hungarian method. Given a gain matrix   that assigns some gain of 

  items (one per column) to   machines (one per row) a permutation is sought such that the 
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sum of the gain is maximized (Burkard, 2009). Here, the task is solved by checking if the 

permutation matrix that maximizes the trace of      (which would correspond to the gain 
matrix in the LSAP context) is the identity matrix. 

The proof can be given by expanding and simplifying the following minimization: 

 

                      … 

                
                          

                                    
      

 

In conclusion, the permutation oracle is given as: 

 

                      
                                                                (5) 

 
This concludes the definition of the oracle. In the next section our strategy is described to 

explore and samples parts of the transformation parameter set given through the oracle. 

4. UNIFORM SAMPLING OF THE PARAMETER SET 

Given the oracle     , a sampling is performed that generates uniformly distributed 

parameter tuples                       . While the set is convex for     this does not 

hold for higher dimensions. The main cause for this non-convexity is the inversion of the 

generated matrix   to be applied on   which creates highly non-linear dependencies between 

parts of the  -tuple.  
No method is known that delivers a guaranteed sampling in such sets. We circumvent the 

effects of this problem by giving up the demand for a complete sampling and instead sample a 

region around a user defined point. As will be seen later, the user is able to select one sample 

in an interactive manner to guide further samplings into a direction he prefers. 

The choice of the sampler depends on a variety of conditions.  

C1. It must be able to ensure a uniform sampling. This is especially imported for 

clustering and when the parameter set is seen as a space that has a defined 

volume. We claim that this volume is a direct measurement of the degree of the 

ambiguity in the NMF of a data set.  

C2. It must provide an efficient way to subsequently sample local parts of the 

parameter set  

C3. and also to sample subspaces as needed for the visual browser which is described 
in greater detail in section 6.  

These requirements render the problem not well suited for widely-used algorithms like 

random walk, which does ensure a uniform sampling only for convex, well-formed sets and 

has to be restarted for every sampling point. Besides the low mixing rate of simpler instances 

of random walk algorithms, they cannot exploit the existence of prior samplings to accelerate 

the process.  

The main idea of our proposed algorithm is to split the sampling process into two phases: 

(1) an exploration phase as shown in the following section and outlined in figure 1 and (2) a 

sampling phase as explained in section 4.2. 
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Figure 1. Outline of the exploration process. (1) From a starting point, rays are constructed to find border 
points of the viable space. (2) They serve to fit one of several cuboids (3) new possible center points are 

generated. (4) After a certain amount of iterations a part of the space is approximated by a set of 
overlapping cuboids 

4.1 Exploration Phase 

The algorithm creates a list of axis-aligned hyper cuboids, defined by a minimum and 

maximum point, to approximate parts of the parameter space. An integral part for their 

construction is a list that contains possible starting points for cuboids and initially contains one 
element. 

One iteration involves the following steps: First, a point is taken from the list of center 

points. It serves as the common point for a set of rays that are used to find the borders of the 

reachable space. Then a cuboid is fitted into this space. In the next step, a number of points are 

created on its surface and, if valid, stored in the center list. This process is repeated until no 

more points are available or a fixed number of iterations is reached. 

To generate the rays, a set of uniformly distributed directions is used. They are drawn from 

a normal distribution, see (Marsaglia, 1972) for further details. The number of directions 

depends on the dimensionality. For each ray, a continued bisection process is used to 

approximate the border of the parameter set which serves as a base for the minimum and 

maximum point of a new cuboid. This is done by partitioning each dimension into two sets, 
depending on whether the value at this dimension is smaller or larger than the corresponding 

value of the center point. The minimum values of the new cuboid are then found by averaging 

the values in these partitions and  weighted with a constant that is proportional to 
 

  
 to prevent 

an overestimation for increasing dimensionalities. 

The fitting of the cuboid to the sampled border points has ideally two properties. On the 

one hand, cuboids grown around center points that are far away from the border, should be 

(1) (2) 

(3) (4) 
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underestimated in order to not include far away border points. Otherwise the cuboid can 

enclose a huge invalid region especially in high dimensions. A simple example is the 

exploration of a sphere-shaped space. If the initial point is identical to the center of the sphere, 

the distances to these points equal its radius and so does the average. Without weighting the 
minimum and maximum point, the cuboid encloses the sphere completely. With increasing 

dimensionality the volume fraction of sphere and cuboid decreases exponentially which 

hinders an efficient sampling in the second step. The introduced weighting factor ensures 

dimension dependent underestimation of the cuboid to avoid this problem. 

The second property concerns cuboids near the border. Here, the cuboids should ideally be 

overestimated to enclose bigger parts of the local border. Such an overestimation prevents the 

region near the border from being filled by a large number of small cuboids, but approximates 

it roughly by very few cuboids.  

Averaging the distances from the found border points to generate minimum and maximum 

points with additional weighting meets these properties. If a center point (i.e. the center point 

of the rays to generate for one cuboid) has a high distance from the border, the mean distance 
of all border points that are reachable by a straight line becomes large. Due to the subsequent 

weighting this leads to a cuboid which surrounds a large part of this space, but does not 

contain the more distant border points. On the other hand, these distance values have a strong 

variance for center points near the border; small values are produced in the direction of the 

nearest border and large values in the direction of the farthest border. Here, the averaging 

leads to an overestimation and therefore creates a cuboid as desired, which approximates the 

border of the space roughly. 

To keep the list of cuboids small, all previously generated cuboids and unprocessed 

starting points that are completely contained in the new cuboid are removed. 

4.2 Uniform Sampling Phase 

The list of cuboids is used to generate an arbitrarynumber of sample points in the second step. 

This process is not trivial, as overlapping areas may only be considered once. In our algorithm, 

a rejection sampling approach similar to the one in (Zamora-Sillero, 2011) is used.  

In the first step, each cuboid is assigned a unique order number. For the generation of one 

sample point a cuboid is then randomly chosen as follows: an interval is defined between   
and the cumulative volume of the cuboids. It is partitioned by the volumes of the ordered 

cuboids. Then a random number in this range is drawn and the interval it resides is 

determined, which then delivers the order number of the cuboid to generate a sample in. In the 

next step an inner random point is created. If it is also contained in cuboids that have a smaller 

order number, the point is rejected. Since the cuboids exist partly outside of the valid set, the 

sample is finally checked for validity using     .  
The whole process meets the desired conditions C1 – C3. On the one hand, the algorithm 

can be trivially adapted to support a local sampling by limiting the points to be sampled to not 

exceed a defined distance from a center point. On the other hand, a sampling of sub spaces can 

be achieved by fixation of arbitrary components of the parameter tuples during the exploration 

phase. 
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5. EVALUATION OF THE SAMPLING ALGORITHM 

For the evaluation of the exploration and sampling process, test data is generated from natural 

images taken from the image data base in (Oliva, 2001) as shown in figure 2. They form the 

base for an artificial data set of 100 images that are derived from mixing the base images.  

 

1) 

 

2) 

 

3) 

 

4) 

 

5) 

 

Figure 2. Base images used to generate the test data sets 

For a data set      the first k base images are used to create a ground truth base matrix   
 . 

The elements of   
  are initialized as uniformly distributed random numbers between 0 and 1, 

plus a constant additive offset to ensure a non-unique factorization, see (Rickard, 2008) for 

more details. The data set    is calculated by multiplying   
  and   

 . For each of the data sets 

an initial factorization    and    is calculated using the unconstrained minimization of the 

Euclidean distance between    and      as proposed in (Lee, 1999). In a next step the 

ground truth solution is mapped to a parameter tuple   . Besides performance measurements, 

one goal of the evaluation is to find this ground truth tuple in the explored region of the 

parameter set through the proposed algorithm. Note, that this means that the ground can be 

found without any user interaction. The calculations were performed on a system with a Intel 

Xeon CPUs running at 2.67GHz. While the exploration and sampling algorithms are not 

optimized for parallel processing, the underlying linear algebra libraries use multiple threads 

for matrix calculus. 

The results are shown in table 1. The column “k” denotes the number of base images in the 

creation of one test dataset and “n” is the dimensionality of the parameter set to be sampled 

given as          . For each  , 1000 sampled parameter tuples were created in a first 
test and 5000 in a second test. The column “Offset” contains the additive offset applied during 

mixing. Every experiment was repeated 20 times to account for different results due to used 

random initializations. The column “Inside” contains the fraction of trials where the ground 

truth tuple    is inside one of the created cuboids. The distance of the closest sampled tuple, 

which is considered to be the best, relative to the farthest sampled tuple is averaged over all 

trials in the column “Dist. Ratio”. The column “t” holds the averaged time in seconds needed 

for the complete process. For the trials the maximum number of exploration iterations was set 

to 1000. 

Table 1. Evaluation of the exploration and sampling. Left: 1000 samples, right: 5000 samples 

k n Offset 
Inside 

(%) 
Dist. Ratio (%) t (s) 

2 2 
1 100.0 1.5761 1.3 

2 100.0 0.9938 1.6 

3 6 
1 60.0 13.4885 8.2 

2 100.0 18.0813 7.7 

4 12 
1 50.0 17.9622 15.0 

2 55.0 20.8724 30.2 

5 20 
1 0.0 51.3582 27.4 

2 0.0 35.3822 34.1 
 

k n Offset 
Inside 

(%) 
Dist. Ratio (%) t (s) 

2 2 
1 100.0 0.5945 1.2 

2 100.0 0.4467 1.9 

3 6 
1 50.0 8.8938 7.9 

2 100.0 13.8358 6.8 

4 12 
1 50.0 20.0827 16.9 

2 50.0 16.5900 30.4 

5 20 
1 0.0 49.2524 27.1 

2 0.0 34.9876 35.6 
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The measured values generally indicate good results for the analysis of data sets that are 

factored into two to four base images. In the case of     the ground truth is contained in the 

explored part of the parameter set in all trials. For three base images, more than half of the 20 
runs per configuration lead to an explored set that contains the ground truth. The average of 

the ratio between the closest and farthest sampled tuple lies between 10 and 20 percent which 

allows for (visual) identification of properties of the ground truth, depending on the data. For 

trials with    , the exploration phase is mostly unable to find the area that contains the 

ground truth, before the maximum number of iterations was reached. However, as mentioned 

before, this only means that the proposed solution is not able to find it without human steering, 

i.e. a user that selects new center points for subsequent exploration and sampling processes.  

Finally it is noteworthy that the average time needed to compute 5000 samples is only 

slightly higher than the time needed for the generation of 1000 samples. After the calculation 

of the cuboid structure is done, which comprises the majority of the overall time, the actual 

sampling task is comparatively fast. 

6. VISUAL ASSISTANCE OF THE SAMPLING PROCESS 

As mentioned in section 4 and supported through the presented evaluation, the sampling 

algorithm is generally not able to detect the ground truth in one run of the process for    . 
This is caused by the non-convex nature of the space to be sampled. To tackle this problem, 

we propose a tool for visual analysis that allows subsequent runs steered by the user through 

variation of the seed parameter tuple and additional filters that reduce the dimensionality of 

the task. The main idea is to generate a sampling with a selectable number of points and 

cluster the samples into 10 representative solutions that are then visually presented to the user 

in the domain of the original data (here images) for further refinement. For clustering, we use 

an online version of k-means, with a modification similar to the algorithm presented in 

(Zhong, 2005) that prevents empty clusters.  

The proposed tool utilizes the metaphor of a browser. The work flow is as follows: In the 

first step the user selects a data set, for example images. He then provides the rank   and 

triggers the initial factorization leading to the two factors   and  . Subsequently a first 
exploration and sampling is performed and the results are clustered. The user is then presented 

a view as shown in figure 3. It consists of three main parts: 

1. The navigation view serves as a tree-like history of performed exploration, 

sampling and clustering runs. After the initial factorization is done, it contains 

one entry – the sampling of the set without user selected restrictions – which is 

the base for all subsequent samplings that, depending on the new starting 

solution to explore, sample and cluster, are visualized as child entries. 

2. The basis element view shows the results of the sampling and clustering for all 

entries in the navigation view. By selecting one of the entries in the navigation 

view, one block in the results view is highlighted. One block consists of 10 

cluster representatives, in the case of figure 3 images, where each 
representative is composed of three images that are arranged vertically. 

3. The parameter set view shows different visualizations of the sampled 

parameter set. Among others, parallel coordinate plots and scatter plot 

matrices can be chosen. Visualizations are shown for each run independently. 
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Figure 3. The browser application. (1) navigation view: from a first sampling and subsequent clustering, 
the 3rd solution was selected to conduct a new sampling and another sampling branches from a point of 

this solution. (2) visualization of representative solutions. (3) different visualizations of the sampled 
parameter set 

To further refine the search for the desired factorization, the user has the possibility to 

select one of the solutions, i.e. one vertically arranged block of basis elements, optionally lock 

basis images that meet his criteria for subsequent runs, thus reducing the process to a lower 

dimensional problem. This is especially helpful if one of the elements already complies with 

the sought result. By selecting this element in the configuration view for subsequent 

explorations and samplings, the corresponding       parameter values are bound to be 

constant and this element will stay the same in all branched processes.  From the selected 

solution, a new exploration and sampling phase is started and presented to the user in a new 

row. This process is repeated until the desired solution is found. 
In the case of the example in figure 3, the result of the initial unconstrained factorization 

shown in figure 4 (center) does not reveal the true basis as shown in figure 4 (left). After 

performing a first exploration, sampling and clustering, a part of the true basis elements 

becomes visible. The result corresponds to the first of the three blocks in figure 3 and is 

partially shown in figure 4 (right). As can be seen, the third basis element becomes visible. It 

is kept constant and a new run is initiated. The results, as shown in the second block of figure 

3, show cluster representatives with the second basis image clearly visible. In a third run, only 

the first basis image is not bound to be constant and the results of this run are shown in the 

third block of figure 3. Although the first basis image was not clearly separated from the other 

elements, its structure is obvious.  

As mentioned, the user is assisted by a set of visualizations of the sampled parameter set 

that help to get an intuition of the extents of the already explored set. Especially a parallel 
coordinate plot helps the user to get an impression of the range of found solutions in each 

dimension, the proximity to other solutions and to the border of the valid set. A scatter plot is 
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incorporated to provide visual means for the user to estimate the position of a solution in 

parameter space, the density of the samples and its general shape. 

 

 

Figure 4. Exemplary run. Left: the true basis images that were used to create the test data. Center: the 
results after performing the unconstraint NMF. Right: 4 of the 10 representative solutions of the first 

exploration, sampling and clustering run. 

A user study has shown that users were able to find the ground truth solution in nearly all 

cases for    . Since the user base was quite small, this result is yet not representative and 

must be validated in future studies. 

7. DISCUSSION AND CONCLUSION 

The ambiguity of NMFs poses a hurdle on its usefulness for analyzing unknown data. The 

naïve application of this factorization technique to unknown data is prone to fail in delivering 

satisfying results because a local optimum will likely be found that might not correspond to 

the scientist’s expectations. By sampling a whole set of local optima it is possible to inspect 

multiple solutions. Here our proposed algorithm can help greatly to increase the usefulness of 

NMF. The results are presented in a visual manner that does not require any further knowledge 

on the algorithm itself or the formulation of mathematical and algorithmic optimization 

constraints. The solution space is expressed by a set of transformation matrices that in turn are 
defined by a parameter space. Membership of the latter space is expressed in the form of an 

oracle that provides a thin interface to sampling approaches.  

The region growing approach approximates parts of the set by simple convex bodies that 

are easy to sample. However, because it is applied to an unknown, non-convex set, there is no 

guarantee that the explored part is free of holes or contains the desired solution. Evaluations of 

the algorithm have shown that this is indeed a problem for higher dimensions, beginning from 

    and rendering this technique more suited for a small number of base elements. Through 

a simple user interface the process is steered in a desired direction that diminishes the need for 

a complete sampling. Again caused by the unknown shape of the solution space, it can never 

be completely avoided that the user of the browser gets lost during the exploration. First user 

studies have shown that the ground truth solution of the generated test data for small  ’s is 
found in almost all cases.  

The browser component itself is kept simplistic by only showing results in the same 

domain as the test data, i.e. as images, which is one of the key advantages of NMF. Simple 

and easily understandable actions like “holding parts of a correct solution” or “narrowing the 
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analysis to the range of interesting solutions” are possible. This increases the chance for users 

without further knowledge in factorization techniques to get satisfying results from the NMF. 

The visual representation of the base factors are straight forward by presenting them column-

wise. This visualization is well suited for a small set of base factors. As with the sampling this 
design becomes cluttered for factorization tasks with many basis elements. By providing 

simple and established visualization helpers like parallel coordinates and scatter plots a further 

understanding of the search space is supported. More dedicated visualization techniques could 

help to improve this assistance.  

The mentioned algorithms provide a rich base for extensions. For example, further support 

in finding certain basis factors could be implemented. This ranges from simply adding more 

filter criteria, such as the selection of images with special features like high contrast, to semi-

automatic searches steered by search criteria that can be defined interactively by the user. 

Other extensions include the support of other forms of data besides images, for example 

absorption spectra. The exploration phase of the proposed process has potential for 

improvements as well. The choice of averaging distances to fit the cuboids is a first step. We 
believe that more advanced and optimized fitting strategies can significantly speed up 

convergence of the exploration phase. A parallelization of the algorithm can further increase 

the speed.  

The browser provides a simple interface to steer the sampling and is easy to use. Although 

first user studies were conducted, more elaborate experiments have to be carried out which 

would be out of the scope of this paper. 
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