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ABSTRACT 

In this paper, we present a sequence classifier for detecting host intrusions from long process system call sequences. The 

proposed classifier (called SC2.2) is a naïve Bayes classifier that builds class conditional probabilities from Markov modeling 

of system call sequences. We describe the proposed classifier, and then provide experimental results on the widely used 

University of New Mexico’s system call trace data sets. The results of our proposed classifier are benchmarked against 

leading classifiers, namely naive Bayes multinomial, C4.5 decision tree, RIPPER, support vector machine, and logistic 

regression. A key feature of the proposed classifier is its ability to handle efficiently arbitrarily long sequences, and zero 

transitional probabilities in the modeled Markov chain, by using a ―test, backtrack, scale and remultiply‖ technique, and using 

the m-estimate of conditional probabilities. Furthermore, it capitalizes on IEEE standard for floating-point arithmetic error 

specification to return classification confidence. Results show that the proposed classifier yields a better performance than 

standard classifiers on most datasets used. 
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1. INTRODUCTION 

An intrusion detection system gathers and analyzes traces from various areas within a computer or a network to 

identify possible security breaches (Patcha, 2007). In other words, intrusion detection is the act of detecting 

actions that attempt to compromise the confidentiality, integrity or availability of a system/network. Traditionally, 

intrusion detection systems have been classified as: signature detection systems, anomaly detection systems or 

hybrid/compound detection systems, combining both techniques (Patcha, 2007). 

A signature detection system identifies pre-established patterns of traffic or application activity presumed to 

be malicious. This type of detection is commonly found in network intrusion detection systems (NIDS). Therein, 

signatures range from very simple – checking the value of various TCP/IP headers fields – to highly complex 

signatures that may require deep packet inspection (Thinh, 2012) techniques involving the application layer 

payload and/or tracking the state of a connection, and/or performing extensive protocol analysis. Signatures are 

written in a proprietary language, and stored in a signature database that is updated periodically. Signature-based 

NIDS scan every IP datagram for known signatures in the signature database. An attack is declared when a 

match occurs. NIDS are widely available in the market in the form of standalone appliances or software, and are 

often placed at the entry/frontier of the network in collocation with firewalls, as well as, within the internal 

network itself in locations where they capture all/most of the traffic. This said, as TCP/IP traffic explodes 

exponentially, NIDS suffer from real scalability challenges, namely the ability to perform signature matching for 

tens of thousands known intrusions against tens of thousands, if not hundreds of thousands, simultaneous 

connections at wire speed, so as not to introduce delays in connections. Furthermore, the number of attacks is 
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also increasing drastically and the ability to produce signatures rapidly, so as to counter zero-day
1
 vulnerabilities 

is not always possible. Not to mention the inability to perform deep packet inspection on the increasingly 

encrypted traffic (IPv6 encrypts traffic by default), and that a great deal of attacks/intrusions are nowadays 

carried out via application layer, such as XSS, against which NIDS are not effectives (Du, n.d.). 

 Anomaly detection systems, on the other hand, compare activity (network traffic or application activity 

within a host) against a normal baseline behavior also called profile. This type of intrusion detection is pertinent 

to both NIDS and to host intrusion detection systems (HIDS). In HIDS, an anomaly is defined as a pattern that 

does not conform to expected normal behavior/profile. A straightforward anomaly detection approach consists in 

defining a profile of activity on a host/computer representing normal behavior, and declaring patterns which do 

not fit to the normal profile, in the logged observations, as an anomaly/intrusion. Like signature IDSs, many 

challenges are often encountered when dealing with anomaly detection, namely (i) defining a normal profile of 

application activity that caters for every possible normal behavior is difficult, and the boundaries between normal 

and anomalous behaviors are often blurred: an observation which lies close to the boundary can equally be 

labeled normal and intrusive; (ii) often too, malicious adversaries, like viruses and worms adapt their intrusion 

patterns to make the anomalous observations appear like normal, thereby making the task of defining normal 

behavior more challenging; (iii) normal behavior keeps evolving and a current notion of normal behavior might 

not be sufficiently representative in the future; and finally (iv) building the normal profile requires adaptive 

learning techniques which require a great deal of data that must be collected beforehand. Machine learning 

techniques in general and data mining techniques in particular (Eskin,  2001; Chebrolu, 2005; Syed, 2009; 

Nadiammai, 2011; Rao, 2011, Riad, 2011; Chandola, 2012) have been used to classify program behavior, and to 

detect intrusions based on pattern/profile discovery.   

Despite these shortcomings, HIDS represent the way forward in dealing with intrusion, and the most 

investigated HIDS approach is system call analysis; that is, inspection of the requests made by a user program 

(which may or may not be intrusive) to the operating system. The pattern of these requests is believed to be a 

good discriminator between normal and abnormal behavior of a program, thus giving indications as to the 

possibility of an attack. Indeed, the life cycle of an infected/intruding program consists in major phases: 

discovery, replication (pro-creation), disguise, and assault, leading to the execution of series of system calls such 

as, repeated scan of the network, access to the file system and/or boot sector, spawning of offspring etc.), which 

a normal productive user program does not normally do. Intrusion detection from system calls offers a way to 

circumvent the encryption challenge for NIDS, since it gives access to data (probably as parameters to system 

calls) after the standard decryption mechanisms take place in the destination host kernel protocol stack.  It is also 

the way forward in the convergence between NIDS and HIDS and in coping with the exponential number of 

threats.  

At the heart of system call–based intrusion detection is capturing sequences of system calls and their input 

and output. One such tool that offers capturing capabilities is Sebek (Anon., 2003). Sebek captures intrusion 

activities on a host (typically a honeypot), without the attacker (hopefully) knowing it. The captured data include 

system call ID and its input and output parameters. The capture of input and output information opens new 

venues for intrusion detection and prevention, as it allows for further profiling of intrusive behavior through the 

sequence of data used by system calls invoked by an intrusive process/program. Although, captured system calls 

and their parameters do not yield information on attacks guided towards the operating system itself or its 

protocol stacks (IP/TCP…), we believe that Sebek, if extended to capture system call parameters other than the 

currently read() and write(), will help extend the research on HIDS and NIDS in a unified way, and explore 

better anomaly detection mechanisms, capitalizing on the huge amounts of activity traces that can be captured. 

2. RELATED WORK 

Forrest (1996) introduced one of the earliest methodologies that involved analyzing a program’s system call 

sequences, and showed that correlations in fixed length sequences of system calls could be used to build a 

normal profile of a program. Programs that show sequences that deviated from the normal sequence profile could 

then be considered to be victims of an attack, such as an infection by a virus or a worm. The system uses 

previously collected data packed in a simple table-lookup algorithm to learn the profiles of programs (Patcha, 

2007). Despite many shortcomings, this initial work was extended by many, including (Warrender, 1999), 

(Wagner, 2001), (Feng, 2003), (Hu, 2009), and (Hoang, 2009). To date, system call based sequence analysis 

remains the most popular choice for analyzing program behavior. 

 From a modeling perspective, Markov modeling has been used extensively to detect probable (sub)-

sequences of intrusion in system calls (Hu, 2009) and (Hoang, 2004). These computationally very expensive 

                                                 
1 A vulnerability that comes to be known right after shipment of software and before software editor has had the time to address it. 
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approaches consist in two slow convergence processes, one for training the hidden Markov model that fits best 

an observed sub-sequence, obtained by minimizing the conditional probability of a sub-sequence given the 

previous hidden Markov model (Baum-Welch algorithm) (Rabiner, 1989); and another one for combining, using 

weighted addition, the hidden Markov models obtained for different sub-sequences into one final global Markov 

model. 

There have been several suggestions to improve the performance of HMM-based Intrusion detection methods, 

such as multi HMM and multi-layer HMM (Kang, 2005). More discussions were concerned with training the 

model suggesting offline training, machine learning approaches, or using sub-HMM, where the training dataset is 

divided into subsets of sequences used for training the sub HMM models, and finally aggregating the sub models 

to get the final model. Wang (2010) summarizes different HMM based models along with their strengths and 

weaknesses. 

Apart from their slowness, various deficiencies are inherent to HMM-based techniques: Most notably is the 

fact that there is no proof that the final model i.e., combination of models obtained from disjoint sub-sequences 

yields a model that caters of long sequences; An obvious avoidance mechanism consists of designing a sequence 

that is unsafe/intrusive, and yet its sub-sequences are all safe/non-intrusive. Furthermore, the learning has been 

made out of normal sequences exclusively
2
. The underlying assumption is that all that is not normal is intrusive. 

This strict two class classification does not portrait reality where various levels of threat are needed to guide the 

decision of network administrators to appropriate action. The use of a threshold and different sub-sequence 

lengths (23 and 35) for different datasets is an indication of the absence of a sequence length that yields 

acceptable performance across various datasets. This makes the whole approach very specific to the dataset 

underhand. 

More recently, techniques for detecting illegal system calls based on a data-oriented model have emerged 

(Demay, 2011 and Nidhra, 2012). Contrary to classical system call analysis models, where an intrusion is 

detected when deviations from the normal control flow of the system based on its system calls sequences is 

detected, the aim of data-oriented models try to detect attacks against the integrity of the systems calls 

themselves, or attacks in which the intruder mimics the normal behavior of the program, but still passes rogue 

data that may lead to intrusion. This approach certainly adds a second perspective to system call analysis for 

proper control flow, i.e., the analysis of application data objects at run time. 

ElGraini (2012) presented a technique for system call sequence classification that combines naive Bayes 

approach with Markov chain modeling for sequence classification. Specifically, it builds separate Markov 

models for normal and intrusive sequences from very long sequences of system calls. These models are then 

used to classify sequences of system calls into two classes: normal or intrusive. The technique uses first order 

observable Markov model rather than a hidden Markov model on the one hand, and classification of sequences 

of any length through naïve Bayes classifier. The two Markov models are built separately for intrusive and 

normal sequences, with the classifier allowing for a grey zone classification. However, this approach suffers 

from the problems posed by zero-transitional probabilities in the Markov chain probability matrix, thus yielding 

inaccurate classification results. 

In this paper we aim to overcome this deficiency by (i) introducing the technique of m-estimate of class 

conditional probabilities (Tan, 2006, pp. 236 – 237) to address the issue of posterior probabilities becoming zero 

as soon as a transition probability is zero, and (ii) performing extensive testing that yields the optimal value for 

the parameters of the m-estimate technique. Sections below give details of the procedure for building the 

classification model, the use of m-estimate of class conditional probabilities, and the adaptation of BSR 

algorithm for handling very low probabilities. 

3. MODELING AND LEARNING 

Our proposed classifier classifies arbitrarily long sequences of system calls made by a process, using a naïve 

Bayes classification approach, with class conditional probabilities derived from Markov chain modeling of 

sequences. In the following sections, we give more details about (i) naïve Bayes classification; (ii) Markov 

models; (iii) how the two concepts are combined to classify system call sequences; and (iv) an example that 

illustrates such classification. 

3.1 Naïve Bayes Classifier 

                                                 
2 Strictly speaking, learning from the positive class is a signature finding rather than classification 
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Formally, let s = (s1, s2,… sn) be a test sequence made of system calls s1, s2, …, sn. The classification consists in 

finding the class c with the highest posterior probability given the sequence s. Based on Bayes theorem, the 

posterior probability of class c given sequence s is: 

P(             )   
P(             )   P(     )

P(     )


where S and C are random variables denoting sequences and classes, P(S = s |C = c) is the class conditional 

probability of sequence s given class c. P(C = c) is the prior probability of class c, and P(S = s) is the prior 

probability of sequence s. Since P(S = s) is independent of the class, the task of classifying s becomes then to 

maximize the posterior probability, i.e., 

 ( )   argmax
c
P(             )   P(     )

We define class 0 to be the class of normal sequences, and class 1 to be the class of intrusive sequences. Like 

in naïve Bayes classifier, we estimate the class conditional probability of sequence s and the prior probability of 

class c from the training data (learning). The prior probabilities P(C = 0) and P(C = 1) of classes 0 and 1 are 

estimated from the training data set respectively as the fraction of training sequences labeled class 0 and 1, using 

Markov model to estimate the class conditional probabilities of a sequence s. 

3.2 Observable Markov Chain Model 

An observable Markov process is a system where the dynamics can be modeled as a process that moves from 

state to state depending (only) on the previous n states. The process is called an order n model where n is the 

number of states affecting the choice of next state. In a first order process with M states, there are M
2
 transitions 

between states, since it is possible for any one state to follow another. Associated with each transition is a 

probability called the state transition probability - this is the probability of moving from one state to another. The 

M
2
 transition probabilities are regrouped into a transition matrix TP. The initial probabilities for each state are 

also regrouped into a vector called the initial probability vector (IP). 

In trying to recognize patterns in time as is the case with system call sequences, discrete time steps and 

discrete states, are used. With these assumptions, the system producing the sequences of system calls can be 

described as a Markov process consisting of an IP vector and a state transition matrix TP. An important point 

about the assumption is that the state transition probabilities do not vary in time - the matrix is fixed throughout 

the life of the system. With this, each call causes the system to change state (possibly back to the same state). 

This is an observable Markov model since the output of the process is the set of states at each instant of time, 

where each state corresponds to a system call (observation). Formally, we model a sequence s = (s1, s2,…, sn) as a 

Markov chain where its occurrence probability in class c is estimated as: 

P ( n   1 2…  n-1)   P ( 1)   P (s1,  2)   …  P ( n-1,  n),                                        (3) 

where Pc(s1) is the initial probability of system call s1, and Pc(si, sj) is the probability of system call sj is invoked 

after system call si is invoked in class c. The class conditional probability of sequence s given class c is, then, 

estimated from the training data as: 

P(      |     )   P ( 1)   P ( 1,  2)  …  P ( n-1,  n),                                          (4) 

where Pc(s1) is the initial probability of system call s1, and Pc(si, sj) is the transition probability Pc(si, sj) estimated 
from the training data for both normal data (C = 0) set and intrusive data (C = 1). For this purpose, during the 
training phase, we build for each class c: (i) the initial count vector ICc, where ICc[i] is the count of sequences of 
class c that start with system call i, and (ii) the transition count matrix TCc, where TCc[i, j] is the count of 
instances where system call j is invoked after system call i. We then compute the initial probability vector IPc, 
where IPc[i] is the probability that a sequence of class c starts with system call i, estimated as the fraction: 

IP       
IC    

 
j
ICc
   

                                                                         (5) 

and the transition probability matrix Tc, where Tc[i, j] is the probability of system call j following i, estimated as 

the fraction: 

TP   ,      
TCc
  ,   

 
k
TCc
  ,   

                                                                     (6) 

3.3 Classification 

The classification of a sequence s, given the learned normal and intrusive classes, consists in finding the class 

that maximizes the posterior probability of that class as in equation (2). If, however, the classes have equal 

posterior probabilities (grey zone), then one can either accept a non-classification of the sequence, or use the 

class prior probabilities to break ties.  In most binary classification cases, the normal class is the majority class 
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since usually there are more normal instances than anomalous ones in the raining data sets. In our case, we have 

used the latter strategy, i.e., used the majority class (normal) to resolve grey zone issues, because an intrusion 

detection system has to decide whether to stop the activity (assuming it is intrusive) to avoid any damage, or let it 

finish (assuming it is normal). This policy is not built into the classification modeling and can be set differently 

by a system administrator. The following example illustrates the model. 

3.4 Example 

Without loss of generality, we assume that the system has only three system calls: a, b and c. For the training 

data, we use the sequences: s00 = (a, b, c), s01 = (b, b, c), s02 = (a, c, b) labeled as normal, and s10 = (a, a, a) and 

s11 = (c, c, b) labeled as intrusive. From this training data set, we produce the initial probability vectors the two 

classes (IP0 and IP1), and the transition probability matrices for the two classes (TP0 and TP1): 

IPo   [2/3 1/3 0]                      [       ] 

    [
       
       
   

]                [
     
   
       

] 

Consider the following test sequence s = (c, c, c) to be classified. We compute: 

 The class conditional probability of s given class 0 is P(S = s | C = 0) = P0(c) × P0(c|c) × P0(c|c), where the 

probability that a sequence starts with a c given class 0 is P0(c) = 0, and the probability that system call c 

follows itself in a sequence of class 0 is P0(c|c) = 0. So, P(S = s | C = 0) = 0. 

 The class conditional probability of s given class 1 is P(S = s | C = 1) = P1(c) × P1(c|c) × P1(c|c), where the 

probability that a sequence starts with a c given class 1 is P1(c) = 1/2, and the probability that system call c 

follows itself in a sequence of class 1 is P1(c|c) = 1/2. So, P(S = s | C = 1) = 1/8. 

Since the prior probability of the normal class is P(C = 0) = 3/5, and the prior probability of the intrusive 

class is P(C = 1) = 2/5, then the posterior probability of class 1 is P(S = s | C = 1) × P(C = 1) = 1/20 and is greater 

than that of class 0, which is  P(S = s | C = 0) × P(C = 0) = 0. Therefore, the test sequence s is classified as 

intrusive (class 1). 

The example provided above is simple, and the sequences used are significantly shorter than real samples. In 

the data sets that we used, the number of different system calls is 182 and sequences can grow as large as 

183,018 system calls (as is the case of sendmail synthetic data set of UNM). The calculations of the class 

conditional probabilities P(S = s | C = c) entail multiplying as many as thousands of times transition probabilities. 

This can lead to hugely small numbers/errors because of granularity of floating point calculations on most 

computers, yielding classification errors (both posterior probabilities for class 0 and 1 will be zero). 

4. IMPLEMENTATION ISSUES 

A few implementation issues have an impact on the quality (accuracy, detection rate etc.) of naïve Bayes-like 

classifiers that use Markov modeling. Chief among these are the impact of zero conditional probabilities, and the 

product of a very large number of probabilities. In the following subsections, we address the main 

implementation issues. 

4.1 Handling Zero Transitional Probabilities 

This section addresses the issue of a zero transition probability that causes a whole conditional probability to 

vanish (to zero). The pseudo-counts as proposed in (Krogh, 1998), where all the counts are augmented by one 

does not yield better results than original SC2. We are using the m-estimate (Tan, 2006), where the probability of 

transition (i, j) is estimated as: 

   [   ]    
   [   ]       

     [   ]    
                                                                 (7) 

where m is the equivalent sample size and p is the estimated prior probability of transition (i, j). 

One needs to estimate m and p for a given classifier. In our case, since the sum of all transitional probabilities 

starting at system call i is 1, as can be noticed in equation (6) and as is assumed in a Markov chain in general, we 

can deduce that p should be equal to 1/Im, where Im is the number of different system calls (182 in our case). A 

similar estimation can be used for initial probability vectors. As for the other parameter in equation (7), an 

optimal value for the equivalent sample size (m) can be identified by varying m, generating multiple candidate 

classifiers, and choosing the one model (optimal) with better accuracy and detection rate. 
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If we use m-estimate with m=1and p=1/3 in the example of section 3.4 (above), then the initial probability 
vectors and transition probability matrices become: 

IPo   [ /12 4/12     ]                      [         ] 

    [

         
            
         

]                [

         
         
         

] 

4.2 Test, Backtrack, Scale and Re-multiply (TBSR) 

While computing class conditional probabilities of a sequence, if the sequence is relatively long, the latter may 

become too small to be represented with a normal floating-point real number. For example, the longest sequence 

of sendmail (UNM) is composed of 183,018 system calls. The product of transition probabilities can get very 

small quickly especially when those probabilities are themselves very small. The values become too small to be 

represented by any machine. To avoid subnormal values, and also to avoid the cumulative effect of gradual 

underflow of floating-point multiplications by very small real numbers, we backtrack whenever a class 

conditional probability becomes less than the smallest normal positive number LDBL_MIN = 3.36 × 10
-

4932
 (Anon., 2008), scale it by the largest number LDBL_MAX =  1.19 × 10

4932
, and re-multiply by the transition 

probability. The number of times the scaling is applied is recorded to be used for final comparison of posterior 

probabilities of classes 0 and 1. In what follows, we give the TBSR algorithm (adapted to use m-estimate), since 

conditional probabilities do not get null. 

4.2.1 TBSR Algorithm 

Let P = p1 × p2   … × pk a product of class conditional probabilities representing the transitional probabilities 

corresponding to a sequence of k system calls. P can be computed as M × LDBL_MAX 
E
, |E| is the number of 

times the scaling up took place to avoid subnormal values, and M the corresponding representable value. 

FUNCTION TBSR(p1, p2,…, pk)RETURNS STRUCT (long double M, long double E) 

// p1, p2,…, pk: sequence of probabilities 

// P = M x LDBL_MAXE, |E| is the # of times scaling was performed 
// M the corresponding representable value (between LDBL_MIN and LDBL_MAX) 

BEGIN 

  DECLARE P STRUCT (long double M, long double E); 

  P.M = p1; P.E = 0; 

  FOR i = 2 TO k DO 

    temp = P.M; 

    P.M = P.M * pi; 

    IF (P.M < LDBL_MIN) THEN 

      // subnormal value: backtrack and scale 

      P.M = temp * LDBL_MAX; 

      P.M = P.M * pi; /* re-multiply */ 

      P.E = P.E - 1; /* update exponent (# of scaling) */ 

    ENDIF 

  ENDFOR 

  RETURN P; 

END 

TBSR() can be invoked for the purpose of classification as follows: 

FUNCTION CLASSIFY(s, IP0, TP0, IP1, TP1) RETURNS INT /* class 0 or 1 */ 

// s: sequence of system calls to be classified 

// IP0, IP1: Initial probability vectors from Markov model (for C0 and C1) 

// TP0, TP1: Transitional probability matrices from Markov model 

BEGIN 

  // Get the class conditional probabilities of s for classes 0 and 1: 

  (M0,E0) = TBSR(IP0[s[1]],TP0[s[1], s[2]],…,TP0[s[len(s)-1], s[len(s)]); 

  (M1,E1) = TBSR(IP1[s[1]],TP1[s[1], s[2]],…,TP1[s[len(s)-1], s[len(s)]); 

  // Compute posterior probabilities of C0 and C1 

  M0 = M0 * prior[0]; 

  M1 = M1 * prior[1]; 
  IF (E1 > E0) RETURN 1        // scaled more times => smaller 

  ELSE IF (E1 < E0) RETURN 0 

  ELSE IF (M1 < M0) RETURN 0 

  ELSE IF (M1 > M0) RETURN 1 

  ELSE RETURN 1               // Tie: flag as intrusive C1 to be safe 

END 

4.2.2 Advantages of TBSR 
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While it would be possible to use logarithms, we preferred to use TBSR and took relative error into account to 

get around the significant obstacle of computing class probabilities of long sequences. It is to be noted that the 

implementation of logarithm functions (Hoang, 2004 and Rabiner, 1989) differ depending on compiler/libraries 

and bounds on errors are not always provided for specific implementations which may entail unnecessary scaling, 

because of uncertainty introduced by the log computations itself, and thus more computation time. 

This very effective approach allowed us to avoid cumbersome techniques that consist in training with series 

of Markov models with limited sub-sequences as in (Hu, 2009). The effect of this technique greatly reduces the 

time complexity of the learning phase, as shall be shown in the results’ section. 

4.3 Calculation Error Considerations 

When comparing class posterior probabilities using TBSR algorithm, relative error estimation is used when 

comparing posterior probabilities of class ± (1+Ɛ) 
len(seq)

, where Ɛ is given for floating-point operations as 1.08 × 

10
-19

 (Anon., 2008). 

5. EXPERIMENTS 

To benchmark our proposed classifier (SC2.2), we used data sets from a public database (Forrest., n.d.) provided 

by the University of New Mexico (UNM), and the Massachusetts Institute of Technology (MIT) Artificial 

Intelligence Laboratory. They contain traces from sendmail - the most popular UNIX-based implementation of 

the Simple Mail Transfer Protocol (SMTP) for transmitting emails in UNIX systems and lpr -UNIX program tool 

for sending print jobs to printers: print server- processes, which are major applications commonly and 

extensively invoked in Unix based computing environments. 

Sendmail dataset — the synthetic sendmail is the main dataset. The sendmail intrusive data were collected at 

UNM on Sun SPARC stations running unpatched SunOS 4.1.1 and 4.1.4 and sendmail daemon subject to 

syslogd intrusion. The syslogd attack exploits buffer overflow vulnerability in sendmail, causing the replacement 

of part of  endma l’  running image with the attacker’s machine code. The intrusive code is then executed, 

yielding a forked root-owned shell listening to a port. The attacker may then attaches to this port remotely. 

UNM lpr dataset — the intrusive data for lpr were collected on Sun SPARC stations running unpatched 

SunOS 4.1.4 with the lpr program subject to lprcp intrusion attack. The lprcp attack script uses lpr to replace the 

contents of an arbitrary file with others. The attack exploits the fact that this version of lpr uses only 1000 

different names for printer queue files, and do not remove the old queue files before resuming them. The attack 

produces 1001 traces. In the first trace lpr places a symbolic link to the victim file in the queue. The subsequent 

traces advance lpr’  counter, until on the last trace the victim file can be overwritten with the attacker’s own 

material. 

Trace files contain pairs of process ID and ID of system call made by that process. Multiple processes can 

appear in the same file. Hence, we grouped them by process ID to generate a sequence per process in each trace. 

Table 1 gives the summary of the data sets used, as provided by the university of New Mexico (Kang 2005, 

Forrest., n.d.): 

Table 1. The number of original traces and generated sequences in UNM data sets 

Program # of sequences Max length Avg length 

synthetic sendmail (normal) 

synthetic sendmail (exploit) 

346 

25 

183,018 

1,002 

5202 

270 

synthetic sendmail CERT (normal) 

synthetic sendmail CERT (exploit) 

294 

34 

182,901 

919 

5361 

245 

live lpr (normal) 

live lpr (exploit) 

1,231 

1,001 

39,306 

188 

450 

164 

live lpr MIT (normal) 

live lpr MIT (exploit) 

2,697 

1,001 

59,565 

189 

1080 

165 

 

In order to make sure that no training data are used for testing, the 10-fold cross validation method (Kang, 

2005) was used. In other words, from the traces of the data sets, we generate 10 equal sized sub data sets that 

have each a number of intrusive sequences and a number of normal sequences proportional to the global data set. 

One of the subsets is picked for testing and the remaining 9 are used for learning. This is repeated over all the 10-

folds. The counts of correctly (or incorrectly) classified sequences are added over all the folds to assess the 

performance of the overall classification model. The performance of our classifier is assessed and compared to 

other techniques in the next section. 
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6. RESULTS 

To assess the performance of our classifier, the numbers of test sequences (not used in training) correctly and 

incorrectly classified by the system are counted. If we refer to the normal sequences (majority class) as 

―negative‖, and the intrusion sequences as ―positive‖, then the following are computed: (i) TP (true positives): 

the number of intrusive sequences correctly classified; (ii) FN (false negatives): the number of intrusive 

sequences incorrectly classified; (iii) TN (true negatives): the number of normal sequences correctly classified; 

and (iv) FP (false positives): the number of normal sequences incorrectly classified. Table 2 represents those 

counts as a confusion matrix (Patcha, 2007, and Tan, 2006): 

Table 2. Possible results of intrusion detection systems 

 predicted class 

intrusive normal 

actual class 
intrusive TP FN 

normal FP TN 

The performance of a classifier can be measured with a few metrics: (i) accuracy: the fraction of input 

sequences predicted correctly; (ii) detection rate: the fraction of intrusive sequences predicted correctly; and (iii) 

false positive rate (FPR): the fraction of normal sequences predicted as intrusive. They are formally defined as 

follows: 

         
       

                    
                                                            (8) 

               
  

       
                                                                (9) 

    
  

       
                                                                        (10) 

6.1 Performance for optimal m (m-estimate) 

For the m-estimate parameters, the value of m (equivalent sample size) was varied from 10
-300

 to 1. As Figure 1 

shows, the results for small m (10
-44

) gave the best results for most data sets. 

 

Figure 1. Accuracy 

Figure 2 shows the performance for UNM synthetic sendmail dataset varying m. The accuracy achieved was 

97.84%, detection rate was 92%, FPR was 1.73% for m=10-44. Furthermore, we profiled our classification using 

standard gprof and found out the following time performance: the 10-fold training on lpr MIT dataset took 

overall 0.26 seconds (including I/O). These results we obtained on a top of the shelf 2.30GHz dual core 

processor with 4GB physical main memory running a 32-bit operating system. 

Table 3 shows sample relative errors on posterior probability calculations for both very long and short 

sequences (183,018 and 7 respectively). These errors have been taken into consideration while determining 
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classification - the grey zone. Let P0 and P1 be the posterior class probabilities given a sequence. The intervals 

[P0 * (1 - relative error), P0 * (1 + relative error)] and [P1 * (1 - relative error), P1 * (1 + relative error)] are used 

to classify the sequences. 

 

Figure 2. Performance for UNM synthetic sendmail dataset 

Table 3. Sample relative errors obtained for synthetic sendmail posterior probabilities (m = 10-50) 

Actual 

Class 

Sequence 

length 

Posterior probability of class 0 Posterior probability of class 1 Predicted 

class M E Relative error M E Relative error 

0 183,018 1.51e-3068 -10 1.98e-14 1.55e-1541 -13 1.98e-14 0 

0 3,255 8.39e-1106 0 3.53e-16 1.49e-1296 0 3.53e-16 0 

0 7 0.01109 0 7.59e-19 0.00049 0 7.59e-19 0 

We compared our classification results to other popular machine learning techniques. Kang (2005) provides 

the results of some of those used for misuse-detection. We need to mention that their performance is affected by 

the bag of system call representation. Table 4 shows the results of our classifier (SC2.2), along with the results 

on the same four data sets for  naïve Bayes multinomial (NBm), the decision tree C4.5, RIPPER (Repeated 

Incremental Pruning to Produce Error Reduction), support vector machine (SVM), and logistic regression (LR). 

Table 4. Results on UNM data sets (in percent) 

Program SC2.2 NBm C4.5 RIPPER SVM LR 

synthetic sendmail 

Accuracy  97.84 20.21 94.87 94.33 95.68 95.41 

Detection rate  92.00 92.00 40.00 48.00 40.00 64.00 

FPR 1.73 84.97 1.15 2.31 0.28 2.31 

synthetic sendmail CERT 

Accuracy  96.95 24.39 96.64 95.42 96.03 96.03 

Detection rate  91.18 100.00 85.29 82.35 64.70 82.35 

FPR 2.38 84.35 2.04 3.06 0.34 2.38 

live lpr 

Accuracy  98.97 83.43 99.91 99.91 100.00 99.91 

Detection rate  99.80 100.00 99.80 99.80 100.00 100.00 

FPR 1.71 30.03 0.00 0.00 0.00 0.16 

live lpr MIT 

Accuracy  99.70 54.52 99.89 99.86 99.83 99.97 

Detection rate  99.80 100.00 99.90 99.80 99.80 99.90 

FPR 0.33 62.31 0.11 0.11 0.14 0.00 
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While the accuracy of our classifier remains comparable or slightly better than that of C4.5, RIPPER, SVM 

and LR, our detection rate is better than most of them in some data sets, and its accuracy is much better than that 

of NBm. Moreover, our results take into account the relative error rate while comparing class posterior 

probabilities. A maximum bound of this error rate was computed based on the relative error of floating-point 

operations (Kahan, 1997). The difference between posterior probabilities was significant when making the 

classification decision of test sequences, which gives an accepted level of confidence. 

7. CONCLUSION 

We modeled an arbitrarily long sequence of system calls as a Markov chain. We have implemented a naïve 

Bayes classifier, where the class-conditional probabilities of a sequence of system calls is computed using a 

Markov chain model. On one hand, we addressed the issue of zero transitional probabilities that cancel the effect 

of all the other transitional probabilities. For this purpose, we used the technique of m-estimate of conditional 

probabilities, finding the value for the equivalent sample size m that yields an optimal compromise between 

accuracy and detection rate. On the other hand, we addressed the challenge of vanishing probabilities due to 

multiplying a very large number of probabilities (some sequences contain a few hundred thousand system calls). 

For this, we used a ―test, backtrack, scale and re-multiply‖ technique, scaling up the conditional probabilities of 

sequences when they become too small, less than the lowest normal real numbers that can be represented as 

floating-point numbers. We implemented our technique and benchmarked it against leading classification 

techniques and found that it yields better compromise on detection rate to accuracy. Furthermore, our 

classification results take into account the relative error of floating-point operations, which gives the level of 

confidence in the intrusion detection by leveraging relative error calculations. 

We intend to use the ROC curve for the identification of an optimal classification model taking into accounts 

both false positives and true positives. We also intend to extend the work to handle system call parameters. 
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