
IADIS International Journal on Computer Science and Information Systems
Vol. 8, No. 1, pp. 47-65

ISSN: 1646-3692

47

UNDERSTANDING OF E-COMMERCE IS

THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

Kęstutis Valinčius, Vytautas Štuikys and Robertas Damaševičius. Kaunas University of

Technology, Software Engineering Department, Studentu str. 50, Kaunas, Lithuania

ABSTRACT

The paper addresses the e-commerce system (interpreted here as information system - IS)

understandability problem from the maintenance and evolution perspective. We propose a methodology

that includes: (1) identification of the 3 representative systems (through clustering of a set of previously

developed IS on the basis of user-oriented and temporal criteria); (2) extraction of feature models from

representative systems for evaluation using similarity (measured by absolute difference value - ADV)

and complexity metrics leading to the definition of the reference IS - RIS; (3) construction of the

business logic feature model, represented as meta-graph, to reason about quality of the systems and to

understand evolution trends; (4) feature model refactoring / modularization of the RIS; (5) Code-level

modularization of the RIS. The methodology is supported by experiments to evaluate the analysed

problems. The basic results are: (1) feature models of the representative systems; (2) metrics to evaluate

complexity and similarity of the represented systems; (3) the re-engineered RIS to support better

maintainability and design procedures.

KEYWORDS

Set of e-commerce systems, reference system, feature model, similarity and complexity measures,

refactoring, modularization.

1. INTRODUCTION

A substantial part of software used in both large and small-to-medium enterprises are

information systems for e-commerce (further IS). Such systems are seen as valuable assets for

companies because they provide the underlying engines to improve processes for

communication and to increase the overall market share. As it is observed by many reports

(see, e.g., Lucca et al. 2006), such systems have been developed under the “pressure of short

time-to-market and extremely high competition”, thus without considering a sound

IADIS International Journal on Computer Science and Information Systems

48

development methodology, their documentation is poor and, their quality is low and

maintenance is difficult.

On the other hand, the user requirements to introduce new features during maintenance are

constantly growing. Reasons for that are: users become more knowledgeable and are gradually

better acquainted with functionality of the systems in the course of their exploitation, market

pressure for new features, needs for better quality and performance in maintaining the

systems. Therefore, introducing changes is a common practice. To respond to the challenges

and to keep pace with arising new requirements, the systems are to be re-engineered, enhanced

by new functionality. Also the improved maintenance procedures should be introduced. All

these require a great deal of analysis and understanding of the IS.

The increasing number of companies wants to upgrade their systems by leveraging existing

IT assets (such as business rules, data), minimizing costs and reducing time. The state-of-the-

practice of software maintenance and evolution employs understanding, refactoring and re-

engineering techniques that focus on code artefacts. However, recent advances have shifted

the focus of evolution from the code level towards higher levels of abstraction and particularly

the architectural and feature-based modelling levels (Trujillo et al., 2006; Liu et al., 2006).

The ground behind this trend is that architecture and feature models capture the architectural

knowledge of the IS, thus facilitate making new design decisions during evolution cycles,

having full knowledge of past decisions.

In general, the aim of re-engineering is a predictable changeability management of the

web-based legacy systems that cover the same application domain (e.g., e-commerce).

Reasons for changeability management are: (a) to support maintainability of the systems; (b)

to improve modularity of a system to making changes more easily; (c) to develop a new

system on the basis of a legacy system; (d) to transform a given system by adding new

functionality (e.g., extending e-commerce systems by c-commerce models). The kind of re-

engineering when a designer tries to extract a higher–level representation (architecture,

models, documentation) from the legacy code is known as reverse engineering (Gahalaut and

Khandnor, 2010).

The principal aim of the paper is to present a methodology that, on the basis of analysis

and understanding of a set of related IS through the relevant feature models and their

evaluative characteristics (such as similarity, functionality and complexity grow,

modularization level, etc.), enables to improve the development and maintenance activities.

The basic contribution of the paper is the extension of the methodology (Valinčius et al.,

2013) by adding two extra activities as follows: feature model refactoring/modularization and

code-level re-modularization of the reference system defined as a result of previous analysis.

The latter improvements enable to contribute to the further evolution and maintenance and to

prepare for introducing automatic generation techniques in constructing new ISs.

The remaining part of the paper is organized as follows. Section 2 analyses the related

work. Section 3 defines the terms and tasks. Section 4 presents the essence of the

methodology. Section 5 describes evaluation of the approach and experiments. Section 6

provides conclusions.

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

49

2. RELATED WORK

The IS are emerging at the rate of tsunami as it is stated in reports (Lucca et al. 2006; Patel et

al. 2007, Jung et al. 2011), where the following attributes are identified: (a) the development

lacks of systematic approaches, (b) systems are kept running through a continual stream of

patches; (c) systems suffer from low quality control and assurance; (d) systems have a poor

structure; (e) quality of documentation is very low (if it exists at all). Good object-oriented

practices have been almost entirely ignored in the traditional development of web applications.

Most of these applications are incompatible with some of the most praised development and

design techniques like modularization and abstraction (Halfaker, 2006). All these attributes are

relevant to the set of IS we consider in the paper.

There are increasingly overlapping ideas in the areas of reverse engineering (RE), program

understanding, refactoring, and model-driven development, all of which deal with program

structure and maintenance or related with that (Batory, 2007). More details on feature

modelling can be learnt from (Apel and Ch. Kästner, 2009; Ceri et al., 2007; Karam et al.,

2008). The extensive analysis on program understanding is given in (Štuikys V. and

Damaševičius, 2013, 174-178 p.). RE is a well-known common approach used in many fields

of software engineering, such as software understanding, maintenance and evolution (Müller

et al., 2000). The aim of RE is to improve understandability, maintainability and quality.

Lopez-Herrejonet et al. (2011) identify eight refactoring patterns that describe how to extract

the elements of features and to effectively modularize the features for the development of

variable systems. Features are treated as increments in program functionality. Modularization

also improves the program structure and has impact on understandability to introducing

changes and, in this way, relates to refactoring (Shonle et al., 2008). Arzoky et al. (2012)

describe the extended methodology of seeding to modularise sequential source code software

versions and present modularization/similarity measures (including AVD – absolute value

difference). Complexity metrics for programs are described in (Lehman et. al.1997;

Damaševičius, 2009; Jung et al., 2011; Terceiro, et al., 2012) and for feature models in

(Bagheri and Gasevic, 2011) from the maintainability perspective.

The following activity is the actual re-engineering. Refactoring is such a re-engineering

activity in which the internal structure of a legacy system is changed without changing its

external behaviour and functionality (Fowler et al., 1999). Partitioning the structure of the

system using low-level dependencies in the source code, to improve the system's structure

(Arzoky et al., 2011) according to anticipated objectives and requirements is also refactoring.

Older monolithic systems, where modularization primarily involves splitting the monolithic

code base into modules, for such newer systems which already have some basic modular

structure, code decomposition is the only one of many possible activities (Rama and Patel,

2010). Software architectures commonly evolve into unmanageable mono-lights, leading to

systems that are difficult to understand, maintain and evolve. In such common scenarios,

developers usually have to invest considerable time in re-architecting the entire application, in

order to restore its modular structure. However, re-architecting process is usually conducted in

ad hoc way, without following any set of principled guidelines and methods (Terra et al.,

2012). Periodic major restructuring of software applications at either the design or

architectural level could be necessary (Raghvinder et al., 2008).

IADIS International Journal on Computer Science and Information Systems

50

Software refactoring is a collection of re-engineering activities that aims to improve

software quality too. Refactoring is commonly used in agile software processes to improve

software quality after a significant software development or evolution (Shatnawi and Li,

2011). Traditional refactoring techniques have focused on the implementation stage, with

source code as the primary artefact of the refactoring process. However, a recent trend is to

apply the concepts of refactoring to higher levels of abstraction (Zhang et al., 2005). One

general principle of powerful software systems is that they are built of many elements. Thus,

when designing a system, the features of a system should be broken into relatively loosely

bound groups of relatively closely bound features. The power comes from the interplay

between the different elements (Volz et al., 2002).

Software evolution has largely been focused on low-level implementation artefacts through

refactoring techniques rather than on the architectural level. However, code-centric evolution

techniques have not managed to effectively solve the problems that software evolution entails

(Avgeriou, 2006). The ability to develop components with identified common and variable

parts, and rapidly instantiate product-specific versions is the key to many software product line

approaches (Hutchesson and McDermid, 2011).

Unfortunately, refactoring requires understanding by an engineer both the techniques to be

applied and the code to which they are applied to (Griffith et al., 2011).

We summarize analysis of this part to motivate our research as follows: 1) little-by-little

web-based (e-commerce) systems degrade to a legacy code comprising a class of the modern

legacy code; 2) there is ever-increasing need to improve the structure of the modern legacy

code.

3. BASIC TERMS AND RESEARCH TASKS

IS for e-commerce is the system that supports B2C activities through the Internet. Set of IS – a

family of related systems developed using the same open source technology (e.g., PHP) for the

e-commerce. Reference system is the representative system having the most essential attributes

of the family. Feature is “an externally visible characteristic” of the system or “an increment

of program functionality” (see a survey of definitions in (Apel and Kästner, 2009)). Feature

model is the representation of a system using feature-based notation (features, relationships

among types of features and variant points and constraints). Reverse engineering (RE) is the

process of extracting higher-level representation (e.g., models, etc.) of a system from its code

(Patel, et al., 2007). Understanding of IS – a cognition process, based on extracted artefacts

(feature models) through RE, to reason about the system functionality or aiming to perform

some other activities such as change and redesign. Reconfiguring – the process of changing

either component parameters within a system (such as colour, layout, input data, etc.) without

changing component functionality. Refactoring – reducing the number of components (or

both) aiming to adapt a system to the new context of use (Batory, D., 2007). Modularisation –

the process of partitioning the structure of the software system into subsystems. Subsystems

are clusters of source code resources with similar properties combined together to create a

high-level attribute of the system. Modularisation also makes the problem at hand easier to

understand as it reduces the amount of data needed by developers. According to Constantine

and Yourdon a good modularisation of software systems leads to easier design, development,

testing and maintenance [Arkozy]

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

51

We formulate the tasks as follows. Given a set of systems S = {si}, i = [1, n] of the same

application domain (e-commerce). The systems were developed in different time slots Δt

between [t1, tm] (t1 < ti < tm), Δt = ti+1 - ti , by different developers of the same organization,

however, using the same technology. We need to identify a reference system among S to

understand evolution of the entire family through obtained feature models and their

characteristics such as similarity between the reference system and other representative

systems, changes in functionality and complexity over time for future improvements. The set S

is investigated under the following characteristics: n = 40, m = 7, t1 = 2005 (year), t7 = 2011

(year), Δt = 1 year, n = n1 + n2 + … + nm = 2+3+4+6+10+8+7, where ni is the number of

systems developed in time slot i. The task is formulated based on the following assumptions

(hypotheses).

1. The most general understanding of a system (systems) can be gained through

categorization of its constituents (subsystems, objects, characteristics, etc.) and modelling.

2. The more systems within a given set are similar, the less effort to understand the entire

set is needed.

3. Understanding of a set of related systems can be gained through the evaluation of their

similarity, functionality and complexity growth.

4. Reference system feature model refactoring / modularization.

5. Code-level re-modularization of the reference system.

4. GENERAL DESCRIPTION OF THE EXTENDED

METHODOLOGY

The approach we have proposed to deal with re-engineering of the reference system can be

seen as a Reverse Product Line Engineering (RPLE). Indeed, the traditional Product Line

Engineering (PLE) starts at analysis of the domain to be implemented resulting in the

identification the domain model (models) usually described at the high abstraction level (e.g.,

using feature-based notation); then the models serve for building the reference architecture for

the family of the domain systems (Hutchesson and McDermid, 2011). The next process

includes specification of the reference architecture leading to identification of components and

generators (again represented at the higher-level of abstraction) to cover the essential artefacts

of the whole domain. The above mentioned processes are called Domain Engineering (DE)

(Falbo, 2002). The obtained high-level artefacts (models, architecture, components, etc.) are

used as input to Application Engineering (AE) (Thurimella, 2011). The latter deals with the

similar processes but under different aims and restrictions: 1) concrete requirements for each

system to support a particular kind of products and 2) using the prescribed technology and

relevant methodology to implement the DE artefacts as executable specifications to build PL

systems.

To solve the formulated tasks, we have proposed the extended methodology. At the core of

the methodology are the reverse engineering-based activities and feature-based modelling. The

methodology consists of the following stages which in Figure 1 are described as a sequence of

processes and models created by the adequate process. As it is difficult to extract from the

given system the unique relevant model that could enable to consider and solve formulated

tasks, we have split the analysis and modelling activities into stages. To represent the system

models (obtained through reverse engineering), we have selected feature models (Apel and

IADIS International Journal on Computer Science and Information Systems

52

Kästner, 2009) because they (a) describe the structure and functionality of a system at a

higher-level of abstraction through entities known as features and (b) enable to simplify

analysis to achieve the prescribed aims.

The aim of stage 1 is to reduce the search space for the identification of representative

systems in order to select the reference system. The system developer analyses the systems

using the available documents (e.g., initial requirements, code, users’ opinion, and experts’

comments) and performs clustering of systems as it will be explained in sub-section 4.1. The

result of stage 1 is 3 representative systems (base, intermediate, and the latest system) as input

information for the next stages.

The aim of stage 2 is to analyse the cluster of representative systems to identify the

reference IS – RIS and to extract from it the feature-based models that specify the overall

functionality. The process is based on reverse engineering. It includes mainly analysis of user

interfaces though other system artefacts can be used too. As user interfaces are system

dependent and, on contrary, feature-based models are system independent, we treat the latter

as higher-level abstractions as compared to the first entities.

Stage 3 aims at extracting more details from the previously created model and to create the

business logic feature model (BL FM) of the reference system as it will be explained in sub-

section 4.2.

The aim of stage 4 is to reduce the scope of BL FMs transforming the latter into the more

compact representation which we call meta-graph, the high-level model that provides

information to understanding through RIS the set of ISs from the user and designer

perspectives as it will be in sub-section 4.4. This model enables to evaluate the current

structural characteristics and make the improvements through refactoring and re-

modularization.

The aim of stage 5 is modularization of BL FM and meta-graph models to group and

fragment RIS features into the hierarchical modular structure. The process defines, at a higher

abstraction level, a unified modular structure of the architecture as it will be explained in sub-

section 4.5.

The aim of stage 6 is the use of the initial RIS source code and modularized BL FM and

meta-graph models to perform the code level re-modularization. Code-level modularization is

oriented for the independent parent-child relationship between the APIs aiming to achieve the

cohesion as low as possible.

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

53

2. UI-based reverse

engineering

3. Code-based reverse

engineering

4. BL FM restructuring

IS functions FMs

IS BL FMs

FM meta graph

Defined clusters
1. Analysis and clustering of

IS(s)

5. FM refactoring/

modularization

6. Code-level

modularization

A modularized MG

Modularized components

Initial source-code

RS BL structural models

RS – Reference system; IS – Information system;  - Process;Legend:

– Process outcome; – Output.

 – Input;

Figure 1. Re-engineering of e-commerce IS: a process-level view

4.1 Clustering of e-commerce Systems for Similarity Identification

Aim of analysis is first to select representatives due to the large number of systems (during the

time slot [t1, tm] of about 7 years, 40 systems were developed). To identify clusters of similar

systems we used two criteria: 1) time slots of duration 1 year, when a particular system was

developed and 2) user profile of the system. We motivate the criteria by heuristic observations

obtained from the literature and experience of the developers. We identified 7 short time slots

with the indication of the number of systems developed within each time slot (see task

formulation) and 4 user profile types with respect to knowledge and experience of using IT

products as follows: U1 – novice users having used the same or closely related products and

business rules (BRs); U2 – novice users having used slightly different products and BRs; U3 –

experienced users having used the same or closely related products and BRs, and U4 -

experienced users having used different products and BRs.

To simplify the clustering problem, however, we found acceptable to admit only 2 large

time clusters T1 and T2 (each being of 3.5 years duration see Figure 2) and 2 user profiles (U12

and U34, meaning U12 = U1 U2 and U34 = U3 U4).

See the cluster identification results in Figure 2. Clusters C1 (U12×T1) and C2 (U12×T2)

represent systems that were designed by reconfiguring the adequate ancestor system without

increasing its functionality. All ancestors belong either to cluster C3 (U34×T1) or cluster C4

(U34×T2). The latter clusters represent systems derived sequentially within the specified time

slots. Main properties of the systems are: 1) Si is derived from Si-1 for all i = [1, R] (ti-1 < ti)

and 2) f(Si) > f(Si-1), where f(S) is functionality of the system S. The properties enable to draw

the evolution curve denoted in bold in Figure 2 and meaning the growth of functionality. It is

IADIS International Journal on Computer Science and Information Systems

54

clear that systems on the line are similar because they have the base functionality inherited

from the base S0 and some extra functionality added in the course of evolution.

Note that clusters C1 and C2 were neglected because their systems do not increase the

functionality. Due to the system similarity (we will evaluate its degree later), it is enough to

consider only some systems along the evolution curve. We have selected 3 systems as the

most representative ones: S0 (base), S3 (intermediate system at the boundary of T1 and T2) and

SR (having the largest functionality). The latter has been identified as a reference system (note

that we use SR in the formal notation and RIS in informal reasoning). Its role is twofold: (a) it

enables to track functionality of the existing systems to support their maintenance; (b) it serves

as a sound template to provide basic components for generalization in order to support

automatic changeability in designing new systems in the future.

T1 T2

U
1

2
U

3
4

Time clusters

U
se

r
cl

u
st

er
s

S0

S1 S2

S2' S3 S4

S5 S6

S7 SRS6'
Legend:

System designed through reconfiguring
System designed with incrementing functionality
Dedicated (specific) system
Cluster boundary line
System derivation line
System evolution line

Si System with i functional increments
S0,SR Initial and reference system correspondingly

Figure 2. System clusters to define the representative systems (designer’s view)

4.2 Extraction of Feature Models from Representative Systems

The aim of analysis at stage 2 and 3 is first to build models of the representative systems S0, S3

and SR, and then to identify the degree of the model similarity and to evaluate complexity of

the models. To represent system models, we have selected feature models because they (a)

describe the structure and functionality of a system at a higher-level of abstraction through

entities known as features and (b) enable to simplify analysis to achieve the prescribed aims.

We introduce 4 views to our systems aiming to simplify analysis as follows:

f(S)= f
(u)

(S)  f
(m)

(S)  f
(p)

(S), (1)

where f
(u)

(S), f
(m)

(S), f
(p)

(S) is the user-based, the maintainer-based and the system

provider-based functionality of S, respectively; f(S) – the total functionality of the system from

the designer’s perspective S.

As it is supposed that f
(u)

(S)
  f

(m)
(S), f

(u)
(S)

  f
(p)

(S)

meaning that user-based functionality

is also taken into account in the remaining views, we are able to model representative systems

considering the only its main part, that is, the user-based functionality f
(u)

(S). Further, by

feature models (FM) (either functional (F FM) or business logic (BL FM)), we mean the

models constructed to represent the f
(u)

(S) view only.

Below we apply RE as a sequence of steps at stage 2 and 3 (Figure 1) to extract their

feature models.

1. The base system S0 is selected first (it represents the root of a feature model) and its UIs

are navigated multiple times from the highest level interface to the lowest one. The item

(UI elements) within any UI is treated as a functional feature. If this item must be selected

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

55

always, it is treated as a mandatory feature (denoted as black circle, see Figure 3),

otherwise it is treated as an optional feature (denoted as white circle). Usually, the lowest-

level UI represents a variant point with variants of alternative features as grouped features.

2. The navigation process is repeated in order to cover all paths by selecting the remaining

functional items within each UI. Other features are extracted as it is described by step 1

and represented as the parent-child relationship tree (sub-tree).

3. The constraints of the type require or exclude (if any) are identified among variants,

variant points or intermediate features. This activity is based on the knowledge of the

analyser (usually he/she is a designer of the system). The parent-child feature relationship

tree combined with constraints is the functional FM (F FM) of S0.

4. The system S3 is analysed next in a similar way having the F FM of S0 as a basis for the S3

F FM. This means that we need to add to the obtained model the only new features that

appear in UIs of S3.

5. Finally, the system SR is analysed (having in mind the F FM of S3 as the basis), but now

adding the only new features from the UIs of SR, as seen in Figure 3.

6. The BL FMs for the representative systems are constructed on the basis of F FMs by

adding business logic features to the F FMs. The analyst needs to work partially at the

code level in order to extract the implementation related knowledge such as modules and

APIs. The BL FM (FMs) (an extract of the model is given in Figure 4) serves for two

purposes: 1) to evaluate the systems by model evaluation metrics (see Section 4.3) and 2)

to construct meta-graph for the SR to understand it and the entire IS family from the user

and designer perspective.

Product n

E-commerce system

Pages

Page title

Page content

Contact Forms

Add to ShC

Photos

Description

Quantity

(in stock)

Product variations

Title

Checkout

Price

Shipping details

Billing details

Quantity

Order detailsSelected

product(s)

Purchase

Shopping cart

(ShC)

Confirm ShC

Confirmed ShC

Payment

method

Shipping

method

[1,*]

[1,*]

Constraint requires
Mandatory featureCase-based alternate feature[1,*]

Legend:

[1,*]

Product 1

[1,*]

Or-based alternate feature[1,*]

Tell to friend

Contact/feedback

Services

Generate pre-

invoice

Generate

invoice

Generate

captcha

Clients

Registration

Activation

Login

Personal

information

Shipping

information

Purchases

history

Logout

Products catalogueManufacturers catalogue

Product items

Product categories

Manufacturer

Manufacturer categories

Photos

Title

Description

Products

Constraint includes
Optional feature

Figure 3. Fragment of feature-based reference architecture at function level

IADIS International Journal on Computer Science and Information Systems

56

E-commerce system

P
a
g
e
 m

o
d
u
le

{
P

G
}

S
a

le
s m

o
d

u
le

{
S

L
}

S
h
o
p
p
in

g
 ca

rt

{
B

,B
1

}

S
e
ttin

g
s

{
A

}

C
h
e
ck

o
u
t

{
C

,C
1

}

O
rd

e
r d

eta
ils

{
A

}

P
u

rc
h

ase
 co

n
firm

a
tio

n

{
B

}

P
a
g
e
 n

am
e

{
A

}

P
a
g
e
T
itle

P
a
g
e
T
itle

D
e
sc

rip
tio

n

P
a
g

e
 U

R
L

{
B

}

G
en

e
rate

 U
R

L

a
u
to

m
a

tic
ally

M
a
n

u
al U

R
L

H
y

p
erlin

k
 {

B
}

L
in

k
 to

 c
atalo

g

{
C

}

P
a
g

e
 T

y
p

e

{
C

,C
1

}

H
T

M
L

 P
a
g

e

{
A

,A
1

}

S
p

e
c
ific e

x
ec

u
tio

n
 p

a
g

e n
a
m

e

{
A

,A
2
}

C
a
ta

lo
g
 m

o
d
u
le

{
C

T
}

E
n

try
 d

ata ty
p

e
s

{
A

}

C
a
ta

lo
g

u
es

{
B

}

P
ro

d
u
c
ts

{
A

,A
2

,B
1

,B
2

}
P

ro
d

u
c
ts c

ate
g

o
ry

{
B

}

P
ro

d
u
c
ts e

lem
en

t

{
A

,A
1

,A
2

}

P
ro

d
u
c
t v

aria
n
t

{
A

;A
1

}

In
q

u
ire

{
A

}
[E

M
:A

B
]

S
e

n
d

 e-m
a

il

{
B

}
[E

M
:B

]

F
o

rm
 tem

p
late

s

{
A

}

F
o

rm
 m

o
d

u
le

{
F
R

}
T

ell to
 frien

d

{
B

}
[E

M
:A

A
]

M
a
il fro

m
 S

y
ste

m

{
A

}
E

-m
a
il te

m
p

la
te

s

{
A

}

E
-m

a
ils m

o
d

u
le

{
E

M
}

M
a
il to

 S
y

ste
m

{
B

}

S
e

n
d

 e
m

ail

{
B

}
P

ro
c
ce

ss se
n

d
in

g

A
p

p
ly

 te
m

p
la

te

[E
M

:A
]

IS
 se

ttin
g

s

{
B

}

In
sta

lle
r se

ttin
g

s

{
A

}

S
e

ttin
g

s m
o

d
u

le

{
S

T
}

S
e
rv

ice
s se

ttin
g

s

{
C

}

G
en

e
rate

 in
v

o
ic

e

{
B

}

G
en

e
rate

 ca
p
tc

h
a

{
A

}

S
e
rv

ice
s m

o
d

u
le

{
S
R

}

G
en

e
rate

 p
re-in

v
o

ic
e

{
C

}

Figure 4. RIS fragment of feature-based model at the business logic (BL) level

4.3 Metrics to Evaluate Feature Models

We introduce a feature model similarity metric (Eq. 2) expressed as the absolute value

difference (AVD) adopted from (Arzoky et al., 2012). The obtained models are then compared

and evaluated using the metric.


 


s

i

s

j

ijij yxYXAVD
1 1

),((2)

Where X and Y are binary feature matrices of two comparable feature models for S
(u)

; xij ,

yij – elements of the matrices; s – is the number of features of the largest matrix. xij , yij =1, if

features i and j have the relationship or constraint branch; otherwise xij , yij = 0. Note that the

feature model with a smaller number of features is supplemented by additional void features

(isolated nodes without branches) in order to equalize the size of both matrices.

To evaluate complexity of FMs, we use two measures (Štuikys and Damaševičius, 2013,

see pages 213-216): cognitive complexity, which is calculated as the maximal number of

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

57

feature levels in the hierarchy or the maximal number of features in each level, and the

compound complexity (estimated by Eq. 3):

 9/)332(22222
ccaseorandm RRRRFC  , (3)

Cm - compound complexity measure; F, Rand, Ror, Rcase, Rc – the number of {all features,

mandatory relationships, optional relationships, alternative relationships, relationships among

variants including constraints}, respectively; the division coefficient is for equalizing the role

of relationships. We present and analyse the estimated values obtained using Eq. 2 and Eq. 3

in Section 5.

4.4 Meta-graph as a Model to Understand Business Processes

The BL FM provides essential attributes to understand system functionality by designer well;

however, the model is less helpful for understanding the user’s requirements because it may be

too complicated for the user. For example, when the designer interacts with a user aiming to

know his/her requirements as compared to those that are implemented into the already existing

IS, all details of the model are not needed. On the other hand, the designer needs to

communicate with the user using his/her language. Though feature names are usually

expressed in the user-understandable fashion, the FM should be re-factored and reduced. We

introduce yet another (higher) level within FM; and we construct the higher-level model,

called meta-graph (Figure 5). The intention of the meta-graph is to specify sub-processes

within BL expressed through sequences of features needed to perform the BL operations. The

meta-graph G(X, (E, U
w
)) notation we have adopted from (Basu and Blanning, 2007) and

apply it in our context as follows. Two nodes, denoted as x0 and xt (x0,  xt; x0, xt  X),

represent the initial and final states respectively. All sub-processes begin at Start state and

terminate at the End state (if the process that consists of a set of sub-processes is complete). A

node xi  X (]1..1[ ti) represents the business sub-process. There are weighted and

non-weights nodes (note that here we found the necessity of changing weighting of arcs by

nodes of the meta-graph as compared to (Valincius et al., 2013)). The arcs uij = (xi, xj) (uij  U,

]..0[, tji ) represent the execution sequence of sub-processes and the node weight wij

represents a compound structure of features taken from Eq. 4, using BNF-like notation.

wij = {<number_of_BL_features> ";" {[<FM_class_ID > ":" [<set_ of _class>] ";"]} ";" <

LOC>}, (4)

where <number_of_BL_features> is the total number of features in the BL FM that are to

be selected to execute a sub-process (e.g., the sub-process “Order details confirmation”

requires 38, see Figure 5);

<FM_class_ID> :<set_ of _class> is the BL FM category identifier with a set of features

within each category (e.g., the sub-process “Order details confirmation” contains two

categories of features PG and SL; the first has only one set of features (CAA4); the second

category SL has 1 set of features (CA).

< LOC> - the number of code lines to implement the sub-process (e.g., 3057 for the same

sub-process).

[<x>] – list of <x> items.

IADIS International Journal on Computer Science and Information Systems

58

The set E is the feedback arcs to define the sequence of sub-processes which return to the

Start state in order to complete some task. Formally, the set is defined as:

)},({ 0]1,1[xxE ktk  , i.e. each sub-process has a feedback arc for returning to the initial

state, if there is the need for terminating the sub-process (e.g., if the sub-process “Products

catalogue” was executed to see the product category list only).

Start

Load page

{8;{PG:A1,B1,C};1258}

Load IS settings

{5;{ST:B};2054}

Load service

{7;{ST:C};358}

Generate pre-invoice

{21;{SR:A};587}

Generate invoice

{21;{SR:B};637}

Generate captcha

{5;{SR:C};143}

Registration

{6;{US:A};427}

Purchases history

{4;{US:F;SL:E1};539}

Login

{5;{US:C};346}

Activation

{2;{US:B};219}

Manage personal information

{5;{US:E};409}

Manage shipping information

{9;{US:D;SL:C1};628}

Tell to friend fill-in form

{7;{FR:A};319}

Contact/feedback fill-in form

{4;{FR:B};241}

Checkout

{2;{SL:C};100}

Shopping cart confirmation

{16;{PG:C1D;SL:B1};1587}

Discount coupon

{5;{SL:B2};587}

Purchase confirmation

{27;{PG:C1F;SL:C2;EM:A1,A2};2658}

Order details confirmation

{38;{PG:C1E;SL:C1,A1,A2};3057}

Load element

{10;{CT:B2};158}

Manufacturers catalogue

{3;{CT:B};86}

Load category

{3;{CT:B1};58}

Products catalogue

{3;{CT:A};97}

Load category

{3;{CT:A1};67}

Load element

{15;{CT:A2};287}

Load variant

{9;{CT:A2A};587}

Add to cart

{1;{CT:A2C};87}

Hyperlink page

{3;{PG:C2};111}

Link to catalogue

{2;{PG:C3};254}

HTML page

{12;{PG:C1};1507}

Specific execution

{1;{PG:C1A};231}

Setting module

Services module

Pages module
Catalogue module

Forms module

Users module

Sales module

End

Figure 5. Modularized meta-graph for understanding “Product purchase” task

4.5 Re-engineering of Reference System through Re-Modularization

We have also identified some specifics in using feature models in our approach as compared

to the processes of the development of PLE. If feature modelling as applied to the

development systems are usually based on some uncertainty, hypothesis and anticipation in

analysis, on the contrary, feature modelling of legacy systems are based on the really existing

features. The main focus is to recognize, to understand and to extract the features and their

relationships. The modularization task we consider in our approach is very similar to the

formation of components by selecting and grouping the relevant features when designing and

representing components at the high-level of abstraction. Modularization as applied to

components of a legacy system may require feature splitting that results in the possible

appearance of the same feature in different components. The latter may be influential also to

constraints. We employ the notion of API (Application Programming Interface) as the basis

for our structural metrics (Sarkar et al., 2007).

We perform refactoring through re-modularization at two levels: feature models and code.

By applying refactoring at the model level, we have made the transition more systematic and

less error-prone (Rossi et al., 2008). The initial RIS was poorly structured, consisting of only 5

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

59

major modules with poor API techniques. The restructuration firstly involved grouping and

de-fragmentation of features later, thus allowing to constructing the hierarchical structure (see

Figure 6). However, object-oriented software is harder to change than it might appear to be at

first. Changing an object-oriented system often requires changing the abstractions embodied in

existing object classes and the relationships among those classes. This involves structural

changes such as moving variables and functions between classes and partitioning a

complicated class into several classes (Opdyke, 1992).

API of the

process j

API of the

process 1

...

API of the

sub-module 1

API of the

process j

API of the

process 1

...

API of the

sub-module i

...

API of the module (PG, CT, ect...)

API of the

all processes

API of the module (PG, CT, ect...)

b)a)

Figure 6. Simplified architecture-level structure of RIS before (a) and after (b)

refactoring/modularization

Unified API structure was defined (see Figure 7) using best practises and consist of 5 inner

components: 1) sub API’s definitions, 2) initializer, 3) engine were all business logic is placed

(spitted into locale independent language translations, business logic core and visualisation

templates), 4) libraries for external components handling and 5) resources for multimedia

information handling (visual layout information, real-time processing scripts and graphical or

multimedia information storing)

API

Engine Resources

Languages

[0,*]

Logic

[0,*]

Templates

[0,*]

Sub APIs

[0,*]

Libraries

[1,*]

CSS

[0,*]

Scripts

[0,*]

Images

[0,*]

Initializer

Figure 7. Unified feature model for any level component of Figure 6 b

5. EVALUATION OF THE APPROACH AND EXPERIMENTS

If the conventional PLE approach is well suited for the development of new PL systems, the

reverse PLE we considered is better suited for maintenance and evolution of legacy systems.

As there are evident signs of blurring boundaries between the software system development

and evolution (Chikofsky, 1990), the proposed approach can be included into the processes of

Round Trip Engineering (Ciccozzi, 2013). There are some restrictions in using RPLE. The

approach is applicable to the systems which are homogeneous in terms of the used technology

IADIS International Journal on Computer Science and Information Systems

60

and application domains. There is also the lack of suitable tools that support analysis,

understanding and transformations (especially reverse transformation) of legacy systems

(Mealy, 2006; Katić, 2009; Mens and Tourwe, 2004).

We present the algorithm to solve the main task (Product purchase) using the constructed

meta-graph. The algorithm models the task solving through the identification of series of

routes within the meta-graph (see bold branches in Figure 5) as follows:

1) From Start to Add to cart & return to Start; 2) From Start to Shopping cart confirmation

& return to Start; 3) From Start to Order details confirmation & return to Start; 4) From Start

to Purchase confirmation & to End.

 The algorithm is simple enough to explain the meaning of business processes for the

novice user of IS. If the user wants new features to be added to his/her IS, the model and the

algorithm is helpful too, because it points to a particular part of FM to explain possible

extensions of the system (i.e., to elicit new requirements). The model provides the designer

with the extremely useful information to track FMs to introducing changes into code. Also, the

designer is able to reason about the level of quality of the previously developed IS.

Furthermore the model provides some information on modularization (it is clearly seen that

the sub-processes, as a source for modularization, have a quite different number of features,

meaning the size problem of modules; it is known that to support changeability, modules of

the system should be approximately equal in size). The model is also beneficial to deal with

the so-called concept location problem because designer is able to see features at high

abstraction level, and then, to navigate through different levels of abstraction to select the

needed code.

The results of experiments we have carried out also contribute to the understanding of the

systems via the identified changes in functional similarity, and complexity growth. Three

representative systems (S0, S3, SR identified as the initial, intermediate and the latest), within 7

years of their evolution, have been selected for investigation. Note that only the essential part

of a system (identified as the user-based vision of a system) was used in the experiments (due

to simplification of the process). We have identified the similarity and functionality changes of

systems over the evolution period as compared to the initial system. Using AVD as a

similarity measure (see Figure 4), we estimated (for the BL FM only) that the similarity

evolved roughly linearly, though the number of systems delivered in the second half (3.5

years) of the total period was much higher. Figure 8 (see the right side) also provides with

information on the code complexity changes (growth) that were measured by LOC. Again,

only the essential part of representative systems was taken into account.

Evaluation of system complexity has been estimated at the model level, too. Results are

summarized in Table 1, where several model complexity measures, such as cognitive

complexity, structural and compound complexity, are given to identify the growth of

complexity over time (2
nd

 Lehman’s Law).

Figure 8. Similarity and simplified BL FM complexity increase

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

61

Table 1. Complexity evaluation of e-commerce systems feature models at business-logic level

Representative

Systems

FM complexity measures

of VPs
Cognitive

complexity

Structural

complexity

Compound

complexity

S0 40 8 98 10 174
S3 49 8 123 15 811
SR 65 9 161 59 332

The benefits of models are: 1) reference system models are representative items of the

entire IS family enable to reducing the space of variants in understanding them; 2) models

cover the underlying functional attributes of the family; 3) similarity measures enable to

observe the evolution of systems functionality growth and track the introduced changes over

time; 4) meta-graphs help to elicit new requirements.

The RS had a poor module oriented structure and was based on strong cohesion and no

defined interfaces. Re-engineering allowed specifying and grouping the functional blocks

where in re-modularization phase they were specified as independent components (APIs). The

RS structure of 5 modules was fragmented to 45 unified API structures (see Figure 9).

Evaluation of system modularization has been estimated at the API-level. Results are

summarized in Table 2, where several structural measures are given to identify the structural

growth after re-modularization.

Table 2. Structural re-modularization evaluation of e-commerce system

Modules &

sub-modules of the system
Structural characteristics of the system

 Before After

 # of API’s
Size (# of

Features/LOC)
of API’s

Size (# of

Features/LOC)

Settings {ST} 1 33 / 4270 3 33 / 4467
Page {PG} 1 31 / 2587 3 31 / 2797

Catalogue {CT}

1 61 / 1570

12 61 / 2249

Products 8 28 / 1562
Manufacturers 3 8 / 687

Sale {SL}

1 88 / 7597

10 88 / 8512
Shopping cart 3 14 / 2097
Order details 3 32 / 3181
Purchase confirmation 2 10 / 2637
Order information 1 8 / 597

User {US}

1 52 / 2568

10 52 / 3472
UserRALP 7 12 / 2681
UserSales 2 30 / 791

Form {FR} 0 16 / 560 2 16 / 827
Services {SR} 0 35 / 1367 4 35 / 1719

IADIS International Journal on Computer Science and Information Systems

62

API Engine

Services

Settings

Pages

IS settings

Service settings

Captcha

Invoice

Pro-forma

Hyperlink

Products Category

Element

Variant Add to cart

Manufacturers
Category

Element

Catalogue

Sales

Shopping cart
Discount coupon

Order details

Purchase

confirmation

Forms Contact/feedback

Users

Registration

Activation

Login

Shipping information

Personal information

Menu widget

Menu widget

Specials Specials widget

Shopping cart widget

Billing information

Shipping information

Agreement

Order information

Logout

Billing information

Login widget

Reminder

1st level

component (LC)
2nd LC 3rd LC 4th LC

Figure 9. Re-modularized RIS structure at the API-based architecture-level

6. CONCLUSIONS

As e-commerce systems (for small-to-medium enterprises) are evolving extremely rapidly,

their maintenance and evolution tasks are complex and require essential effort to analyse and

understand them. The understanding problem we have analysed is the primary step to improve

maintainability of such systems. The next step is refactoring and modularization. Those

activities enable to achieve two important outcomes: 1) to improve changeability/

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

63

maintainability and 2) to create the opportunity to generalize components for design

automation due to improved modularization. The models we have created using the

methodology are beneficial for all actors involved in the process (including users trying to

transfer their requirements for system innovations), though to the different degree. Though the

methodology has been devised using a specific set of IS, we hope that it might be useful for a

broader kind of distributed systems.

ACKNOWLEDGEMENTS

The work described in this paper has been carried out partially within the framework the

Operational Programme for the Development of Human Resources 2007-2013 of Lithuania

„Strengthening of capacities of researchers and scientists" project VP1-3.1-ŠMM-08-K-01-

018 „Research and development of Internet technologies and their infrastructure for smart

environments of things and services" (2012- 2015), funded by the European Social Fund

(ESF).

REFERENCES

Apel, S. and Kästner, Ch., 2009. An Overview of Feature-Oriented Software Development. Journal of
Object Technology, Vol. 8, No. 5, July–August, p.p. 49-84.

Avgeriou, P., and Zdun, U., 2006. Architecture-Centric Evolution: New Issues and Trends. Object-
Oriented Technology. ECOOP 2006 Workshop Reader. Springer Berlin Heidelberg, pp. 97-105.

Arzoky, M. et al., 2012. A Seeded Search for the Modularisation of Sequential Software Versions. In J.
of Object Tech., vol. 11, no. 2, p.p. 1–22.

Arzoky, M. et al., 2011. Munch: An Efficient Modularisation Strategy to Assess the Degree of

Refactoring on Sequential Source Code Checkings. IEEE Fourth International Conference on

Software Testing, Verification and Validation Workshops, Berlin, Germany, pp. 422-429.

Bagheri, E. and Gasevic, D., 2011. Assessing the maintainability of software product line feature models

using structural metrics. Software Qual. Journal, Springer, p.p. 579-612

Basu, A. and Blanning, R.W., 2007. Metagraphs and their applications. Springer, Printed in USA.

Batory, D., 2007. Program Refactoring, Program Synthesis, and Model-Driven Development. Invited

Presentation at European Joint Conf. on Software Theory and Practice of Software (ETAPS),
Compiler Construction Conference.

Ceri, S. et al., 2007. Model-driven Development of Context-Aware Web Applications. Journal ACM
Transactions on Internet Technology (TOIT), ACM, NY, USA, Vol. 7, Issue 1.

Chikofsky, E. and Cross, J., 1990. Reverse engineering and design recovery: A taxonomy. IEEE
Software, Vol. 7, No. 1, pp. 13–17.

Ciccozzi, F., 2013. Round-trip support for extra-functional property management in model-driven

engineering of embedded systems. Information and Software Technology. Vol. 55, No. 6, pp. 1085-

1100.

Damaševičius, R., 2009. Visualization and Analysis of Open Source Software Evolution using an

Evolution Curve Method. In Databases and Information Systems V, Eds. H-M. Haav and A. Kalja,
IOS Press, p.p. 205-216.

IADIS International Journal on Computer Science and Information Systems

64

Falbo, A.R. et al, 2002. An ontological approach to domain engineering. Proceedings of the 14th

international conference on Software engineering and knowledge engineering (SEKE '02). New
York, USA, pp. 351-358.

Fowler, M. et al., 1999. Refactoring: Improving the Design of Existing Code, Addison Wesley Longman
Inc.

Gahalaut, K, A. and Khandnor, P, 2010. Reverse Engineering: an Essence for Software Re-engineering

and program analysis. International Journal of Engineering Science and Technology, Vol. 2, No. 6,

pp. 2296-2303.

Griffith, I. et al., 2011. Evolution of Legacy System Comprehensibility through Automated Refactoring.

International Workshop on Machine Learning Technologies in Software Engineering, Lawrence,
Kansas, USA, pp. 35-42.

Grubb, P and Takang, A.A., 2007. Software maintenance (concepts and practice), World scientific,
London.

Halfaker A., 2006. Modular Application Framework for Web Applications. Proceedings 39th Midwest
Instruction and Computing Symposium, Wisconsin, USA.

Hutchesson, S., and McDermid, J., 2011. Towards Cost-Effective High-Assurance Software Product

Lines: The Need for Property-Preserving Transformations. Software Product Line Conference

(SPLC), 2011 15th International, Munich, Germany, pp. 55–65.

Jung, W.-S. et al., 2011. An Entropy-Based Complexity Measure for Web Applications Using Structural
Information. Journal of Information Science and Engineering, 27, p.p. 595-619.

Karam, M. et al., 2008. A product-line architecture for web service-based visual composition of web

applications. Journal of Systems and Software, Elsevier Science Inc. NY, USA, Vol. 81, Issue 6, p.p.
855–867.

Katić, M., and Fertalj, K., 2009. Towards an Appropriate Software Refactoring Tool Support.

Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE.

Genova, Italy, pp. 140-145.

Lehman, M.M., 1997. Metrics and Laws of Software Evolution - The Nineties View. IEEE METRICS,
p.p. 20-32.

Liu, J. et al., 2006. Feature oriented refactoring of legacy applications. In ICSE ’06: Proceeding of the
28th international conference on Software engineering, NY, USA, p.p. 112–121.

Lopez-Herrejon, R. E. et al., 2011. From Requirements to Features: An Exploratory Study of Feature-
Oriented Refactoring. Proc. of 15th International Software Product Line Conference, p.p. 181-190.

Lucca, D. et al., 2004. Reverse Engineering Web Applications: The WARE Approach. Journal of
Software Maintenance and Evolution, Research and Practice, Vol. 16, p.p. 71-101.

Mealy, E. and Strooper, P., 2006. Evaluating software refactoring tool support. Proceedings of the
Australian Software Engineering Conference (ASWEC), Sydney, Australia, pp. 331–340.

Mens, T. and Tourwe, T., 2004. A Survey of Software Refactoring. IEEE Transactions on Software

Engineering, Vol. 30, No. 2, pp. 126–139.

Muller,H.A. et al., 2000. Reverse Engineering: A Roadmap. Proceeding ICSE '00 Proceedings of the

Conference on The Future of Software Engineering, ACM New York, NY, USA, 2000, p.p. 47–60.

Opdyke, F. W., 1992. Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application Frameworks. PhD, University of Illinois at Urbana-Champaign.

Patel, R. et al., 2007. Reverse Engineering of Web Applications: A Technical Review. Reverse
Engineering of Web Applications: A Technical Report. The University of Liverpool.

Raghvinder, S. et al., 2008. Structural Epochs in the Complexity of Software over Time. IEEE Software,
July/August 2008, pp. 66-73.

Rama, G. and Patel, N., 2010. Software modularization operators. In 26th International Conference on
Software Maintenance (ICSM), Timisoara, Romania, pp. 1–10.

UNDERSTANDING OF E-COMMERCE IS THROUGH FEATURE MODELS AND THEIR

METRICS TO SUPPORT RE-MODULARIZATION

65

Rossi, G. et al., 2008. Refactoring to Rich Internet Applications. A Model-Driven Approach.

Proceedings of the Eighth International Conference on Web Engineering (ICWE '08), IEEE
Computer Society Washington, DC, USA, pp. 1–12.

Sarkar, S. et al., 2007. API-Based and Information-Theoretic Metrics for Measuring the Quality of
Software Modularization. IEEE Transactions on Software Engineering, Vol. 33, No. 1, pp. 15-33.

Shatnawi, R. and Li, W., 2011. An Empirical Assessment of Refactoring Impact on Software Quality

Using a Hierarchical Quality Model. International Journal of Software Engineering and Its

Applications, SERSC Korea, Vol. 5, No. 4, pp. 127–150.

Shonle, M. et al., 2008. When Refactoring Acts like Modularity. Keeping Options Open with Persistent
Condition Checking, WRT’08, October 19, 2008, Nashville, Tennessee, USA, ACM.

Štuikys, V. and Damaševičius, R., 2013. Meta-programming and Model-Driven Meta-Program

Development (Principles, Processes and Techniques), Springer-Verlag London ISBN 978-1-4471-
4125-9.

Terceiro, A. et al., 2012. Understanding Structural Complexity Evolution: A Quantitative Analysis.

Software Maintenance and Reengineering (CSMR), 2012 16th European Conference on Computing

& Processing (Hardware/Software), p.p. 85–94.

Terra, R. et al., 2012. An Approach for Extracting Modules from Monolithic Software Architectures. IX

Workshop de Manutencao de Software Moderna (WMSWM). Fortaleza, Brazil, pp. 1-8.

Thurimella, K.A., 2011. On the communication problem between domain engineering and application

engineering: formalism using sets, conflicts of-interests and artifact redundancies. ACM SIGSOFT
Software Engineering Notes. Vol. 36, No. 4, pp. 1-5.

Trujillo, S. et al., 2006. Feature Refactoring a Multi-Representation Program into a Product Line. GPCE

'06 Proc. of the 5th Intern. Conf. on Generative programming and component engineering, ACM,
NY, USA, p.p.191–200.

Valinčius, K. et al., 2013. Understanding of E-Commerce IS Through Feature Models and Their Metrics.

International Conference Information Systems 2013, Lisbon, Portugal, pp. 55-62 (Awarded by
Certificate of the Best Quantitative Research Paper).

Volz, R. et al., 2002. Towards a Modularized Semantic Web. Proceedings of the ECAI-02 Workshop on
Ontologies and Semantic Interoperability, Lyon, France, Vol. 64.

Zhang, J. et al., 2005. Generic and Domain-Specific Model Refactoring using a Model Transformation
Engine. Model-driven Software Development, Springer.

