
IADIS International Journal on Computer Science and Information Systems

Vol. 8, No. 1, pp. 1-13

ISSN: 1646-3692

1

CONSTRAINT SPECIFICATIONS USING

PATTERNS IN OCL

Ali Hamie. University of Brighton, Brighton, UK

ABSTRACT

Constraint patterns are very useful for specifying OCL constraints on UML class models. They

potentially shorten the development time and reduce the errors for constraint development by providing

predefined templates that can be instantiated in particular contexts. Constraint patterns can be identified

by analyzing existing constraints for recurring expressions and abstracting from them. This paper extends

the collection of published constraint patterns by identifying further patterns as well as making some

improvements for existing patterns and their description. These are derived from an example model

described in UML and augmented with OCL constraints.

KEYWORDS

Constraint, Pattern, UML, OCL, Specification

1. INTRODUCTION

In the Unified Modeling Language UML (OMG, 2011), model states can only be partially

constrained by means of class diagrams. The modelling notation allows model developers to

define classes, attributes, and operations. Properties and operations have types, and they may

have multiplicity constraints, i.e., they can be sets with a predefined minimum or maximum

size. However, the diagrammatic notation is not expressive enough to describe details that

frequently occur in systems and need to be expressed in the model. Such limited

expressiveness typically requires refinement with textual constraints. In order to express

complex relations and restrictions in a model, the textual constraint language OCL has been

introduced (Warmer & Kleppe, 2003) (OMG, 2012) as part of UML. OCL is based on three-

valued logic with an explicit element denoting undefinedness and typed set theory. It provides

basic data types and a library of collection types such as sets, bags and sequences. OCL can be

used to specify invariants for classes, and preconditions and postconditions for operations. An

invariant can be defined as a predicate that holds for all objects of the constrained class. In this

paper, we use the terms invariant and constraint synonymously.

IADIS International Journal on Computer Science and Information Systems

2

The development of constraint specifications is a difficult and error-prone task

(Ackermann, 2005b) (Wahler, et al., 2006). This is partly due to the fact that class models can

express complicated relations between concepts, including subtyping, reflexive relations, or

potentially dealing with infinitely large instances, and specifying such facts requires

addressing this complexity. The process of writing constraints can be simplified by using

constraint patterns to shorten the development time and avoid syntax errors. A constraint

pattern captures and generalizes frequently used logical expressions. It is a parameterizable

constraint expression that can be instantiated to solve a class of specification problems.

Constraint patterns have been introduced for object-oriented programming (Horn, 1992) and

been adopted in the literature for UML/OCL (Ackermann & Turowski, 2006) (Wahler, et al.,

2006) (Wahler, 2008) (Dolors, et al., 2006).

In this paper we use a model for a video rental store in order to identify additional

constraint patterns and provide equivalent formulations of some existing constraint patterns. In

particular we use a formulation that also provides the context for applying a constraint pattern.

This makes it possible to formulate the conditions under which the pattern can be applied.

Also some pattern formulations may be more useful for debugging purposes when checking

the satisfiability of the constraints. In order to document the various formulations of a

constraint pattern we extend the template used for describing constraint patterns by adding an

optional clause named alternative.

VideoRentalStore

address: String

totalNoCopies: Integer

Member

name: String

memberID : String

address : String

age: Integer

*
1

Title

name: String

rate : Money

noOfCopies : Integer

availableCopies: Integer

/rentedCopies : Integer

membersstore

catalog

store

*

1

Rental

dateMade : Date

payment : Money

rentalstitle

*1

*

1

rentals

member

*rentals

1

Figure 1. Class Diagram for Video Rental Store.

The remainder of this paper is structured as follows. In Section 2 we briefly explain OCL

using an example and introduce constraint patterns. In Section 3 we present some constraint

patterns based on the video rental store model. In Section 4 we provide a concluding remark.

CONSTRAINT SPECIFICATIONS USING PATTERNS IN OCL

3

2. BACKGROUND AND RELATED WORK

2.1 The Object Constraint Language

The Object Constraint Language (OCL) (Warmer & Kleppe, 2003) (OMG, 2012) is a textual,

declarative notation that can be used to specify constraints or rules that apply to UML models.

OCL plays an important role in model driven software development because UML diagrams

are not precise enough to enable the transformation of a UML model to code. In fact, it is an

essential component of OMG’s standard for model transformation for the model driven

architecture (Frankel, 2003).

A UML diagram alone cannot express all relevant constraints for an application. The

diagram in Figure 1, for example, is a UML class diagram modelling the services of a video

rental store. The store has some members that can rent copies of video titles. The main classes

are VideoRentalStore, Title, Member and Rental. The association between VideoRentalStore

and Member indicates that a store has many members and a member belongs to exactly one

store. The association between VideoRentalStore and Title indicates that a store has many titles

and a title belongs to exactly one store. The association between Title and Rental indicates that

a title has many rentals and a rental belongs to one title. The association between Member and

Rental indicates that a member has many rentals and a rental is only for one member.

However, the class diagram does not express the fact that the number of available copies of a

title is less than or equal to the number of copies of that title. It is very likely that a system

built based on class diagram alone will be incorrect. These additional constraints on objects

and entities within a UML model can be precisely described using OCL. It is a textual

language based on mathematical set theory and predicate logic. It supplements UML by

providing expressions that have neither the ambiguities of natural language nor the inherent

difficulty of using complex mathematics. The above constraint, for example, can be expressed

in OCL as follows.

context Title

 inv: self.availableCopies <= noOfCopies

This constraint, called an invariant, states a fact that should always be true in the model.

The context of the invariant is the class Title. The variable self refers to an instance of class

Title.

It is also possible to specify the behaviour of an operation in OCL. For example, the

following OCL constraints specify the behaviour of an operation Title∷addCopy(n:Integer)

using a pair of predicates called preconditions and postconditions.

context Title::addCopy(n: Integer)

 pre: n > 0

 post: self.noOfCopies = self.noOfCopies@pre + n and

 self.availableCopies = self.availableCopies@pre + n

The above precondition and postcondition state that if invoked with n greater than zero,

then the operation increases both the number of copies and available copies by n. In the

postcondition, @pre refers to the value of the expression at the precondition time.

IADIS International Journal on Computer Science and Information Systems

4

2.2 Constraint Patterns

In software design, patterns are used to identify recurring design problems, for which they

provide a common description and solution in a given context. In software modeling the

notion of constraint patterns was introduced to capture frequently occurring restrictions

imposed on models. Wahler (Wahler, 2008) defined a pattern as a description of a generic

solution to a recurring problem in a certain domain that can be reapplied to instances of the

same problem.

There are several ways for describing constraint patterns. Wahler (Wahler, 2008) uses

OCL templates and HOL-OCL functions to describe the specification patterns for OCL and to

formalize their semantics. In that approach, the patterns are classified as atomic or composite.

The atomic patterns are described as OCL templates and HOL-OCL functions. However, since

composite patterns are higher order constructs (representing constraints over constraints) their

semantics cannot be described naturally using OCL parameterized templates, as in the case

with atomic patterns. Consequently, composite patterns are only described in terms of higher

order functions in HOL-OCL.

In (Ackermann, 2005a) a detailed pattern description scheme is provided exposing all

properties of a pattern: name, parameters, restrictions for pattern use, type, context and body

of the resulting constraint. In order to keep the description of patterns consistent, this paper

shall use the OCL template approach when introducing a specification pattern.

In (Wahler, 2008), a pattern named AttributeValueRestriction is defined in order to restrict

the values of attributes. The template for representing the pattern is given as follows.

pattern AttributeValueRestriction (property : Property, operator, value : OclExpression) =

 self.property operator value

The pattern has three parameters: property stands for the attribute that is to be restricted,

operator and value which are used to restrict the value of the attribute. Such a pattern can be

applied in the context of a class to generate an invariant by providing actual values for the

parameters.

Using the above pattern, an invariant stating that the number of copies for a title is always

greater than zero, can be stated as follows.

context Title

 inv: AttributeValueRestriction(noOfCopies, >, 0)

That is the parameters property, operator and value have been replaced by the actual values

noOfcopies, >, and 0 respectively.

CONSTRAINT SPECIFICATIONS USING PATTERNS IN OCL

5

3. ATERNATIVE FORMULATION FOR CONSTRAINT

PATTERNS

In this section we consider alternative formulations for some constraint patterns that can be

useful for testing and debugging the model. For this purpose, the template for describing

patterns is extended by adding an alternative clause that provides a semantically equivalent

expression to the body of the pattern. In this way one description may concentrate on the

clarity of the expression defining the pattern while the other may be useful for testing the

model.

3.1 Restricting the Multiplicity of Associations

The multiplicities of properties (associations) can only be roughly constrained in a

diagrammatical way in class models. However, there are situation where the multiplicity of an

association depends on the value of an attribute. For example, an object of class Title can have

an arbitrary number of rentals which cannot exceed the total number of copies for that title. So

there is a dependency between the association with role name rentals and the attribute

noOfCopies. Here we are assuming that the model deals with current rentals rather than past

rentals. The following OCL constraint captures this dependency.

context Title inv RentalsRestriction:

 self.rentals->size() <= noOfCopies

A constraint pattern named MultiplicityRestriction is defined in (Wahler, 2008) to capture

this kind of constraints. This pattern is presented as an OCL template as follows.

pattern MultiplicityRestriction (navigation : Sequence(Property), operator : OclExpression,

 value : OclExpression) =

 self.navigation->asSet()->size() operator value

This pattern has three parameters: navigation, represented as a sequence of properties, thus

allowing the use of OCL navigation expressions such as self.catalog.rentals, operator, and

value, which can be arbitrary OCL expressions. value can be the name of an attribute or an

arbitrary OCL expression. Since self.navigation may result in a bag, the OCL operator asSet()

is used to convert the resulting collection into a set.

Using the MultiplicityRestriction pattern, we can define the constraint RentalsRestriction as

follows.

context Title inv RentalsRestriction:

 MultiplicityRestriction(rentals, <=, noOfCopies)

This is done by replacing the parameters navigation, operator and value by rentals, <=, and

noOfCopies respectively.

The constraint patterns as defined in (Wahler, 2008) leaves the context class implicit. This

makes it difficult to state the conditions for applying the pattern. A variant of this pattern is

obtained by including the context class as a parameter.

IADIS International Journal on Computer Science and Information Systems

6

pattern MultiplicityRestriction (class: Class, navigation : Sequence(Property),

operator: OclExpression, value:OclExpression) =

 self.navigation->asSet()->size() operator value

The class parameter does not appear in the expression defining the pattern, however it can

be used to state the meta-level conditions for applying the pattern, i.e. the first property in

navigation belongs to instances of class. In some cases the class parameter may be used in the

body of the pattern, in particular when the operation allInstances is used.

For invariants this formulation of the pattern can be regarded as equivalent to the following

where the parameters or placeholders of the template are written with angle brackets (<>). The

place holders inside the pattern definition are identified with actual type names and properties

when the pattern is applied.

context <class>

 inv: self.<navigation>->asSet()->size() <operator> <value>

3.2 Unique Identification

The unique identification constraint occurs very frequently. In the video rental store model it

is required that the ID for members is unique. That is any two members, m1 and m2 should be

distinguishable by their membership identities. In OCL such constraint is expressed as

follows.

context Member

 inv UniqueID: Member.allInstances->isUnique(memberID)

This constraint can be generalized to composite primary keys by using the OCL tuple type.

The Unique Identifier pattern (Wahler, 2008) (referred to Semantic Key in (Ackermann &

Turowski, 2006)) captures the situation where an attribute (or a group of attributes) of a class

plays the role of an identifier for the class. That is the instances of the class should differ in

their values for that attribute (group). The corresponding OCL template as defined in (Wahler,

2008) is given as follows.

pattern UniqueIdentifier (property : Tuple(Property)) =

 self.allInstances->isUnique(property)

This pattern has one parameter property, which denotes a tuple of properties that have to

be unique for each object of the context class. However, self.allInstances is not well defined in

OCL since the operation allInstances applies to classes only. This can be overcome by taking

the context class as a parameter for the pattern. Thus the pattern is to be instantiated in the

context of class.

pattern UniqueIdentifier (class: Class, property : Tuple(Property)) =

 class.allInstances->isUnique(property)

In order to ensure the syntactic correctness of the resulting OCL expression the following

conditions are needed. The pattern application should be performed in the context of class,

and that the properties in the tuple should be among the attributes of class.

CONSTRAINT SPECIFICATIONS USING PATTERNS IN OCL

7

The constraint that requires instances of the Member class are uniquely identifiable by their

ID, can be expressed using the Unique Identifier pattern as follows:

context Member

 inv UniqueID: UniqueIdentifier(memberID)

The Unique Identifier pattern provides a global uniqueness since it refers through the OCL

operation allInstances to all instances of the class. However, there are situations where the

constraint may state that each instance of a class accessible starting from a given collection

should be uniquely identifiable by the value of a particular attribute. For example the

constraint UniqueID can be expressed as follows.

context VideoRentalStore

 inv UniqueID: self.members->isUnique(memberID)

In this case we navigate from the class VideoRentalStore to get the collection of members

for that store. That is the members within a video store may have unique identities. A variant

of the Unique Identifier pattern can be defined as the following OCL template.

pattern UniqueIdentifier (navigation: Sequence(Property), property : Tuple(Property)) =

 self.navigation->isUnique(property)

Using this pattern we can express the uniqueness constraints for members as follows.

context VideoRentalStore

 inv UniqueID: UniqueIdentifier(members,memberID)

The formulation of the pattern using the operation allInstances can be problematic since

the operation is not defined on the basic types such as Integer. This can be overcome by

having a class representing the system and navigating from this class to obtain all the existing

instances of the other class as shown above.

Some constraint patterns may have different formulations with some more suitable than

others for testing and debugging the model. For this we extend the template for describing

constraint patterns by adding a new clause as follows.

pattern UniqueIdentifier (class: Class, property : Tuple(Property)) =

 class.allInstances->isUnique(property)

 alternative: class.allInstances->select(m | m.property = self.property)->size() = 1

The constraint in the alternative clause provides better support for debugging as it will

provide information about those objects that violates the constraint rather than just returning

true or false.

Another useful clause to include for the patterns is a ‘derive’ clause which states some

consequences that follow from the definition of the pattern. This can be used for reasoning

about the model.

IADIS International Journal on Computer Science and Information Systems

8

3.3 Restricting Attribute Values

The values of attributes of one or more classes cannot be related to each other using the

diagrammatic modeling language. In this subsection, we illustrate this by an example.

Attribute Sum Restriction. The class model of the video rental store has an attribute

totalNoCopies representing the number of copies in the store. The number of copies in the

store is the sum of the number of copies of all titles in that store. Therefore, the attributes

totalNoCopies and noOfCopies must be related. However such relations cannot be modelled in

terms of the UML meta-model. Using OCL we can write the following constraint.

context VideoRentalStore

 inv AllCopies: self.totalNoCopies = self.catalog.noOfCopies->sum()

A constraint pattern named AttributeSumRestriction is defined in (Wahler, 2008) to capture

similar kind of constraints. However, this pattern is defined using only the comparison

operator <=. This pattern is presented as an OCL template as follows.

pattern AttributeSumRestriction(navigation: Sequence(Property),

 summand: Property, summation: Property) =

 self.navigation.summand->sum() <= summation

In order to express the above constraint we extend the AttributeSumRestriction pattern by

adding a new parameter for the comparison operator as follows.

pattern AttributeSumRestriction(navigation: Sequence(Property), summand: Property,

 operator: OclExpression, summation: Property) =

 self.navigation.summand->sum() operator summation

This pattern has four parameters. navigation represents a path expression to a related class,

summation refers to the property in the context class that denote the value that provides a

limit, and summand refers to the property in the related class that is accumulated, operator

denotes a comparison operator. The original pattern defined in (Wahler, 2008) uses <= for the

operator and does not include the parameter operator. This definition provides more flexibility

as the operator can be taken as =, <= or >=.

Employing this constraint pattern, the constraint AllCopies can be expressed in a more

concise way as follows:

context VideoRentalStore inv AllCopies:

 AttributeSumRestriction(catalog, noOfCopies, =, totalNoCopies)

Attribute Relation. A simple form of this constraint is when two properties can be related

by a binary operator such as less-than or equal (<=). For example the value of attribute

noOfCopies is always less than or equal to totalNoCopies. The following OCL constraint

describes such relationship.

context VideoRentalStore inv lessCopies:

 self.catalog->forAll(t | t.noOfCopies <= totalNoCopies)

CONSTRAINT SPECIFICATIONS USING PATTERNS IN OCL

9

The derived constraint pattern from this constraint is given by (Wahler, 2008) as follows:

pattern AttributeRelation(navigation: Sequence(Property), remoteAttribute: Property,

 operator: OclExpression, contextAttribute: Property)=

 self.navigation->forAll(x | x.remoteAttribute operator contextAttribute)

Using this constraint pattern, the constraint lessCopies can be expressed as follows:

context VideoRentalStore inv lessCopies:

 AttributeRelation(catalog,noOfCopies, <=, totalNoCopies)

The constraint pattern can be modified by an additional argument in order to indicate

whether the whole constraint will be negated or not. This results in the following pattern.

pattern AttributeRelation(navigation: Sequence(Property), remoteAttribute: Property,

 operator: OCLExpression, contextAttribute: Property, neg : Boolean) =

 let b: boolean = self.navigation->forAll(x | x.remoteAttribute operator contextAttribute)

 in if not(neg) then b else not(b)

3.4 Commutativity Constraints

For the video rental store model (Figure 1), there are three possible ways to find all the rentals.

One way is to navigate using the association between the VideoRentalStore and the Member

classes, and then navigate along the association between Member and Rental. The other way is

similar but the navigation is via the associations between VideoRentalStore and Title, and Title

and Rental respectively. These two ways should result in the same collection. Thus we have

the following OCL constraint.

context VideoRentalStore

 inv AllRentals: self.catalog.rentals = self.members.rentals

This constraint can be generalized with the following NavigationCommutativity pattern

defined as an OCL template.

pattern NavigationCommutativity(navigation1, navigation2 : Sequence(Property) =

 self.navigation1 = self.navigation2

This pattern has two parameters.navigation1 and navigation2 represent paths expression

to related classes respectively.

Using this constraint pattern, the constraint AllRentals can be expressed as follows:

context VideoRentalStore inv:

 NavigationCommutativity(Sequence{catalog, rentals}, Sequence{members, rentals})

There are situations where the values of the navigation expressions results in values of

different collection types. A typical example is where one navigation expression results in a

set and the other expression results in a bag. In this case the OCL operator asSet can be used

to convert a bag into a set. This leads to the following formulation of the pattern.

IADIS International Journal on Computer Science and Information Systems

10

pattern NavigationCommutativity(navigation1, navigation2 : Sequence(Property) =

 self.navigation1->asSet() = self.navigation2->asSet()

This also works in cases where the result of one navigation expression is a bag and the

result of the other is a set.

The formulation of the commutativity pattern is useful for debugging the model. That is

when the constraint fails (returning false) one can use a tool for evaluating the two expressions

and compare their results for identifying the objects causing the problem.

Reservation Copy Rental
heldFor

0..1

current

0..1

Figure 2. Exclusive Associations.

3.5 Exclusive Property Constraints

A common constraint is where one object of class A can be linked to an object of class B or to

an object of class C but not both. For example if we include copies of titles as well as

reservations then the following diagram in Figure 2 may be part of the video rental store class

model. The constraint in this context is that a copy is on hold for a reservation or is rented but

not both. The OCL invariant that captures this constraint is given as follows.

context Copy inv :

 self.heldFor->notEmpty() xor self.current->notEmpty()

Since the associations are optional (partial) we can check for a link by treating the

navigation expressions as sets and applying the OCL operation notEmpty.

This constraint can be generalized with the following ExclusiveProperty pattern defined as

an OCL template.

pattern ExclusiveProperty(property1: Property, property2: Property) =

 self.property1->notEmplty() xor self.property2->notEmplty()

Using this constraint pattern, the above exclusive property constraint can be expressed as

follows:

context Copy inv:

 ExclusiveProperty(heldFor, current)

3.6 Preconditions and Postconditions Constraints

Most of the existing OCL specification patterns have been related to the use of invariants for

specifying constraints patterns. This is due to the fact that reasoning about the model mainly

involves the static aspects which require the specification and evaluation of invariants.

However, constraint patterns may be useful for preconditions and postconditions, in particular

those constraints that prevent the breaking of invariants. For example, the uniqueness

CONSTRAINT SPECIFICATIONS USING PATTERNS IN OCL

11

constraint imposed on the ids of members within the video rental store can be prevented from

breaking by means of suitable precondition and postcondition pair for the operations that may

violate this constraint.

Consider the operation enrolls which adds a new member to the video store. The

corresponding OCL specification of enrolls is given below.

context VideoRentalStore::enrol(name: String, id : String)

 pre: self.members.memberID->excludes(id)

 post: self.members->exists(m : Member | m.oclIsNew() and

 m.name = name and

 m.memberID = id)

 and self.members->size() = self.members@pre->size()+1

The precondition states that the parameter id is not yet used as a unique identity for

existing members, and the postcondition states that a new object of class Member was created

with the attribute memberID equals to id and with attribute name equals to name. The size of

the new members set after executing the operation is increased by one.

From the precondition the constraint pattern NotInBag can be derived. This pattern takes

two parameters, one is a bag and the other is an element, and asserts that the element is not in

the bag. It is defined by the following template.

pattern NotInBag(bag: OclExpression, e: OclExpression) =

 bag->excludes(e)

 alternative: bag->count(e) = 0

In the pattern we added a clause that provides an alternative formulation of the body of the

pattern. In this case the two expressions bag->excludes(e) and bag->count(e)=0 are

semantically equivalent. This will be useful because some formulations may be better for

readability purposes while others are better for testability purposes.

Using the pattern NotInBag the precondition of the operation enroll can be specified as

follows.

pre: NotInBag(members.memberID, id)

For the postcondition we have the following pattern.

pattern NewObject(navigation: Sequence(Property),

 attribute1, attribute2: Property, value1, value2: OclExpression) =

 self.navigation->exists(o | o.oclIsNew() and

 o.attribute1 = value1 and

 o.attribute2 = value2) and

 self.navigation->size() = self.navigation@pre->size()+1

The pattern NewObject takes five parameters. navigation represents a path expression to a

related class which evaluates to a set. attribute1 and attribute2 represents the properties of the

new object to be set to the values value1 and value2 respectively. For simplicity, this pattern is

defined with two properties (attributes), however, for the general case the pattern would be

defined by taking a list of properties and a list of corresponding values as parameters. An

auxiliary operation can be easily defined to set the values of the properties using the two lists.

IADIS International Journal on Computer Science and Information Systems

12

Using the pattern NewObject the postcondition of the operation enroll can be specified as

follows.

post: newObject(members, memberID, name, id, name)

The operation enroll creates a new member object and sets its attributes to some values

provided as parameters. However if the object is created beforehand then one can define an

operation addMember that takes the member as a parameter and adds it to the collection of

members. The following is an OCL specification for addMember.

context VideoRentalStore::addMember(m: Member)

 pre: self.members->excludes(m)

 post: self.members->includes(m)

In this case new patterns can be defined that correspond to an element in a collection and

an element not in a collection.

4. CONCLUSION

In this paper, we have introduced additional constraints patterns that can be used for the

development of constraint specifications in UML and OCL. In particular we have adapted the

representation of some constraint patterns so that the conditions for applying them can be

formalized. This is done by including the context of the constraint as a parameter for the

pattern. This is also needed in contexts where the OCL operation allInstances is used. We

have also presented two variants of the unique identification pattern. The template used for

describing specification patterns was extended by adding a new clause that provides an

alternative formulation of the pattern. This is useful since some constraints may have various

formulations some of which provide better support for checking and debugging their

satisfiability within the model. Further research will identify further constraint patterns for

invariants, preconditions and postconditions, incorporate these new constraints within tools

and using an appropriate tool for the instantiation of proposed patterns.

REFERENCES

Ackermann, J., 2005a. Formal Description of OCL Specification Patterns for Behavioral Specification of

Software Component. In Thomas Barr (ed.). Proceedings of the MoDELS’ 05 Conference Workshop

on Tool Support for OCL and Related Formalisms- Needs and Trend, Technical Report LGL-

REPORT-2005-001, EPFL, pp. 15-29.

Ackermann, J., 2005b. Frequently Occurring Patterns in Behavioral Specification of Software

Components. In Klaus Turowski and Johannes Maria Zaha (ed.), COEA 2005, 41–56. GI, Erfurt,
Germany.

Ackermann, J. & Turowski, K., 2006. A Library of OCL Specification Patterns for Behavioral

Specification of Software Components. Lecture Notes in Computer Science, pp. 255-272.

Dolors, C. et al., 2006. Facilitating the Definition of General Constraints in UML. Lecture Notes in

Computer Science, Springer, pp. 260-274.

CONSTRAINT SPECIFICATIONS USING PATTERNS IN OCL

13

Frankel, D. S., 2003. Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley.

Horn, B., 1992. Constraint patterns as a basis for object oriented programming. Proceedings of the

European Conference on Object-oriented programming systems, languages, and applications
(OOPSLA'92). Vancouver, British Columbia, Canada, ACM, pp. 218-233.

OMG, 2011. Unified Modeling Language (UML) Superstructure Version 2.4.1.

OMG, 2011. Unified Modeling Language Infrastrucure Version 2.4.1.

OMG, 2012. Object Constraint Language (OCL) Version 2.3.1.

Wahler, M., 2008. Using patterns to develop consistent design constraints, PhD dissertation, ETH

Zurich, Switzerland.

Wahler, M., Koehler, J. & Brucker, D. A., 2006. Model-Driven Constraint Engineering. Electronic

Communications of the EASST.

Warmer, J. & Kleppe, A., 2003. The Object Constraint Language: Getting Your Models Ready for MDA.

Reading, MA: Addison-Wesley.

