
IADIS International Journal on Computer Science and Information Systems
Vol. 7, No.1, pp. 106-119
ISSN: 1646-3692

106

SELECTING ARCHITECTURAL PATTERNS
THROUGH A KNOWLEDGE-BASED APPROACH

Liziane Santos Soares, Roberto Tom Price, Marcelo Soares Pimenta. Instituto de
Informática, Universidade Federal do Rio Grande do Sul. Caixa Postal 15064, 91501-970. Porto
Alegre, RS, Brazil.

José Luis Braga. Departamento de Informática, Universidade Federal de Viçosa, Campus da UFV,
36570-000, Viçosa-MG, Brazil.

ABSTRACT

Several architectural patterns are described in books, papers and in repositories. Due to the huge amount
of information related to patterns description and their application, it is important to have approaches and
tools available to help developers carry on the selection of the patterns more suited to each software
project. The reasoning behind architectural decisions, regarding pattern selection, usually exists in the
form of tacit knowledge. It is important to make this knowledge explicit by mapping the patterns and the
domains where they are most often used. This work proposes a knowledge-based approach to accomplish
the architectural patterns selection, according to each project. The approach aims at supporting the
construction and maintenance of a knowledge-base to guide the selection. We built an initial base as a
suggestion, relying on recommendations of specialists found in the literature. Each team or institution
can build its own base or enhance an existing one through the structure offered by the approach. The
input for pattern selection consists, basically, of information available in systems requirements. The
proposal presented is one step towards the automation of architectural pattern selection during on
architectural design.

KEYWORDS

Architectural patterns selection, software architecture, knowledge-based approach.

1. INTRODUCTION

Designing software architecture involves making decisions that have great impact on systems
in terms of efficiency, re-usability, maintainability, capacity to evolve, and other quality
attributes. Most of the architectural decisions have multiple consequences in the system.
Kruchten et al. (2006) highlights that, with the exception of the resulting architectural design,

SELECTING ARCHITECTURAL PATTERNS THROUGH A KNOWLEDGE-BASED APPROACH

107

most of the knowledge about architecture is usually not documented, and this knowledge
remains inside the architects’ minds. The reasoning behind an architectural decision, although
essential, usually exists in the form of tacit knowledge. For a certain project, this kind of
knowledge may comprise the resulting architecture design as well as the architectural
decisions made to build the design, the context of the development and other factors that,
together, determine the selection of a particular solution.

Architectural patterns provide predefined structured schemas, including the description of
elements, their responsibilities and the rules and guidelines for organizing the relationship
between these elements (Buschmann et al. 1996). Several benefits may be obtained through
pattern usage. One of them is the encapsulation and reuse of successful solutions used
previously. Patterns also contribute for documenting the adoption of solutions, capturing
information about their structure and behavior. They provide information about the reasoning
related to themselves, the consequences of their application and the motivation for their usage
(Harrison et al. 2007).

The selection of architectural patterns comprises several architectural decisions. It shall
consider the patterns more appropriate for each system according to its requirements. Another
important point is the analysis and exclusion of patterns that would present any kind of
conflict among them. Generally, experienced architects are able to make these kinds of
decisions, even in an implicit manner. It is important to make this knowledge explicit by
mapping the patterns and the domains where they are most often used and analyzing the
reasoning behind this mapping (Harrison & Avgeriou 2007). That knowledge can provide
support for the task of defining the system architecture for both the developer who has a huge
experience in software architecture and for inexperienced developers.

There are several architectural patterns described in books, papers and in repositories
(Buschmann et al. 1996; Fowler 2002; Schmidt et al. 2000; Kircher & Jain 2004; Buschmann,
Henney & Schmidt 2007b; Buschmann, Henney & Schmidt 2007a; Cunningham n.d.; Group
n.d.; Booch n.d.). They are focused on different domains and are generally described in a
textual manner. Due to the huge amount of information related to pattern description and
decisions to select them, it is also important having techniques, methods and tools available to
help architects and developers accomplishing the selection of patterns more suited to each
system.

This work proposes a knowledge-based approach to accomplish the architectural patterns
selection, according to each project. The approach aims at supporting the construction and
maintenance of a knowledge-base to guide the selection. We built an initial base as a
suggestion, relying on recommendations of specialists found in the literature. Each team or
institution can build its own base or enhance an existing one through the structure offered by
the approach. The input for the pattern selection consists, basically, of information available in
systems requirements specification.

This paper is organized as follows. Section 2 describes the development of the approach
structure which includes the construction of a knowledge-base containing elements necessary
to accomplish the pattern selection. Section 3 presents a proof-of-concept for the proposed
approach, in the form of a Prolog program. An example of its execution is presented as well as
how to enhance the knowledge-base. Section 4 discusses related work and Section 5 concludes
the paper.

IADIS International Journal on Computer Science and Information Systems

108

2. APPROACH FOR PATTERNS SELECTION

2.1 Construction of the Knowledge-base

In the literature, there are several repositories of architecture patterns (Buschmann et al. 1996;
Fowler 2002; Schmidt et al. 2000; Kircher & Jain 2004; Buschmann, Henney & Schmidt
2007b; Buschmann, Henney & Schmidt 2007a; Cunningham n.d.; Group n.d.; Booch n.d.;
Rising 2000). Some of them are related to specific types of system (Schmidt et al. 2000;
Buschmann, Henney & Schmidt 2007b; Kircher & Jain 2004) and others have a wider scope
(Buschmann et al. 1996; Fowler 2002; Buschmann, Henney & Schmidt 2007a; Cunningham
n.d.; Group n.d.; Booch n.d.; Rising 2000). Patterns are generally described by texts using
natural language, which is not precise enough to be treated by a computer. The description is
organized in sections such as context, problem, structure, dynamics (including possible
scenarios), examples, variants and known uses and consequences. Information about the
problem to be solved and the pattern’s solution are, sometimes, mixed in the sections
(Buschmann et al. 1996). In a pattern description, we can mine information about its impact on
certain quality attributes. Moreover, we can find information about features of a system for
which the pattern is more suitable.

In this work an initial base was built based on several studies that focus on software
architecture methods including the use of architectural patterns (Avgeriou & Zdun 2005;
Bachmann et al. 2005; Bass et al. 2003; Bosch 2000; Buschmann et al. 1996; Shaw & Garlan
1996; Hofmeister et al. 2005). Among them, we find information about patterns, their
properties, the analysis of their application as well as their consequences; contexts where they
are applicable and relationships among them. This kind of information allowed the
construction of a knowledge-base to guide the selection of architectural patterns according to
each system. The knowledge-base initially built regards the set of architectural patterns
described in (Buschmann et al. 1996). The set was prioritized because it embraces classic and
well known patterns with a broader scope. However, each team or organization can build and
enhance its own base using information from its own experience in previous projects, or from
experience of specialists.

Patterns may be kept preserving the original sections from their description (listed in the
beginning of this section). Although, only their names are relevant for the selection approach
itself.

2.2 Non-functional Requirements as Input for the Selection
Approach

The architecture is designed to address a set of stakeholder needs, concerned with functional
and non-functional requirements. A common concept behind several definitions is that the
NFRs describe qualities or characteristics which software should possess and constraints
which it should meet. The constraints are related to the system being developed and to the
development process (Glinz 2007). The properties and characteristics can be related to quality
attributes and other issues such as: appearance, platform, efficiency and accuracy. NFRs are
quite often the most significant requirements which an architect is concerned about (Eeles
2006). According to Buschmann et al. (1996), every architectural pattern denotes a

SELECTING ARCHITECTURAL PATTERNS THROUGH A KNOWLEDGE-BASED APPROACH

109

relationship between a specific context, a given problem and a solution. The context for
architectural patterns application can be extracted from the system requirements, particularly
from the non-functional requirements.

System qualities are related to quality attributes that are desired characteristics of software,
associated with non-functional requirements (Mylopoulos et al. 1992). Common examples of
these attributes are usability, portability, reliability, security, efficiency and maintainability.
The constraints specify in which manner something in the system may be realized (Lawrence
Chung & Leite 2009), and are related to structural aspects such as interface, platform, and
physical distribution. They may be expressed as features desired for the system. For example,
how the interface shall be: interactive with the user or no (in the case of interaction with other
system)? How the distribution of the system shall be: stand-alone or distributed? The system
shall be designed to be web-based? All these questions are related to desired features for the
system.

Information about non-functional requirements of each system, including system qualities
and features (constraints), can be found in requirements artifacts such as Vision, Use Cases
(specifically in the Special Requirements section of the Use Case) and Supplementary
Specification from RUP (Kruchten 2004); or other artifacts with similar purpose. Thus, we
define desired quality attributes and features as the input for our approach. The following
sections detail the relation between architectural patterns and quality attributes; and between
architectural patterns and features. The relations correspond to facts in the knowledge-base.

2.3 Relation between Patterns and Quality Attributes

Over the years, a number of factors constituting characteristics and behavior of the software
have been identified and associated with quality attributes (McCall, 1977). An attribute is a
quality criterion which can be used to evaluate the performance of a system.

Pattern descriptions contain information about consequences of their usage (Buschmann et
al. 1996). The analysis of the consequences allows discovering the liabilities and strengths of
each pattern related to quality attributes. A certain pattern may impact a certain quality
attribute positively, negatively or does not present any impact (Harrison & Avgeriou 2007).

This information may be reinforced by the analysis of the impact. Consider, for example,
the pattern Layer and its impact over maintainability. In this case, the impact is considered to
be positive, namely, it contributes for the system maintainability (Buschmann et al. 1996). The
structure proposed by the pattern Layer complies with the Common-Closure Principle (CCP)
(Martin 2002) where the classes susceptible to changes for the same reason are put in a same
place. It minimizes the effort of releasing and revalidation, which contributes to enhance the
maintainability of the system. Similar analysis can be made regarding other patterns and their
impact on quality attributes, but this is not in the scope of this work. What is important here is
highlighting that patterns present an impact on one or more quality attributes and those
impacts can be mined from their description and from literature (Buschmann et al. 1996;
Harrison & Avgeriou 2007; Harrison & Avgeriou 2008).

In order to build the knowledge-base, we consider three possible values for the impact:
positive, negative or neutral. Table 1 presents a subset of impacts mined from the literature,
only to illustrate our discussion. Each pattern may affect more than one quality attribute in
different ways. The pattern MVC (Model View Controller), for example, impacts negatively
the Maintainability and Portability, whereas impacts positively the Usability.

IADIS International Journal on Computer Science and Information Systems

110

Table 1. Impact of patterns over quality attributes.

PATTERN IMPACT QUALITY ATTRIBUTE
Layers Positive Maintainability
MVC Negative Maintainability
Pipes & Filters Negative Security
Broker Positive Security
Broker Positive Usability
Broker Neutral Reliability
Layers Positive Portability
MVC Positive Usability
Broker Positive Portability
MVC Negative Portability

The relationship between a quality attribute and a pattern consists of the impact of the

latter on the former. Each impact constitutes a fact within the knowledge base and is used in
the rules for pattern selection. The representation of this relationship gathers the pattern in
question, the quality attribute impacted by the pattern and the type of impact (positive,
negative, or neutral).

Impact (Pattern, QA, Type)

Other impacts can be added to the knowledge-base by the team. The quality attributes in
the base can be obtained from well-established quality models as those presented in (McCall
1977; Boehm et al. 1978; Grady 1992; Schulmeyer & McManus 1998; ISO/IEC 2001).

2.4 Relation between Patterns and Features of the System

As was said previously, non-functional requirements include constraints specifying in which
way something in the system should be realized. For example, how the interface should be:
interactive with the user or no (interaction with other system)? How the distribution of the
system shall be: stand-alone or distributed? Is the system supposed to be executed on-line?
The three questions deal with features we call interactive, distribution, web-based.

A certain pattern may be suitable to be adopted in a project, depending on a desired
feature. For example, if a system is intended to be interactive with a graphical interface, the
patterns Model View Controller (MVC) or Presentation Abstraction Controller (PAC) are
suitable (Buschmann et al. 1996). If the system is intended to be distributed, the pattern
Broker can be used (Buschmann et al. 1996).

With this in mind, we assume that a feature is related to a certain structural issue of the
system as platform, interface, distribution and so on. There may be different possible
constraints regarding each issue, thus each feature may be associated to a set of values, where
each value corresponds to a possible constraint. For the purpose of structuring our approach,
each feature is included in the knowledge-base together with their possible values.

For example, considering the feature distribution (related to the system structure and not to
the manner by which its versions are released to the users), we have two possible values for it:
stand-alone or distributed, which means that there are two possible constraints for the
distribution of a system: it may be distributed or may be stand-alone.

SELECTING ARCHITECTURAL PATTERNS THROUGH A KNOWLEDGE-BASED APPROACH

111

It is important to highlight that the team can define features and values in the way that best
suit them. For example, the feature interactive could have been defined as: Interaction, and the
possible values: user, other_systems and both. Table 2 shows a set of features and their
respective possible values, supported by information extracted from the literature.

Table 2. A set of features and their possible values.

FEATURE POSSIBLE VALUES
adaptable [yes, no]
with_nondeterministic_solution [yes, no]
real_time [yes, no]
distribution [distributed, stand_alone]
embedded [yes, no]
interactive [yes, no]
gui_based [yes, no]
web_based [yes, no]

The feature adaptable refers to the characteristic of the system being able to adapt and

change itself in certain points. Namely, the value yes for adaptable indicates that the system
has a structure that allows changing its behavior or structure a priori, without the necessity of
an explicit software maintainace and a release of a new version. Systems with computational
reflection fall in this case. The feature with_nondeterministic_solution is related to a system
whose problem does not present a deterministic solution. In general, a system that involves
heuristic computation or any support for artificial intelligence presents value yes for that
feature. The feature real time indicates if the system presents restrictions on response time
during the processing (yes) or not (no).

The feature interactive specifies whether the system should be interactive with the user
(yes) or not (no). Gui(graphical user interface)_based is the feature that indicates whether the
system interface with the user should be graphical (yes) or not (no - for example, an interface
that uses a command prompt). These last two features are intimately linked, since interactive
is no, gui_based will be also. In addition, some patterns are applicable only if both are yes
such as the Model View Controller and Presentation Abstraction Control.

Distribution refers to the way the system will be executed. The system can be executed
centrally from a computer (stand_alone) or in a decentralized manner through two or more
computers connected via a network (distributed). The feature web_based is related to systems
that are on a server, accessible through a Web browser. In general, these systems include code
in languages supported by Web browsers.

Each system can present a specific configuration of values for the features. Consider, for
example, a dedicated system to control a dispositive including mechanical parts. It consists of
an embedded system and probably presents restrictions on the response time for processing.
Besides, nowadays that type of system tends to offer human interfaces. A possible
configuration for a system like this may be [adaptable=no,
with_non_deterministic_solution=no, embedded=yes, real_time=yes, interactive=yes
gui_based=no, distribution=stand-alone, web_based=no]. If we consider an e-commerce
system, a possible configuration may be [adaptable=no, with_non_deterministic_solution=no,
embedded=no, real_time=no, interactive=yes, gui_based=yes, distribution=distributed,
web_based=yes].

IADIS International Journal on Computer Science and Information Systems

112

Each feature can be associated to a set of possible values. The features and the possible
values constitute constants in the knowledge-base. The representation of a feature that has a
certain value constitutes a fact in the base.

Feature (Value)

A particular value for a feature may indicates a certain pattern more applicable to the
application context. Considering a specific project, only one value can be attributed for each
feature. Other features and their possible values can be added to the base by the team or
institution. Not only the features but also their values are used in the rules for pattern selection.

2.5 Pattern Selection Rules

In the previous sections we set the grounds for the construction of our knowledge-base (2.1).
Then, we discussed about software architecture and non-functional requirements and we
specified two kinds of elements to be the input for our approach: quality attributes and
features for each system (2.2). Next we described and illustrated the relation between the
input elements and architectural patterns (2.3 and 2.4).

Our next step consists in formulating the types of rules in the base. They are built aiming at
representing recommendations found in the literature and also those extracted from specialists
and teams. They involve the elements discussed previously, like quality attributes (QA),
features and their values, the impact of patterns over quality attributes and the suitability of
patterns according to the features.

(i) Recommendations of a pattern based on its impact over quality attributes

QA Ʌ Impact (Pattern, QA, positive) Æ Pattern

Suppose the system requirements specify Security as a desired QA. Patterns that help
achieving this requirement include Layer or Broker (Harrison and Avgeriou, 2007; Harrison
and Avgeriou, 2008). Each pattern presents an impact on one or more quality attributes, being
this impact positive, negative or null. This knowledge can be used in order to compose rules
where depending on a desired QA, a set of patterns, which affect positively the QA, are
selected. For example:

security Ʌ Impact (broker, security, positive) Æ broker

(ii) Recommendation of a pattern based on the values for the features

Feature(Value) Ʌ … Ʌ Feature(Value) Æ Pattern

As previously said, each system presents a configuration of values for the features. This
type of rule represents recommendations about patterns that are more suitable according to a
specific value for a feature. For example, in the case of a system that is intended to be
distributed, pattern Broker is suitable. In the case of a system that is intended to be Interactive
(yes) and gui_based (yes), patterns such as MVC or PAC are suitable (Buschmann et al.,
1996).

SELECTING ARCHITECTURAL PATTERNS THROUGH A KNOWLEDGE-BASED APPROACH

113

Interactive (yes) Ʌ GUI-based (yes) Æ mvc
Distribution(distributed) Æ broker

(iii) No recommendation of a pattern based on the values for the features

Feature(Value) Ʌ … Ʌ Feature(Value) Æ ¬ Pattern

Rules can be created for patterns that are not suitable according to certain values of
features. For instance, if the system is intended to be stand-alone Distribution(stand-alone)
the pattern Broker is not suitable:

 Distribution(stand-alone) > Æ ¬ broker

Here, as we are building an initial base, the rules consider features listed in Table 2. As the
base is enhanced with other features and their possible values, rules involving them should be
included. The processing of rules considers, firstly, rules of type (i) to obtain an intermediary
list of patterns. The rules of type (ii) and (iii) are processed as subsequent steps to adding more
appropriate patterns or eliminating those that are incompatible according to the values. After
processing all the rules, the approach for pattern selection generates a list of candidate patterns
to be applied to the architectural project.

2.6 Elements of the Knowledge-Base

This section describes the conceptual model containing the main concepts associated with the
patterns selection rules. Figure 1 shows the classes representing the elements of the base.

Figure 1. Metamodel for knowledge-base elements.

IADIS International Journal on Computer Science and Information Systems

114

In the metamodel, classes are stereotyped with the type of role performed by each element
in the logical language. The classes Feature, Possible Value, Pattern and Quality Attribute
consist of constants in the logical language. The other classes consist of facts in logical
language:

• Impact pattern over QA: this fact is related to the relationship described in Section 2.3,
between patterns and quality attribute (Impact (Pattern, QA, Type)).

• Value of the feature: this fact is related to the relationship described in Section 2.4,
between features and values (Feature (Value)). It associates a feature to one
of its possible values.

The rules for pattern selection are derived from the relationships among the classes:
Pattern, Impact pattern over QA, Value of the feature.

3. PROTOTYPE IMPLEMENTATION

As a proof-of-concept for our approach, we built a prototype in Prolog. The key idea is
translating the elements discussed until here into Prolog clauses. The SWIProlog1 inference
engine is used for rule processing, generating a list o suggested patterns. We decided to
implement the rules in Prolog to benefit from a language and an inference engine widely used
for developing knowledge-based systems.

Our knowledge-base includes quality attributes, patterns, features of the systems (and their
possible values), impact of patterns over quality attributes, recommendations of patterns more
suitable or not according to features. Table 3 shows how those elements are represented inside
the Prolog program. The rules described in Section 2.5 are translated into Prolog according to
Table 4, using elements of Table 3. The program input consists of a text file, including a list of
quality attributes and the values for the features defined in the base. Each supplied value for a
certain feature must be one of the possible values defined in the base. The text file must be in
conformance with a predefined format and is specific for each system architecture design.
After processing the rules, the final result is a list of candidate architectural patterns to be
applied to the system architecture.

Table 3. Prolog representation of elements in the knowledge-base.

ELEMENT OF THE BASE REPRESENTATION IN PROLOG EXAMPLE
Quality attribute Constant usability
Pattern Constant mvc
Feature Constant distribution
Possible value for a feature Constant distributed

stand_alone

Value of a feature Predicate feature(distribution,
distributed)

Impact of a pattern over an
attribute Predicate impacts(mvc,usability, positive)

Suitable pattern Predicate apply(mvc)
Not suitable pattern Predicate notapply(broker)

1 http://www.swi-prolog.org/

SELECTING ARCHITECTURAL PATTERNS THROUGH A KNOWLEDGE-BASED APPROACH

115

Table 4. Translating rules to Prolog.

RULES EXAMPLES OF REPRESENTATION IN PROLOG
(i) QA Ʌ Impact (Pattern, QA,
positive)> Æ Pattern

bagof(Pattern, impacts(Pattern, security, positive), L)

(ii) Feature(Value) Ʌ … Ʌ
Feature(Value) Æ Pattern

apply(broker):-feature(distribution,yes).
apply(mvc):-feature(interactive,yes),
feature(gui_based,yes) .

(iii) Feature(Value) Ʌ … Ʌ
Feature(Value) Æ ¬ Pattern

notapply(broker):-feature(distribution,stand_alone)

A Program Execution Example
For the purpose of exemplifying our approach, we consider an on-line system for academic

control to be used by students and professors of a university. In this case, the input file is
shown in Figure1(a). According to a pre-defined format, in the first part of the file, each line
contains a quality attribute. Zero or more quality attributes can ne listed in the file, however, it
is important to remember that quality attributes can be conflicting with each other (Boehm &
In 1996), thus a very high number of attributes can make the selection of patterns inefficient.
The second part begins with a line containing the expression *features* and each line contains
a feature and its respective value (space separated).

In order to execute the Prolog program we use the predicate patternSelection/1, for which
the entry is the name (and the path if needed) of the input file. The program execution results
in the list of patterns shown in Figure1(b).

Security
usability
reliability
features
distribution distributed
embbeded no
real_time no
interactive yes
gui_based yes
web_based yes
adaptable no
non_deterministic no

Figure 1(a). Input file for our case study.

SUGGESTED PATTERNS:
pac
mvc
broker
layer

Figure 1 (b). Result of the program execution.

3.1 Augmenting the Knowledge-Base

During the presentation of our approach, we suggested an initial base built from
recommendations of specialist found in the literature. However, each team or institution can
build its own base from information of previous projects or other sources. In order to enhance
or to build the knowledge-base, the user needs to deal only with a few elements established by
the approach. The remainder of the program is already structured to accomplish the rules
processing using the elements. Table 5 presents what is necessary to add in each case.

IADIS International Journal on Computer Science and Information Systems

116

Table 5. New elements representation in Prolog.

NEW ELEMENT REPRESENTATION IN PROLOG
Pattern

These elements are constants in the program and can just be
used in new facts and rules.

Quality attribute
Feature
Possible value
Value for a feature feature(Feature, Value).
Impact of a pattern over a
quality attribute impacts(Pattern, Quality_attribute, Impact).

Suitable pattern These elements are used directly in the rules (ii) and (iii)
through the predicates apply/1 and notapply/1. Not suitable pattern

Rules of type (i) (Table 4)
For this rule, the addition of impacts of the patterns over
each attribute (as mentioned above in this table) is
sufficient.

Rules of type (ii) (Table 4) apply(Pattern):- feature(Feature, Value), … ,
 feature(Feature, Value).

Rules of type (iii) (Table 4)

notapply(Pattern):- feature(Feature, Value), … ,
 feature(Feature, Value).

4. RELATED WORK

Jansen & Bosch (2005) proposes an approach for defining the relationship between design
decisions and software architecture through a metamodel. The information about the
decisions, on which the architecture is based, is not lost and can be represented in a graphical
way. The framework proposed in (Babar et al. 2006; Babar & Ian Gorton 2007) includes a
data model that characterizes architectural knowledge from constructs, their attributes and
relationships. The framework stores scenarios and their description, as well as patterns and
their properties. The framework allows the search of patterns and scenarios through some
fields. In these cases, we do not observe any kind of inference or automatic selection over the
stored knowledge. The architectural experience of the developer keeps being the most
important role.

Birukou (2010) realizes a survey about approaches for pattern search and pattern selection.
He defines important problems related to the search and selection of patterns, and analises
existing approaches according to the problems. Besides he defines properties under which he
classifies the revised approaches. Part of the issues treated by the author is directly related to
our approach for pattern selection.

In (Wang et al. 2005) patterns are selected to fit the non-functional requirements of the
architectural design. A non-functional requirements framework (NFR) is used to fetch a
preliminary list of prioritized patterns that can be appropriated to the system. The applicability
of those patterns is then analyzed and determined using the NFR. In our approach, the
applicability of patterns is based on recommendations. In (Hang et al. 2007) a method is
proposed for pattern selection using a pattern clustering analysis algorithm and a collaborative
filtering recommendation algorithm. This method deals with requirement analysis patterns for
e-Business applications whereas our approach has a wider focus, including patterns used to
build software architecture. Weiss & Birukou (2007) propose a multi-agent system for
recommending patterns. The system supports conventional information retrieval and

SELECTING ARCHITECTURAL PATTERNS THROUGH A KNOWLEDGE-BASED APPROACH

117

case-based reasoning methods for realizing the recommendations, which are based in past user
actions in the system.

Other studies are focused on the development of software architecture based on the use of
architectural patterns (Booch n.d.; Bass et al. 2003; Bosch 2000; Buschmann et al. 1996; Shaw
& Garlan 1996; Hofmeister et al. 2005). Among them we find descriptions of patterns,
including their properties, the analysis of their application as well as their consequences,
contexts where they are applicable and some relationships among them. These studies do
usually not involve any support to an automatic selection of patterns. In these cases, the
architect will be the one who decides what are the ones more appropriated for the context of
certain project. The architect shall have the capability of recognizing the most appropriate
pattern or patterns for each situation, according to their description. From these studies we can
capture several rules that relate features and quality attributes of the system to applicable
patterns.

5. CONCLUSION

This work proposes a knowledge-base approach to select architectural patterns during the
architecture design. An initial knowledge-base was built as a suggestion, based on
recommendations of specialists found in the literature. As a proof-of-concept, the proposed
approach is implemented in Prolog. In the case where a team wants to build its own base or
enhance an existing one, it is necessary just to add some kind of elements to the remainder of
the program, according to what is established by the approach.

Currently, the drawback of the approach is that the construction of the input file and the
adding of new elements into the base is made manually which is error prone. Thus our next
step is integrating the Prolog program with a graphical interface in order to automate these
tasks. Besides, the interface will allow storing patterns, features, quality attributes, projects
and their respective information. As a future work, we will focus on identify more specific
aspects of the architecture in order to accomplish a more fine grained selection of patterns.

 The proposed approach aims at offering support for developers, mainly to those that are
not specialists in software architecture. It allows them to rely on experience from specialists,
previous projects and other sources, stored in a knowledge-base. The proposal is one step
towards the automation of the architectural pattern selection.

ACKNOWLEDGEMENT

This work was partially funded by CNPq - Conselho Nacional de Desenvolvimento Científico
– Brazil.

IADIS International Journal on Computer Science and Information Systems

118

REFERENCES

Avgeriou, P. & Zdun, U., 2005. Architectural Patterns Revisited – A Pattern Language. In 10th
European Conference on Pattern Languages of Programs (EuroPlop 2005). Irsee, Germany.

Babar, M.A., Gorton, I & Kitchenham, B., 2006. A framework for supporting architecture knowledge
and rationale management. In A. H. Dutoit et al., eds. Rationale Management in Software
Engineering. Springer, pp. 237-254.

Babar, M.A. & Gorton, Ian, 2007. A Tool for Managing Software Architecture Knowledge. Second
Workshop on Sharing and Reusing Architectural Knowledge Architecture Rationale and Design
Intent SHARKADI07 ICSE Workshops 2007, 4(2), pp.11-11.

Bachmann, F. et al., 2005. Designing software architectures to achieve quality attribute requirements.
IEE ProcSoftw, 152(4), pp.153–165.

Bass, L., Clements, P. & Kazman, R., 2003. Software Architecture in Practice, Addison-Wesley.
Birukou, A., 2010. A survey of existing approaches for pattern search and selection. In P. Avgeriou &

M. Weiss, eds. European Conference on Pattern Languages of Programs, EuroPLoP ’10, Irsee
Monastery, Bavaria, Germany, July 7-11, 2010. Bavaria, Germany: ACM, p. 2.

Boehm, B. et al., 1978. Characteristics of Software Quality, TRW Series of Software Technology.
Boehm, B. & In, H., 1996. Identifying quality-requirement conflicts. IEEE Software, 13(2), pp.25-35.
Booch, G., Handbook of Software Architecture. Available at:

http://www.handbookofsoftwarearchitecture.com.
Bosch, J., 2000. Design & Use of Software Architectures, London: Addison-Wesley Professional.
Buschmann, F. et al., 1996. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns J.

W. & Sons, ed., England.
Buschmann, F., Henney, K. & Schmidt, D., 2007a. Pattern Oriented Software Architecture Volume 5:

On Patterns and Pattern Languages, Wiley.
Buschmann, F., Henney, K. & Schmidt, D., 2007b. Pattern-Oriented Software Architecture Volume 4: A

Pattern Language for Distributed Computing, Wiley.
Chung, Lawrence & Leite, J.C.S. do P., 2009. On Non-Functional Requirements in Software

Engineering. Lecture Notes in Computer Science, 5600, pp.363-379.
Cunningham, W., Portland Pattern Repository. Available at: http://c2.com/ppr/.
Eeles, P., 2006. What is a software architecture? IBMN. Available at:

http://www.ibm.com/developerworks/rational/library/feb06/eeles/.
Fowler, M., 2002. Patterns of Enterprise Application Architecture, Addison-Wesley.
Glinz, M., 2007. On Non-Functional Requirements. 15th IEEE International Requirements Engineering

Conference (RE’07), pp.21-26.
Grady, R.B., 1992. Practical Software Metrics for Project Management and Process Improvement,

Prentice Hall.
Group, H., Patterns Library. Available at: http://hillside.net/patterns/.
Hang, G.S. et al., 2007. A Requirement Analysis Pattern Selection Method for E-Business Project

Situation. In Proceedings of the IEEE International Conference on e-Business Engineering. ICEBE
’07. Washington, DC, USA: IEEE Computer Society, pp. 347–350.

Harrison, N.B. & Avgeriou, P., 2008. Analysis of Architecture Pattern Usage in Legacy System
Architecture Documentation. Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008), pp.147-156.

Harrison, N.B. & Avgeriou, P., 2007. Leveraging Architecture Patterns to Satisfy Quality Attributes.
Lecture Notes in Computer Science, 4758, pp.263-270.

SELECTING ARCHITECTURAL PATTERNS THROUGH A KNOWLEDGE-BASED APPROACH

119

Harrison, N.B., Avgeriou, P. & Zdun, U., 2007. Using Patterns to Capture Architectural Decisions. IEEE
Software, 24(4), pp.38-45.

Hofmeister, C. et al., 2005. Generalizing a Model of Software Architecture Design from Five Industrial
Approaches. 5th Working IEEEIFIP Conference on Software Architecture WICSA05, pp.77-88.

ISO/IEC, 2001. Software engineering - Product quality - Part 1: Quality model, ISO/IEC 9126-1:2001,
Jansen, A. & Bosch, J., 2005. Software Architecture as a Set of Architectural Design Decisions. 5th

Working IEEEIFIP Conference on Software Architecture WICSA05, pp.109-120.
Kircher, M. & Jain, P., 2004. Pattern-Oriented Software Architecture Volume 3: Patterns for Resource

Management, Wiley.
Kruchten, P., 2004. The Rational Unified Process: an Introduction 3rd ed., Addison-Wesley.
Kruchten, P., Lago, P. & Van Vliet, H., 2006. Building Up and Reasoning About Architectural

Knowledge. In Christine Hofmeister, I. Crnkovic, & R. Reussner, eds. Quality of Software
Architectures. Springer Berlin Heidelberg, pp. 43 - 58.

Martin, R.C., 2002. Agile Software Development, Principles, Patterns, and Practices, Prentice Hall.
McCall, J.A., 1977. Factors in Software Quality, RADC-TR- 77-369, 13441-5700, Nova York.
Mylopoulos, J., Chung, Lawrence & Nixon, B., 1992. Representing and using nonfunctional

requirements: a process-oriented approach. IEEE Transactions on Software Engineering, 18(6),
pp.483-497.

Rising, L., 2000. The Pattern Almanac 2000, Addison Wesley.
Schmidt, D. et al., 2000. Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent and

Networked Objects, Wiley.
Schulmeyer, G.G. & McManus, J.I., 1998. Handbook of Software Quality Assurance, Prentice Hall PTR.
Shaw, M. & Garlan, D., 1996. Software Architecture: Perspectives on an Emerging Discipline M Shaw

& D Garlan, eds., Prentice Hall.
Wang, J., Song, Y.T. & Chung, L., 2005. No TitleFrom software architecture to design patterns: A case

study of an NFR approach. In International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing and ACIS International Workshop on
Self-Assembling Wireless Networks. Washington, DC, USA,: Society, IEEE Computer, pp. 170-177.

Weiss, M. & Birukou, A., 2007. Building a pattern repository: Benefitting from the open, lightweight,
and participative nature of wikis. In Workshop on Wikis for Software Engineering at ACM WikiSym,
2007 International Symposium on Wikis (WikiSym). Montreal, Quebec, pp. 21-23.

