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ABSTRACT

Physics-based motion synthesis is usually difficaftd takes long computational time. However
biological research works show that human beings amimals take very little effort to control their
motion. The idea is that instead of controllingtimo in every detail, natural animals may only ntain

or tweaks some qualitative properties of its mothmid utilizes the complicate interaction betweedybo
and environment. Inspired by this theory, in traper, a novel method is proposed for motion syighes
Based on the theory of qualitative dynamics, adaptivtion control is achieved through manipulating
the topological structure of the dynamic systemjctvhenhance the structural stability, rather than
counteracting the perturbation effects. Comparedth witrrent methods, the new method is extremely
efficient for it requires little computation andutd be accelerated by GPU.

KEYWORDS
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1. INTRODUCTION

Character Motion Synthesis (CMS) research aimsaeting motion for virtual characters.
It is a topic of significant value in terms of tmgand application. The challenge of CMS is
not to make characters move, but to make themkigelUnderlying this challenge is the
marvelous human ability of motion perception. lalrée, people’s motion is very similar, yet
individuals vary considerably. From the varietinsmotion details, humans can infer mental
states, health conditions or the surrounding envirent.

Nowadays in industry, high quality motions are rhaigenerated manually. However,
because the virtual characters are complex andaicoat large number of joints, believable
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animations requires lots of tedious work. To makeadrse, reusing motion animation is also
difficult and prone to artifacts. Therefore highdéanimation tools are badly needed.

To save animator from these tedious manual workanymresearchers are trying to
generate lifelike motions automatically by simuigtithe dynamics of body, environment and
the neural control system. However since eachalitharacter is full of redundant degree of
freedom, it not only increases the computationad|obut also makes the solution
nondeterministic.

Although animals have fascinated us for thousanflyears, we still do not fully
understand how they move. Animals are very differieom artificial machines and such
comparisons may reflect the biological motor conprinciple.

Degrees of freedom (DOFs)From a mechanical perspective, animals have maore m
DOFs than their artificial counterparts. An aridiicship can be approximated by a simple
rigid body; whereas the flexible spine of a fishmade up of tens of DOFs. In principle, the
extra DOFs allows for more variations in adaptihg énvironment. However, for the control
system, too many extra DOFs become a disaster feaHuthe extra computational burden.
For a human to take one step, the neural systetnot®more than 600 muscles. Even with
nowadays computer, solving this dynamics directbulst spend thousands of hours.

Versatility: Most artificial machines are designed with a snglirpose, while animals are
capable of unlimited tasks. Many biological funasowhich are often neglected by CMS
research, such as feeding, breeding, language iaiwh,vdepend on motor control. Besides
walking, swimming and many other styles of locomntiwe utilize many tools, such as cars,
skates, bicycles and tennis rackets. Followingitiathl control methods, it seems that
unlimited resources need to be allocated for motmtrol, while biological research shows
motor control requires very few mental resources.

Performance: Although the problem of biological motor contral inore complex, the
resulting performance surpasses artificial machinesany aspects. Natural motions are more
Robust: A human can maintain walking stability on roughramns which would be
inaccessible for vehicledanoeuvrability and speed: Typical modern airplanes travel at a
maximum of 32 body length/sec and yaw at 720 degk&#hile pigeons may travel at 75 body
length/sec, yaw at about 5000 deg/sEaergy Efficiency: The energy consumed by a
walking human is only 5% of that for the world fanschumanoid ASIMO.

In this paper, we introduce the Qualitative Contidieory (QCT) to tackle motion
synthesis problem. The hypothesis is that natuglan control is based on the property of a
structural stable autonomous system, and the ketprfaf motor control is the topological
structure of the dynamic motion systems. So inroathod, only the qualitative properties of
motions are controlled. In this framework, adaptatio different environment or changing of
character conditions will be produced automaticaiiyh very little control effort. All the
above three natural motion features can be achiéweed our system. Our method works
especial efficient for repetitive and low energytioo tasks which are most challenging for
motion synthesize. Compared with other methods, approach is more computational
efficient and has the potential to be further aeakd by GPU.
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2. RELATED WORK

2.1 Dynamic Motion Synthesis and Control

Dynamic Motion Synthesis tries to synthesize charaenotion through simulation the

dynamics of the mechanic structure of characteryhwklich is usually modeled as a linked
rigid body system [Baraff, 1994, Mirtich, 1996, &tat and Trinkle, 2000]. The generated
motion are normally physical feasible. However, @raracter motion synthesis, the most
difficult task is to design an efficient control thed that mimics functionality of a real

biological neural system.

Some early research applied classical control ndasthlike PD controller [Raibert
andHodgins, 1991] for locomotion. Later researclodbins et al., 1995] applied the same
method for different tasks like running, bicyclingaulting and balancing. Limit Circle
Control (LCC) [Laszlo et al.,, 1996] provides aneafiative method for lower energy
locomotion animation. However both the classical &Dtroller and Limit Circle Controller
track predefined motion trajectories and elimingpedturbations, thus both of them are not
good for adaptive motions.

Because of the redundant DOFs, in most cases, mebtutions are not unique. Many
optimization methods have been applied to choosélibst” motion. For dynamic methods, a

reasonable choice is to minimize the energy Eostuch that = fttol F,(x)?dt. WhereF, a is

the active force generated by actuators like motorsnuscles. This is introduced to CMS
research as the influenti&pacetime Constraints[Witkin and Kass,1988], and serve as the
foundation for many modern CMS research. Jain eff24l09] provides an example for
locomotion; Macchietto et al. [2009] find a methfudt balance maintaining movement. Liu
[2009] proposed a method for object manipulatinignation.

The Spacetime method may modify the motion trajgceind in nature it solves the
problem through vibrational optimization. Howevefadces several key problentfficiency
In many cases, it will take very long time to fitiee “best” solution and there is no guarantee
the optimal solution can be achieved. And for carpbody structures the computation will
takes prohibitive long time [Anderson and PandyQT0 Optimization techniques like time
window and multi-grid techniques are proposed byhé@p[1992] and Liu et al. [1994].
Because of the computational burden, very a fewamhers [Popovi'c and Witkin, 1999]
proposed Spacetime Constraint for full body dynaamicnation.Sensitive and Overspecific
Current numeric methods are very sensitive to madeliracy and initial conditions. Precise
model for both the environment and body have toptebuilt. Liu [2005] points out that
spacetime constraint methods only suit high energtions like jumping and running; for low
energy motion tasks like walking the result doesmdks natural. This is mainly because the
muscle effects are neglected. Motions like headtihg, breathing, or motions of other
animals such as the swimming of fish and jellyfiiying of birds have not been synthesized
with dynamic methods for the lack of a feasible aiywic model.

2.2 Biological Research

In biological research, motor control is an agemioblem full of paradoxes. Motor control in
nature is a complex process involving many chemilalkctrical and mechanical effects. As a
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result, most of the dynamic methods involve congiéd computation. However this is very
opposite to the characteristics of the neural systef real creaturesTime Delay Neural
signal transmitting speed is very slow; and thera iong delay between neural signal firing
and force generation in muscléisy Besides the delay and low speed transition, theahe
signals are also noisy. The body structure andrenwient are also nonlinear, noisy and time
varying. Limited Activity Current research evidences and common life expazishow that
motor control involves little control effort. Margxperiments show motion can happen even
without brain input.

Despite the complexity of body structures and emirnent, the natural motor control
strategy seems relatively simple involving littlengputational work. In many animals, the
active neural structure in motor control is t@8entral Pattern Generator (CPG) which
generates rhythmic signals. There are many expetaheresearches in robotics and
biomechanics succeeded in controlling some motiith wery simple strategy [Nishikawa et
al., 2007].Uncontrolled Manifold Hypothesis method even proposed that some DOFs are
not controlled and freely influenced by the enviramt [Latash, 2008]The Equilibrium
Point Hypothesissuggests that what the neural systems controistirajectory, but the final
position.The Impedance Control HypothesigHogan, 1985] method refines the idea of EPH
by providing an explanation for effects of the exDOFs. Impedance Control proposed the
extra DOFs provide a way to control the stabilityladmittance of final position according to
the motion purpose. Morphological Computation Thedishikawa et al., 2007, Pfeifer and
lida, 2005] thinks both the body structure and ¢heironment play a crucial role in motor
control, basic motion patterns are generated by bod environment, the neural systems only
maintains or tweaks such motion patterns.

The biological ideas provide space for an efficienition adaptation, but the theory are
incomplete and mainly for explaining experimentits There is a big knowledge gap to turn
it into a sound control theory.

3. QUALITATIVE CONTROL THEORY FOR CMS

Inspired by the biological research, in this papedifferent strategy for motion adaptation is
proposed. The key idea is that the environmeritasvad to affect the motion freely; control
effort is only applied when the qualitative projestof motion are violated.

3.1 The Qualitative Control Theory

The Qualitative Control Theory is a mathematicalsatiption of the Morphological
Computation Theory. In qualitative control theohe tbasic patterns of motion are called
motion primitive . In mathematic terms, motion primitives ateuctural stable.

3.1.1 Basic Concepts of Qualitative Dynamics.

The configuration of system is described using statee in the state space. We use vegtor
to represent the state of a systeWh,is the state space which is a manifold, the motion
trajectory over time ig(t). For a dynamic systemt) is usually represented in the form of
ordinary differential equation.

qg=F().,qeM 1)
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whereu is the control effortF is determined by the system’s natural property: # 0, no
control effort is applied. Such systems are autamgsrsystems. For every poipte M, Fand

u determines a derivative vectgr All the vectors over the full space tf form the vector
field. There is a corresponding geometry structareEfjuation (1), a differentiable manifold.
The motion trajectory can be found by apply thegnal operation on the vector field. The
result trajectory is defined as flod, all the flows form another geometrical structute
phase portrait, which illustrates all the possiblgtions of the dynamic system.

On the phase plane, flows can only intersect at speial position.

Fix Point, whereF(q) = 0. Period Flow For any pointq on the circle, we have
F(q(0)) = F(q(T)).

Intersections like fixed point are also callegulibria. At each equilbria, the local space
can be divided into three subspace of submanifi#dire submanifold, stable manifold, and
unstable submanifold. For nonlinear system, glgbalhe shape of stable and unstable
submanifold may be bending and connect with iteelfeach other. The equilibra and its
connectivity of sub manifolds form a topologicatlusture. The phase plane is divided into
different regions, result in a cellular structureeach region, there is only one attractor, al th
flow in this region will converge to the attractand the corresponding region is callebin
of attraction.

3.1.2 Motion Adaptation under Qualitative Control

A Mechanical system can be extremely stable witlamyt control effort. This kind of stability
is rough stability or structure stability [Andronand Pontryagin, 1937] which is determined
by the topology structure of the system [JonckheE®87]. Using Qualitative Control, motion
will be defined by the topological structure of tt@responding differential equation. Motion
adaptation can be modeled as homeomorphism. Homgbrodlows can be generated if the
differentiable manifolds are homeomorphic, whichame they share the same topological
structure, but with different shapes. Structurdlstautonomous systems have the ability to
maintain its topology structure under perturbatjchsis the resulting motion is adaptive but
qualitatively unchanged.

3.1.3 The Ship Example

Here we take the simple floating ship example wnsthe idea of structural stability. In real
life, typical ships have bigger height than widik,shown in Figure 1.

|
)

Figure 1. The Floating Ship Example
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How the ship maintains its configuration or “postlis a question. Through analyzing the
topology and structural stability, we show thateitjuires little effort to maintain this posture.
This conclusion applies to different ships sinceirtllynamics are qualitatively the same, or
topologically conjugate. Its motion is determingdtbe torques of gravity, buoyancyb and
external control. A ship will only rest at the pags where the sums of torques are zero, the
Equilibrium points. The only two possible ones sinewn in Figure 2.

] .

Figure 2. The Stable and Unstable Posture

The left posture in Figure 2 is attractive or stabihereas right posture in Figure 2 is
repelling or unstable. All the flow curves starfr the unstable position and terminate at the
unstable position. It has the topology structureshgwn in Figure 3. This means that no
matter what the current posture, the ship will metio the normal stable posture automatically.

Unstable Equilibrium

Stable Equilibrium

Figure 3. The Topology Structure of the Ship

This conclusion is independent of the shape, siegght or material of the ship. In general
cases, the same wave perturbation will result ffeidint sway motions for different ships.
However, as long as the qualitative structure aesigerion is maintained, balancing remains
“easy”. In mathematical terms, all the phase pdtershare the same topological structure of
Figure 3.
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3.2 Motion Synthesis based on Qualitative Control

In our method, only the final motion is concerned. rhathematical viewport, only the
attractors of flows are controlled, while the flovagh is not considered in motion control. So
according to the types of attractors, motion canchtgorized into two group®fiscrete
Motion Such motions have fixed attractors. Typical motiomdude posture control and
picking up motion of the arnReriodic Motion Such motions have periodic attractors, typical
motion include walking, running and heart beating.

Motions are made up of motion primitives. Neurahtrol system only tweaks the basic
motion primitives to achieve specific objective. Aading to qualitative control theory, our
approach will preserve the three natural motionufes for the following reasonédaptive
Different perturbations will result in differentabes of the manifold, motion will be changed
according to the environmergfficient Motion will be generated passively and follow the
least energy pathAgile High precise calculation not needed, topologidalicture can be
manipulated and maintained by some very simple coatipn.

3.3 The New Control Scheme from Qualitative ControlTheory

An animal’s body and environment can be extrem@sglex. This usually leads to high
dimensional manifolds with complicated topologicdtucture. Many CMS research have
asked the same question whether such complex sysé#mbe controlled with a simple

method. Biology Research suggested that the masomainly controlled by the Central

Pattern Generator (CPG), the autonomous network ghaerating rhythmic signals. The
existence of CPG is very common, from primitiveraals like lamprey and fish, to high level
animals like bird, mammal and human [Cohen, 1988F think that motor control by

rhythmic signals can be modeled as entrainment Z@lea- "Miranda, 2004]. Based on
Qualitative Control Theory, in this section, we lwndliscuss a new control scheme using
biological entrainment.

3.3.1 The Biological Entrainment

Entrainment is the phenomenon that two coupledlasmi systems oscillate in a synchronize
way. Although the mechanism can be very complex gthenomenon is universal.
Entrainment will happen when coupling two osciltatavith similar oscillation frequencies
but with very different characteristics. A simpbepéanation is that energy fluctuates between
the two oscillating system. For some cases, stalgiéin be enhanced and chaotic behavior can
be suppressed.

Our new control scheme is based on the entrainniEm. neural system form one
electrical oscillator; body and environment forne thther mechanical oscillator. Mechanical
oscillator can be controlled by the oscillation peay of the neural system through
entrainment effects. The property of neural oduitlavill greatly affect the mechanical motion
results.

3.3.2 The Structural Stability of Neural Oscillator

One extensively studied oscillation model is depetb by Matsuoka [1985]. The
mathematical presentation is as follows:
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T1% = ¢ — X — Bvg; —y[x,]" — Z hj[gj]+
j
01 = [x]" — vy

T1X; = € — Xy — B, — y[xy ]t — Z hj[gj]_
]
7,0, = [%,]" — v,
yi = max (x;,0)
Your = [01]" = 2]t =y —y,
2
wherex andv are state variables of the oscillatot,,,y are parameters of the oscillator.

Early Research shows that Matuoka oscillator imamous oscillator and adaptive;
Entrainment behavior can happen when couple it diifierent oscillators. But because of the
nonlinear properties, its behavior is not compietehderstood. Matsuta[1987] explains the
adaptive properties from the location of the rooftiharacteristic equation. Wilimas[1998]
explains the properties in frequency domain.

Here we provide an idea about structural stabiitityn the topological viewport. Basically,
neural oscillator shows three important propertiisple Structure The topology structure
of neural oscillator is simple; it includes onerattive limit circle and one fix repellotarge
Basin of Attraction All the simulations we carried out converged te #ame limited circle.
Fast Converging Speedn most of the case, the flow will converge to lingt circle within
one period time. Features above are shown in Figure

Through this example, we believe neural oscillasostructure stable. The large area of
basin of attraction means the final behavior isllfotdetermined by parameters. Initial
conditions will have no effects on the final os¢itla. The converging speed can be seen as
quick recovery ability. When an impulse perturbatitappens, it will recover in one period
time. These properties are very valuable in CM®agesh. An intuitive idea is that we couple
the neural oscillator with mechanical oscillator lmfdy and environment, thus make the
motion structural stable.

neural osilation with differt initial Condition neural osilation with differnt initial Condition
T T T T T T — T

1 T —

output
°

o 5 10 15 20 25 30 35 0 5 50 = 05 0 05 1 15 2
time inner state v1-v2

Figure 4. The state plot and phase plot of Mat€seillator
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4. APPLICATION AND RESULTS

The basic idea of using qualitative control for imntsynthesis is to let body and environment
form a basic oscillation pattern and use the newsaillation to boost structural stability. Our
approach can be applied to many motion tasks.

In this section, we will discuss just one exampledetails, the bipedal walking. This is
mainly because bipedal walking is one of the mdsillenging and common locomotion
styles. From the mechanical perspective, bipeddkimg is unstable which makes it very
difficult for adaptive gaits. It needs special caréhe control system design.

Based on the biology research, walking involveteliteasoning activity. The number of
neurons that take part in the lower limb controvasy limited, much less than arm, hand and
even tongue. While for artificial system, robustdaipl walking is difficult to achieve. Many
control method has been tried, but none of themvshtomparable performance with human
walking.

In dynamic research, natural looking gaits candmeegated by passive method. There have
been a series of passive dynamic walking machined&ér, 1990a,b]. If we put a passive
walking machine on a slope, without any effortcén walk down the slope. However the
stabilities are very fragile. Passive walking caryobe maintained when walking down a
specific slope under specific condition.

From the Qualitative Control Theory, we can see rided reason why passive walking
machines can walk down the slope. It is becauseetigtence of a limit circles for the
dynamic interaction between body and ground. Tlagille stability means the basin of
attraction covers only a small area on the phaseeplFor natural looking walking motion, we
plan to boost the stability of the passive walkingchine by neural oscillation entrainment.

4.1 2D Passive Walking Model

The mechanical model we adopted is illustrated igufe 5. Passive walking is not a
continuous dynamic system. We separate the motitm two phases and formulate two
equationsLeg Swing PhaseDuring the swing phases, we suppose that onesléigeid on the
ground, the arc foot makes the passive dynamicevatkling without sliding. The equation is
in the form of Equation 3. Wherg = [x,y, ¢, ¢,] is the generalized coordinatéd, is the
Mass Matrix,D is the constraint matrix; is the external forcé. is the constrained force. For
details of each component, please refer to the \\tikse and Schwab, 2009}leel Strike
PhaseWe suppose the heel strike the ground in a shor,tithe angular momentum is

preserved.
> olle]=[5] ®
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Figure 5. Passive Walking Model

4.2 Adaptive Walking Motion

The input of neural oscillatat;,,,,, is defined by the difference angle between thelégs.
Ginput = ¢1 - ¢2
Neural output will drive the biped walker. Afterdidg the neural control, the equation of
the dynamic system is

M DT|[d F], U
[D 0 ] [FC] Bl [ﬁ] * [0] “)
WhereU is the control signal generated by the neuralllasoi. Neural oscillator output
G,.: is applied at the hip joint to actuate the two lemysards different directions.
U =1[0,0,1,—1] * Goyt
Passive WalkingWhen the passive walker walks down a slope, farewstep, there is
energy input from the potential energy, and theralso energy loss because of heel strike.
There must be an equilibrium condition when thergydost is equal to the energy input.
Because there is no extra control energy input) sagtion is the most energy efficient. Figure
6 shows the gait of the passive walker. After cogpthe neural oscillator, the basic pattern is
not changed as shown in Figure 7.

Figure 6. Passive Gait
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Figure 7. Gait with CPG entrainment

Walking On Plain However the stability of this passive waking iadile. The passive
walker can’t walk on plane. The step size will dexge after each step, and finally it will stop
or fall over as illustrated in Figure 8. After cdegb with the neural oscillator, this walking
machine can walk on plane, and exhibits gait sintdathe passive dynamic walker. Figure 9

shows the gait. From the state plot and phaseiplétigure 10, we can see that the gait
converged to a stable limit circle.

e

Figure 10. the state plot and phase plot of walkingplain
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4.3 Structural Stability under Perturbations

To verify the structural stability, we introducevariety of perturbations to the passive walker.
These perturbations include different initial cdrai, different slopes, different leg mass and
different leg length.

Different Initial Condition The original passive walker is not very stableslight change
in initial condition will result in walking failureWhile after coupled with neural oscillator, the
basin of attraction has been enlarged. A diffenaitial condition can still lead to a stable gait,
as show in Figure 9. Natural looking gait is maimgal.

Walking On Different Slopes Another parameter we change is angle of the wglkin
slope. When we increase the down slope, stableimgaikotion can still be maintained, as
shown in figure 11. An important discovery is thih@ugh the walkers can walk on various
down slopes, it cannot walk up slope, no matter bontrol parameters are changed. It can’t
walk up slope and will fall backward after sevestdps. We think that this is mainly because
the proper limit circle does not exist in the dymasystem when walking up slope. Involving
the upper body into this structure may help to ethis problem.

Figure 11. Gait on a Big Slope

Leg Mass Variation We add mass on one leg to 150% and find the gtabfiithe gait is
still maintained. The step length and swing perddhe two legs are different, this gait is
similar to that with a crippled leg, see Figure 12.

~':L 1" )

A
% <L

Figure 12. Crippled Gait because of Different Mass

Leg Length Variation The last parameter we change is the leg lengthchdage the leg
length to 1/8 shorter. And we find the stabilitytloé gait is maintained, see Figure 13.

Figure 13. Gait with Shorter Legs
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5. CONCLUSION AND FURTHER WORK

Qualitative Control Theory can synthesize motiothvwadaptive behavior while keeping the
qualitative properties of motion. It provides a newethod to synthesize adaptive motion
efficiently. Since very little computation involvéd each controller, compared with traditional
optimization based method, this method can genemadions in real-time. And most

importantly, our method is parallel in nature. E4ERG only control on single degree of
freedom. For complicate characters, many diffe@PGs can be simulated in parallel without
referencing each other. Since many physical sinmraimodules have been implemented
efficiently using GPU, in future, most of the congtignal burden of our method can be
shifted to GPU. This will make our algorithm gertarg agile motions even with very

complicated environment and involving whole bodustures.

However since we bring in a new theory into theiomosynthesis area, many works need
to be done in the future. For example, our curm@oidel only involves the lower body
structure, upper body and more joints will be cdasgd in our future design. To proof the
adaptions, we will need experiment on more comf#idarrain instead of just upslope and
downslope.

More Central Pattern Generators are needed foerdift kinds of motions. And how to
turn the CPG parameters for the animator purposetdl open. These topics will be covered
in the future research.
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