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ABSTRACT 

This article tackles the problem of reconstructing the 3D shape model of asteroids and cometary nuclei 
from images obtained with a visible imaging system aboard a planetary spacecraft. We describe a 
photoclinometry method based on the optimization of the chi-square difference between observed and 
synthetic images of the object by deformations of its initial shape, described here as a mesh of triangular 
facets. The non-linear optimization is performed using the so-called “limited-memory  
Broyden-Fletcher-Golbfarb-Shanno” algorithm. The deformations can be applied: (i) by modifying the 
coefficients of a spherical harmonics expansion in order to extract the global shape of the object, and/or 
(ii) by moving the height of the vertices of a triangular mesh in order to increase the accuracy of the 
global shape model and/or to derive local topographic maps of the surface. This method has been tested 
on images of the asteroids Steins and Lutetia obtained by the imaging system aboard the Rosetta 
spacecraft of the European Space Agency. 
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1. INTRODUCTION 

There are several ways to reconstruct a three-dimensional surface from a set of images. The 
stereo technique allows to build a network of control points from remarkable features 
identified at the surface of the object [9]. Stereophotogrammetry, an extension of the former, 
is a powerful technique widely used to reconstruct digital terrain models of the surface of 
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planets [3], asteroids [7] or cometary nuclei [6]. More recently, stereophotoclinometry using 
several images of the same area of the surface under different viewing and/or illumination 
conditions has been successfully applied to several bodies of our solar system, among them 
asteroid Itokawa observed by the Hayabusa spacecraft [2]. 

These three methods require resolved images in which the object is at least ~100 pixels 
across. Besides, the reconstructed areas need to be imaged with different viewing geometry in 
order to obtain stereo control points. 

We present here a new photoclinometry method in which we apply deformations to a 
triangular mesh in a non-linear optimization loop until the synthetic images generated from the 
mesh best-match the observed ones. The deformation can be obtained by modifying the 
coefficients of a spherical harmonics expansion or by moving the height of the vertices of the 
triangular mesh above the surface. The first deformation with the spherical harmonics allows 
the retrieval of the low frequencies of the shape model, whereas the second deformation, 
based on displacements of vertices, allows to increase the accuracy of the shape model.  

The article is organized as follows: we present our method in Section 2, its application to 
asteroids Steins and Lutetia in section 3 and we finally conclude in Section 4. 

2. 3D RECONSTRUCTION METHOD 

Our 3D reconstruction method needs an input model described as a mesh of triangular facets. 
This model can be a sphere or a more refined model obtained with another reconstruction 
technique. 

2.1 Generation of Synthetic Images 

Synthetic images are generated using a tool called OASIS (Optimized Astrophysical Simulator 
for Imaging Systems) [5]. OASIS calculates the position and the orientation of the object in 
the camera frame. It identifies the facets present in the field of view of each pixel. It then 
performs ray-casting (i) to calculates the projected shadows which implies, for all facets in the 
field of view in a pixel, a search for occlusions between facets, and (ii) to determine which 
facets of the shape model are illuminated and in view of the camera. For each such facet i and 
each image n, it calculates the bi-directional reflectance (BDR) ri

(n) following Hapke’s model 
[4]. The intersected solid angle Ωi

(p,q,n) between this facet and the pixel (p, q) is calculated. The 
signal Dpq

(n) received by each pixel (in Digital Number, DN) is then obtained by summing the 
contributions of all facets in the field-of-view of this pixel: 
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where g is the gain of the electronics, Scoll is the collecting surface of the telescope, te

(n) is the 
exposure time of the image number n, Rh

(n) is the heliocentric distance of the object (in 
astronomical units), h is Planck’s constant, c is the light speed, ρi is a pre-calculated absolute 
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calibration factor. Finally, the image is convolved with the point-spread-function of the 
instrument. 

2.2 Deformations of the Shape Model 

2.2.1 Deformation based on Spherical Harmonics 
Spherical parameterization of a triangular mesh shape model has been developed in the last 
three decades. Spherical harmonics {ϒlm(φ,ϕ): m∈Z, |m|≤ l∈N } are orthogonal functions 
defined on the unit sphere S²: 
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where klm is a constant and Plm is the associated Legendre polynomial such as: 
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The spherical harmonics transform [11] is used to decompose the input model in the frequency 
domain. The coordinates R'k of the vertices are described as: 
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where the coordinates (θk, φk) define the vertices of a pre-defined triangular mesh in a 
spherical coordinates system and Rk is a spherical function (Rk : S² →R) given by the 
following linear combination: 
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where Ylm(θ, φ) are the real form of the spherical harmonics functions ϒlm. In this 
representation, the parameters Clm define the shape of the object. The number of coefficients 
depends on the degree lmax of the above expansion. Increasing its value allows us to reach 
higher frequencies in the 3D representation of the object. In the following we will call “SHO” 
the spherical harmonics optimization and “SHO model” the final model resulting from this 
optimization. 

 

(5) 

 (2) 

(4) 

(3) 



3D RECONSTRUCTION OF SMALL SOLAR SYSTEM BODIES USING PHOTOCLINOMETRY 
BY DEFORMATION 

35 

2.2.2 Deformation based on Vertex Offsets 
In order to increase the accuracy of the spherical harmonics model or of the input model, we 
introduce another deformation scheme in which we directly modify the height of the vertices 
with respect to the initial mesh used as starting points in the optimization process. We 
calculate the vector Nk normal to the surface at the vertex k by averaging the normal vectors Ni 
of the Vk facets which share this vertex: 
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where Si is the surface of the facet number i . 
The modification of the height Hk of the vertex k is applied in the direction Nk. The 

coordinates R'k of the vertex after this deformation become: 

k k k kH= +'R R N

 
The coefficients Hk are initially set to zero and their value is modified during the optimization. 
In the following we will call “VHO” the vertices height optimization and “VHO model” the 
final model resulting from this optimization. 

2.3 Optimization of the Parameters 

2.3.1 Shape Model 
We want to minimize the reduced chi-square between the pixel values Fpq

(n) of the N observed 
images and those of the corresponding synthetic images given by Eq. (1): 
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where Np is the total number of pixel and σpq

(n), the uncertainty on the observed pixel value, is 
given by: 
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where σR is the readout noise. In Eq. (8), the free parameters (variables) Pk are the coefficients 
Clm for SHO (section 2.2.1) and the heights Hk for VHO (section 2.2.2). 

For SHO, the spherical harmonics coefficients Clm are optimized following a multi-
resolution scheme. The variable lmax, which determines the number of optimized parameters, is 
progressively increased. For low values of lmax, only low spatial frequencies of the shape 
model are constrained. Increasing the value of lmax leads to retrieve higher spatial frequencies. 

In order to minimize the chi-square function (8), we use a non-linear optimization 
algorithm called “limited memory Broyden-Fletcher-Golbfarb-Shanno” (L-BFGS), a quasi-
Newton optimization method [1]. It is well suited for large scale optimization problems and it 
requires a limited amount of memory. A typical number of 50 to 100 iterations of the 
algorithm is required before it converges to a stable value Pk of the free parameters. At the end 
of the optimization, the coordinates R'k of the vertices define the final shape model. 

The L-BFGS method requires the calculation of the partial derivatives at each iteration. 
These derivatives are calculated with the finite difference method, in which two chi-square 
values need to be calculated for each partial derivative using Eq. (8):  
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where the index k' = 1, ..., l–1, l+1, ..., Nv , with Nv defined as the total number of vertices. 

2.3.2 Local Error Calculation 
For each pixel (p, q) of image number n, we calculate the residual value in units of the 
instrumental noise at the end of the optimization using the notation of section 2.3.1: 
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We “transfer” the value of the residuals from the pixels to the facets using the pixel–facets 

intersection solid angles Ωi
(p,q,n) calculated earlier in section 2.1: 
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where ΩP is the total pixel solid angle, and the second sum runs over the pixels (p, q) 
intersecting the facet number i. We then calculate the effect of a variation of the slope of each 
facet on the measured signal, normalized to its associated instrumental noise. The derivative 
dDi/dε (in DN/°) of the signal with respect to a change of slope is obtained numerically by 
calculating the mean variation of the signal Di

(n) from Eq. (1) when the vector normal to each 
facet remains on a cone of axis Ni  (the normal to the surface of the facet) and of half-cone 
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aperture ε. The error ξi on the slope of each facet is deduced from μi , dDi/dε, and from the 
instrumental noise σi associated to the signal Di (Eq. 8): 
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We take a typical value of ε ~ 1° to estimate the value of the derivative dDi/dε. Knowing 

the error on the slope, the error on the heights (parameters Hk) can be deduced. The parameter 
ξi forms what we call the “slope error map”. 

2.3.3 Additional Parameters 
Additional parameters can be optimized in the same way if they have an impact on the 
synthetic images, for instance: 

− the parameters which describe the BDR of the surface, 
− the three angles describing the pointing direction and roll angle of the camera for each 

individual image, 
− the three Euler angles describing the orientation of the object in space. 
The accuracy in the reconstruction of these parameters by the space agencies is usually not 

sufficient to retrieve a shape model or a Digital Terrain Model of the object. Therefore, we 
always need to perform iterative optimizations of the shape, of the pointing direction and roll 
angle of the camera. 

2.4 Speeding up the Calculation of the Partial Derivatives 

Most of the CPU time during the optimization process is used to calculate the partial 
derivatives of the chi-square function defined by Eq. (10) with respect to each parameter. In 
the case of VHO, when the number of parameters is equal to the number of vertices Nv, it is 
possible to drastically reduce it. 

Eq. (10) implies the calculation of two chi-square values, i.e., the calculation of 2Np pixel 
values. A test of occultation between facets has to be done to evaluate the value of each pixel 
(cf. section 2.1), which implies that the calculation time is proportional to NV/Px

2 where NV/Px is 
the number of vertices per pixel. 

The total calculation time for an iteration becomes: 

/
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Whereas Nv cannot be modified, a major gain is possible by restricting Np to those pixel values 
which are modified when we move the height of a vertex from Hl to Hl ± ɛH (see section 2.4.1). 
It is then possible to extract the final partial derivative from these values (see section 2.4.2). 
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2.4.1 Calculation of Updated Pixel Values 
The calculation of the pixel values modified by a change of the height of the vertex number l 
from its original value Hl to Hl ± ɛH is performed in the following steps.  

i. We identify the facets Fl
(n)

 which share the vertex number l and we identify the nominal 
set of pixels Sl

(n)
 intersected by these facets. We then determine a new set of pixels Sl,±

(n)
 

intersected by the facets after modifying  the height of the vertex number l. The set of pixels 
potentially modified by a displacement of this vertex is the union: Pl

(n)
 = Sl 

(n) U Sl,±
(n)

 . 
ii. We identify the facets Fl

(n) which are both illuminated and in view of the observer 
taking into account the displacement ± ɛH of the vertex. 
iii. For all these facets, we re-calculate the BDR rl

(n) taking into account the new geometry.  
iv. The updated values D'pq

(n)(Hk) of the pixels Pl
(n) are then calculated using the 

relationship (1). 
We repeat this operation for all images (n = 1..N). In the following we will call Ml

(n) the 
number of pixels in the set Pl

(n). 

2.4.2 Calculation of the Partial Derivative of the Chi-Square Function 
Let us introduce the contribution of the image number n to the global chi-square of Eq. (8): 
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The value of the function ∆'pq

(n) corresponding to the updated pixel values D'pq
(n)(Hk) 

calculated in section 2.4.2 is calculated in the same way: 
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for pq ϵ Pl . We now call A(n) the set of all pixels of image number n. After modification of the 
height of a vertex, the pixels which remain unchanged belong to Cl

(n). Using these notations, 
we have A(n) = Cl

(n) U Pl
(n)     and the modified chi-square becomes: 
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which can be rewritten: 
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This relationship gives us the expression of the chi-square as a function of three 

parameters. The first parameter, ɣ(n), is calculated once from the nominal image.  
The partial derivatives can be calculated with the finite difference of the new chi-square: 
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This calculation is simplified since only the sums of contributions ∆pq

(n) and ∆'pq
(n) have to 

be calculated: 
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With this calculation, the CPU time for one parameter is now function of the number of 

pixels affected by the modifications of its height. The total calculation time for an iteration is 
now: 
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where <Ml

(n)>l,n ~ 4 is the mean number of pixels modified during the calculation of the 
partial derivative. 

The gain in CPU time in the calculation of the partial derivatives between the relationships 
(10) and (21) is then given by the ratio t’cal / tcal ~ Np / (4 N ).  
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3. APPLICATIONS TO THE ASTEROIDS STEINS AND 
LUTETIA 

3.1 Observations 

The Rosetta spacecraft [8] launched in 2004 by the European Space Agency is now on its way 
to meet its final target, the nucleus of comet 67P/Churyumov-Gerasimenko. During its cruise, 
Rosetta flew by two asteroids: Steins in September 2008 and Lutetia in July 2010. Images of 
these two asteroids have been acquired by OSIRIS, the imaging system on board Rosetta. 
OSIRIS includes a narrow-angle camera (NAC) and a wide-angle camera (WAC) both 
equipped with the same 20482 pixels CCD detector with a pixel field-of-view of respectively 
18.8 and 99.6 μrad. 

Rosetta flew by Steins at a minimum distance of 802 km; the phase angle1 varied from 38° 
to 0° and then increased to almost 140° out-bound. For the following analysis, we use a set of 
8 radiometrically and geometrically calibrated images: one image acquired with the NAC 
from a distance of 5235 km and seven images acquired with the WAC from a distance of 1120 
km in-bound (see Fig. 1) to 865 km out-bound. These images correspond to a range of phase 
angles from 7° to 73°. 

Lutetia was flown by at a minimum distance of 3170 km; the phase angle varied from 10° 
to 0° and then increased to almost 140° out-bound. For the present preliminary tests of shape 
reconstruction, we use a set of 4 subframes extracted from geometrically calibrated images 
acquired with the NAC from a distance of 5200 km in-bound (see Fig. 3) to 3670 km out-
bound. These images correspond to a range of phase angles from 26° to 110°. 

3.2 Steins Reconstruction 

3.2.1 Reconstruction Strategy 
The shape reconstruction of Steins is performed in two main steps. The first step consists in 
calculating a low-resolution model with the SHO method. For this, we start from a sphere, for 
which C00 = Ra = 2.7 km and the other parameters are set to zero. We use the Hapke 
parameters [4] describing the BDR derived from a global photometric analysis. We begin 
optimizing the Clm spherical harmonics coefficients of the shape model with lmax = 2. We 
iteratively optimize the shape and the Euler angles describing the pointing of the camera. 
When a stable solution is reached after 1 iteration, we set the degree of the expansion to lmax = 
4 and we repeat the cycle of shape and Euler angles optimizations until lmax = 20. The 
sampling of the shape model is given by a hierarchical triangular mesh [10] of level five built 
from an icosahedron. The resulting 20480 facets and 10242 vertices ensure that the pixels of 
the images contain typically a few facets. At the end of this step, we have a SHO model of the 
asteroid. The corresponding synthetic image is displayed in Fig. 1 (middle panel).  

A test was made starting from the same sphere but directly optimizing all the coefficients 
involved when lmax = 20. Then the optimization allows to simultaneously obtain low and high 

                                                 
1 The phase angle is the angle between the solar direction and the direction of the observer as seen from the object. 
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frequencies instead of obtaining the low frequencies first. This results in a grossly erroneous 
model which corresponds to a local minimum (see Fig. 2). 

In a second step, we perform VHO in order to improve the above SHO shape model. We 
proceed as before by iteratively optimizing the shape model and the Euler angles. After a total 
of typically 3-5 iterations, the final shape model of the asteroid is obtained (see Fig. 1, right 
panel). We keep the same sampling of the surface used to derive the spherical harmonics 
shape model. 

The results given in this section were obtained with Eq. (10), which corresponds to the 
“slow” version of the calculation of the partial derivatives. 

 
Figure 1. Illustration of the reconstruction methods for one of the eight images of asteroid Steins. Left 

panel: observed image. Middle panel: synthetic image calculated from the SHO model with the 
progressive increase of the number of coefficients. Right panel: synthetic image calculated from our final 

optimized model (VHO). 

  
Figure 2. Illustration of an erroneous solution resulting from the reconstruction with spherical harmonics 
expansion, without a progressive increase of the number of coefficients, for the same image displayed in 

Fig. 1. The left panel shows the synthetic image calculated from the spherical harmonics model of the 
right panel. 

3.2.2 Final Shape Model 
Table 1 summarizes our results. The mean residuals are expressed in units of the instrumental 
noise. The final mean slope error is calculated from the residuals (section 2.3.2).  
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The CPU times are given for a dual-core 2 GHz Opteron CPU with 2 GB of RAM. The 
mean residuals decrease from 9.5 to 6.1 (in units of instrumental noise) from the spherical 
harmonics to the triangular mesh representation (see also Fig. 1).  

Table 1. Summary of our results for SHO and VHO. 

Parameters SHO VHO 

Starting chi-square 28640 90 

Final chi-square 90 37 

Mean residuals 9.5 6.1 

Mean slope error 12° 7° 

Mean height error 20 m 10 m 

Number of iterations 1 3 

Total CPU time 30 hours 3 weeks 

3.2.3 Accuracy 
As described in Section 2.3.2., residual images can be calculated between synthetic and 
observed images. Figure 3 shows the residual images of one of the 8 images used to 
reconstruct Steins after the spherical harmonics expansion optimization (left panel) and after 
the vertices heights optimization (right panel). On these residual images, a dark grey value 
corresponds to a higher signal in synthetic images than in the observed ones. The SHO method 
is unable to reconstruct the small scale topography as illustrated by the absence of craters in 
the corresponding synthetic image (middle panel of Fig. 1) and conservely their presence in 
the residual image (left panel of Fig. 3). The VHO method is fortunately able to retrieve all 
topographic details at all scales as illustrated by the nearly perfect similarity of the observed 
and synthetic images (respectively left and right panels of Fig.1) and the quasi absence of 
topographic information in the corresponding residual image (right panel of Fig. 3).  

The residual can be projected on the surface (cf. Section 2.3.2.) and Fig. 4 illustrates the 
results of this projection. Using these maps, we can easily localize the areas where the shape 
model is not well reconstructed. 

 
Figure 3. Illustration of a residual image calculated according to Eq. (11), in units of the instrumental 

noise with SHO (left panel) and our final VHO model (right panel).  
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Figure 4. Illustration of the residual images in units of instrumental noise corresponding to Fig. 3 and 
according to Eq. (12), respectively projected on the SHO model (left panel) and our VHO final model 

(right panel). 

We present in Fig. 5 the histogram of the values in the “slope error map” defined in section 
2.3.2 for both the SHO model and our final VHO model. For the latter, the width at half 
maximum is ~ 7º, which corresponds to 10 m in height, or 1/8th of the pixel resolution at 
closest approach. The SHO histogram shows a higher value of the mean error. 

Larger values of up to ~ 30° are however obtained in regions of the shape model which 
correspond to the limb2 and the terminator3. 

 
Figure 5. Histograms of the slope error for the models of Steins obtained with VHO (solid line) and SHO 

(dotted line). 

                                                 
2 The limb is the physical edge of the apparent form of an object. 
3 The terminator is the limit between the illuminated and the dark part of an object. 
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3.3 Preliminary Tests on Lutetia 

Figure 6 shows the result of preliminary tests performed on a 10 km wide Digital Terrain 
Model (DTM) of the asteroid Lutetia with the VHO method. Our input model is a DTM (also 
called “maplet”) of 10000 facets, extracted from the stereophotoclinometry model (SPC 
model) of R. Gaskell. Our method allows us to recover higher frequency information (right 
panel) compared to the initial DTM (middle panel). Craters and grooves (also called 
“lineaments”) are reconstructed with a more accurate depth. 
 

 
Figure 6. Illustration of the reconstruction method used on asteroid Lutetia. Left panel: observed image. 
Middle panel: synthetic image calculated from the SPC model. Right panel: synthetic image calculated 

from our final VHO model. 

The comparison between the SPC model and our final VHO shape model is best illustrated 
in Fig. 7 where the differences in the depths of the different structures can be appreciated.  

  
Figure 7. Perspective views of the DTM shown in Fig. 6. 

Left panel: SPC model. Right panel: our VHO model. 

We present in Fig. 8 the histogram of the values of the “slope error map” defined in section 
2.3.2 for both the SPC shape model and our final VHO model. In the former case, the 
histogram width at half maximum is ~ 15° whereas it is ~ 10° in the later case which implies a 
higher accuracy convergence of our optimization method. Note that the absence of limb and 
terminator on the limited DTM restricts the slope errors to ~ 25° in the VHO histogram. This 
is not the case of the SPC histogram where error values up to 45° are present. Our new method 
of photoclinometry by deformation therefore successfully improves the accuracy of the 
reconstruction compared to the stereophotoclinometry method. 
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Figure 8. Histogram of the slope error for the models of Lutetia DTM obtained with the VHO and the 
SPC shape models. 

4. CONCLUSION AND FUTURE WORK 

We developed and tested a new multi-image photoclinometry method based on deformations 
applied to a three-dimensional shape model. The method was applied to images of the asteroid 
Steins acquired by the imaging system on board ESA’s Rosetta spacecraft. The method also 
generates a map of the local topographic error deduced from the pixel residuals, both in slopes 
and in heights. In the case of Steins, the local averaged slope error amounts to 7°.  

Contrary to previous methods mentioned in section 1, our method allows to optimize  
low-resolution models from images in which the object is less than 100 pixels across.  

The “faster” version of the code for the calculation of the partial derivatives of the  
chi-square described in section 2.4 has been implemented in the code and is in the test and 
validation process. The first results indicate an overall gain in speed which is in agreement 
with the prediction of section 2.4.2, i.e., a factor of about 1000 for the example described in 
section 3. The total CPU time therefore decreases to 30 min. 

In the near future, we intend to improve the robustness of the method by implementing a 
multi-resolution approach also in the VHO deformation scheme. We will also apply this 
technique to the Lutetia images in order to improve existing high-resolution global shape 
models [7]. We will also apply it to images of the asteroid Vesta acquired by the framing 
camera aboard NASA’s DAWN spacecraft. Finally, we will use it in 2014 and 2015 to retrieve 
the shape of the nucleus of comet 67P/Churyumov-Gerasimenko from high-resolution images 
acquired by the OSIRIS scientific cameras of Rosetta. 
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