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ABSTRACT

In Robotics, one of the core problems is motion pilag towards a specified goal. Today, there are
different solutions; however, most of them requicenplex models of the environment, which are not
intuitive at all, and force the programmer to urstiend the operating mode in detail of the robothshe

is working with. Furthermore, most algorithms usadcurate information which cannot be relied upon.
This paper presents a robot motion imitation apghpaising Bayes networks and machine learning,
which does not require much knowledge, neitherrasirenment model. The proposed method defines a
Bayes network based on the distance detectionstimeaobot. A learning phase provides the robot with
a path for solving a motion planning problem anddimcessing the distance detections and velodities
order to learn how to control the robot. Finallge trobot can reproduce the learned path by using a
probabilistic inference algorithm. The proposed hoetwas tested both in simulated and experimental
environments with a differential mobile robot.
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1. INTRODUCTION

Today, a lot of powerful and accurate solutionssefor the motion planning problem, i.e.

finding a path from an initial configuration toaget configuration. Although, those solutions
still have some flaws. Most of the algorithms asswgiven environment model, which may
adapt perfectly to laboratory conditions for tegfilut generally will fail to represent the

complexity of real life applications. Moreover, gramming a robot is not an intuitive task
since there is a discrepancy in the languages asptbgrammer thinks in terms of obstacles
and motions, and he/she knows that, while approgchiwall, the robot should slow down a
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turn away from it. However, for a mobile robot tkencept of‘wall” and “turn” are
unknown. Such a robot works with coordinates, sergsiections and wheel velocities,
processing large quantities of numerical data topadhe best behavior. Clearly, the
translation from one language to the other is famfobvious. Finally, many of the solutions
involve using odometry data (internal data from tbéot, generally used to estimate its
position at any time), which are sometimes far fexact, preventing the robot from reaching
its target. Our solution consists in using a prdsic approach and does not have those
problems.

The purpose of this paper is to explain a motioitation method (which takes a mobile
robot from an initial configuration to a final cagdration) developed using a probabilistic
approach instead of a more common deterministiccagmh. Specifically, a Bayes network is
implemented, and the data needed to define theonktave obtained through learning. During
the learning process, a human remotely operatesoth@, and the machine collects all the
sensor data obtained and uses them afterwardsetatepautonomously.

Thanks to the probabilistic approach, this methsd quite robust since it allows
uncertainties: even in case of a minor failure ideaice (like the laser sensor), the robot can
adopt a behavior that suits well with the situatiora natural manner, increasing the odds to
success. It does require an approximated modelagusther methods do, but this model does
not deteriorate passing from laboratory to rea 8ftuations. Data from simulation learning
works also well with the physical robot. Moreovéite method is program friendly since it no
longer needs to worry about the robot detailsidstance, to program a turn to get away from
an obstacle, it is enough tsHow the robot what it must do instead of working ditg with
the translation and rotation velocities. Furtherepoif one wishes to change the robot’s
behavior (can be a small change, such as acconmglithe same task while staying further
away from obstacles, or a big change such as & tbabpushes obstacles instead of one that
avoids them), it suffices to change the learning daithout modifying a single line of code.
Finally, in this approach, the robot does not usenoetry data, only laser detection.

The Bayes network presented in this paper is sinfpiecould be enlarged to resolve more
difficult tasks. In this sense, this paper is adguto use probabilistic networks in mobile
robotics.

This paper is organized as follows: First, work$ated with motion planning and
probabilistic related approaches are discussedreTisea small section explaining the Bayes
network as well. Section 2 presents the main compisnof our proposed approach. Section 3
shows the test cases and the preliminary resuttsregal in laboratory with a physical mobile
robot. Finally, section 4 presents some conclusants section 5 proposes some possibilities
for future work.

1.1 Related Works

To find a path between an initial point and a dedton, the Dijkstra algorithm for the shortest
route, or the A* algorithm, comes to mind. To apptgse methods in the motion planning
problem, it is required to transform the map of éiliwironment into a graph, so we can apply
these algorithms on that graph. Two of the mosutapstrategies for obtaining such a graph
are cell decomposition and visibility graph. Thesethods need the complete map of the
environment a priori, and while they always findsiable solution (if such solution exists,
otherwise they report that there is no solutiom@ytmay be computationally heavy, dependent
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of map size, and inflexible. Moreover, once a patfound, having the robot navigate through
that path is a problem in itself, because odome#ata must be used and may be inaccurate,
causing the robot to deviate from the path anddoolne lost or collide with an obstacle.
These algorithms are called global (i.e. they negjtlie environment’s map to make decisions)
and complete (i.e. they find a solution if suchusioh exists).

An alternative approach is using potential fieldhewe at any given point in the
environment there is a force that draws the robatstgoal, and another one repelling it from
obstacles. The robot makes decisions only baseth@rforces at that point. This method
doesn’t require a map given a priori, navigatioeasier and the method is more flexible, but
the robot might get trapped in local minima, nesgaching the destination. Such algorithms,
making decisions based on the immediate surrousdiithout any guarantee of reaching a
solution, are called local and heuristic.

As a general rule, when working in large environtagglobal and complete algorithms
are too complex, inflexible, and for this reasoeyttare mostly seen in situations that can
guarantee both a known map to find a solution amoldgprecision to execute its motions.
Under limited conditions, the local algorithms greferred. La Valle (2006) elaborates further
on these and many others similar methods.

The field of probabilistic networks has recentlyesea significant growth, with
applications in distinct areas such as medicinéinances. Those networks are widely used
when one wishes to program a decision making psod@mder and Koller (1997) made a
comparison of learning in Bayes networks versusralenetworks, where the former gained
the upper hand because it supports a priori infaondrom experts, information that is used
to give structure to the network. F. Gagliardi (8P€eveloped JavaBayes, a Java program for
doing probabilistic inference and experimentinghwBayes networks. There are also some
programs based on learning and designed to playegdiorb and Nicholson, 2004): they
built a program that played a simple form of polerd after playing against different kinds of
opponents, it learned to adapt to beat those oppenk the end, their program was able to
beat most of the other programs that did not hhigeléarning mechanism. It was able to beat
novice human opponents that played predictably,failed against advanced poker players
that varied their style.

In addition, O. Lebeltekt al. (2004) proposed a complex robot based on a pridtabi
approach, designed for firefighting. The robot ieyided with probabilistic behaviors which
enable him to resolve a task. However, most praistibidistributions used are givenpriori
(instead of acquired through learning), more in@uts used alongside the laser detections we
focus on, and there is no explicitly defined Bageswvork. The resulting robot is composed of
different behaviors, built incrementally, each avith a probabilistic component, and to solve
different tasks it uses a combination of differbahaviors. In this paper, we propose a robot
based on one behavior alone and based on learitingevy little information given a priori.

There are not many applications of Bayes networksobotics. However, Zhou and
Sakane (2007) use Bayes networks to solve therdbstt problem (i.e. given the map of an
environment, the robot must find its position oattimap). In their paper, they estimate the
sensing costs and the degree of localization c#ytdi.e. how certain a robot is about its
possible location) by making inference in a Bayesmork, and by using those estimates to
determine the most efficient way of exploring uitsl location is found with a high degree of
certainty.

Furthermore, a robot imitation approach combinethve probabilistic component has
been used by M. Olligt al. (2007) for estimating the terrain costs: the rolsotemotely
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navigated by a human operator, and the acquireditepdata helps the robot to identify what
terrain type was often used by the human, and tenetin type was avoided. This information
is then used to assign a cost to the terrain wtiielrobot is able to traverse, and with these
costs a map is built and the shortest/easiestipatiiculated using standard algorithms.

E. Antonelo et al (2008) use Recurrent Neural Networks (RNN) witles&voir
Computing and an imitation learning process to poeda mobile robot for exploration and
target seeking. The results are quite good, andrtéthod is very robust since a noise is
artificially introduced in the sensor detectionsgddhe behavior acquired translates well when
the environment is changed (despite some colliyions

1.2 Bayes Networks

Our method is based on using a Bayes network (ge€an network) to model the robot’s
decision process. Next, we will briefly describeawft is, how it operates and how it can be
used.

A Bayes network can be modeled as an acyclic dicegraph, modeling causes and
consequences. The predecessors of a ver{eg. all vertices such that there exists an edge
from the vertex ter) are the causes af and the successors (i.e. all the vertices suattlhiere
exists an edge frong to the vertex) are the consequences:.oDne of the most common
examples is the burglary-earthquake network, whiciiels the scenario with a house and an
alarm, and the alarm can be set on either by ddmyrgr an earthquake, and if triggered, the
owner may be called by his neighbors John and/ayNrigure 1).
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Figure 1. Bayes network for a Burglary-Earthquakeate. Drakost al.(2010)

The network is completely determined by the Coondal Probability Tables (CPTs) that
determine the probability distribution of an everticurring given the values taken by his
predecessors. In the example above the probathibitythe alarm sounds when there is both an
earthquake and a burglary is 95%, the probabilityahn calling when the alarm sounds is
90%, and the probability of him calling when tharah does not sound is 5%, and so on. Each
successor has a probability distribution for easimlgination of values of his predecessors: in
the example, Alarm has four probability distributio associated, while JohnCalls and
MaryCalls have only two. Note that since Burglangl &arthquake have no predecessors, they
just have a single probability distribution thatresponds to the probability of those events
happening without any additional information.
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In a Bayes networks, all events are dependentai.phHowever, given some evidence,
they can become independent (in the example alleesvents Burglary and JohnCalls are a
priori dependent, but if I know for sure the alasounds they become independent).
Furthermore, using Bayes rul&{4lE) = %, and other probability techniques, the
probability of any event given any set of eviderma be computed (for example, the
probability of burglary given that John calls andy does not, or the probability of John
calling given that there is no earthquake can beprded). This characteristic is what makes
Bayes networks so useful in a decision making mecehere the solution can be changed
naturally as evidence is acquired. The processoafiptting those probabilities is called
inference.

As of today, Bayes networks have two major limdas. Inference is NP-Hard, and the
events’ distributions can only be discrete or Gausgalso known as Normal distribution).
Nevertheless, they are a valuable tool with mangfulsapplications, in fields such as
marketing, military and medicine (Figure 2).
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Figure 2. Bayes network for diagnosing breast dseBsrnsideet al. (2009).
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2. PROPOSED APPROACH

This section presents the main components of opiroagh which is composed of a designed
Bayes network, a proposed learning algorithm, anghr@posed probabilistic inference
algorithm to control the robot.

2.1 Bayes Network Design

We must consider two kinds of variables: input ables, or sensory variables (in this case,
laser detections) and output variables, or driviagiables (translation speed and rotation
speed). Our task is to determine a function whiahgforms input detections provided by the
laser sensor into the output values for the rotmtsiation and rotation speeds that best suit
the situation.

Since there are many possible configurations ferdétections given the laser precision,
3995”161 to be exact (e.g. the quantity of atomthénobservable universe is around 10780),
where 3995 is the laser’s distance range in miligreeand 161 degrees is the laser’s field of
view, we must simplify the possible inputs. Thepwsed solution is using two new variables,
named Distance and Angle. Distance indicates thetrbow close it is to the obstacles. For
simplicity, we only consider laser detections ullOmm. For detections farther than this
distance, they are transformed to the maximum niigta(600mm), since we believe such
detections to be irrelevant in the robot's decisibistance is just the minimum distance
detected in all possible angles, divided by 100 mmohded to the nearest integer. It can take
seven possible values, from 0 to 6, but since obotr will never approach the obstacles too
closely, it should never take the value 0 and vedeft with 6 values (Figure 3).

To calculate Angle, we divide the 160 degrees J&ser cone that can be scanned into six
smaller cones, and take the minimum distance ih e&the cones (Figure 3). We then select
the two cones with the smaller distance. We getytiiays to select the two cones (order does
matter). Angle then takes a value between 0 and2€h value corresponding to a possible
selection of two cones, indicating the robot theclion of the nearest obstacles.
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Figure 3. Intervals of distances and angles taktnaccount from the laser sensor

We are left with 180 possibilities for the combineadues of Distance and Angle, a value
that is small enough to work with, and yet rich eglo to accurately model the different
situations that the robot will face.

We propose the design of a Bayes network, basethetaser detections, Distance and
Angle, and translation and rotation velocities. Thsulting Bayes network is quite simple:
Distance and Angle are consequences of laser aetectand are causes of the robot
translation and rotation velocities (Figure 4).

In the previous paragraph, we explained how to admDistance and Angle from the
detections. These values can be viewed as a piippalistribution, where they take the value
specified above corresponding with the laser detestwith probability 1, and all other values
with probability 0.

We still have to determine the 180 conditional ritisttions of Translation Velocity and
Rotation Velocity, given each combination of Distarand Angle. These distributions will be
obtained through a learning algorithm.
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Figure 4. Bayes network based on laser detecti@iddrangular intervals (cones) enabling to infer th
translation and rotation velocities of the robot

2.2 Learning Algorithm

Prior to normal execution, the robot must go thitowg preliminary phase of learning, to
determine the conditional probabilities of the rtdbovelocities. In this phase, a human
operator controls the robot in a way the robot &haperate, and the robot stores all the
relevant data necessary, which enables it to thfedesired behavior later.

In our case, learning is done as follows. First, dperator leads the robot from an initial
configuration to a target configuration using a otenoperation. During this process, the
robot, as fast as possible (several times per s@cstores the laser detections found during
one sweep, and the velocities it had at that giirea. A learning data sample is shown below

(Figure 5).
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locationTypes: robot robotGlobal
scanlId: 1

time: 0.359

velocities: 0.00 0.00 0.00

robot: 0 0 0.00

robotGlobal: 0 0 0.00

scanl: -0 -1e32 28 -1631 57 -1632 86 -1633 114 -1630 1432 -
1630 171 -162% 200 -1627 229 -1627 258 -1627 287 -1628 316
-1628 3246 -1628 376 -1628 405 -1e25 437 -1630 466 -1le2e 497
-1626 528 -1625 561 -1630 592 -1628 625 -1629% 658 -1628 €51
-1628 726 -1630 760 -1630 794 -1628 B82% -1627 863 -1624 300
—le24 240 -1le28 977 -1le25 1017 -1le28 1057 -16€28 1037 -1le26
113% -1626 1183 -1628 1223 -1624 1270 -1626 1315 -1624 1363
-1625 1410 -1e22 1465 -1627 1515 -1624 1568 -1624 1621 -le2l1
1680 -1623 1741 -1624 1758 -161% 1862 -1618 1532 -1621 19599
-1619 2075 -1e21 2144 -1ele 2229 -1€l15 2310 -1el7 2357 -1el7
2489 -1616 2584 -1615 2687 -1615 279%7 -1615 2%11 -1613 3033
-1613 32162 -1611 3304 -1e61ll 3449 -1608 3608 -1606 376l -1597
3763 -1521 3762 -1444 3762 -13e€9 3760 -1295 3759 -1221 3754
-1148 3759 -1078 3755 -1006 3755 -%36 3755 -867 37538 -7%%9
3759 -731 3757 —-eez2 3757 -5%5 3757 -528 3756 -46l1 3755 -395
3754 -328 37536 -263 3748 -1%6 3748 -131 3750 -65 3732 0
3746 €5 3746 131 3749 1896 3744 262 3744 328 32745 394 3748
460 3430 482 3016 478 2704 477 2433 473 2219% 472 2032 469
1878 468 1743 467 1625 466 1523 466 1431 465 1346 464 1275
464 1202 462 1147 463 1086 461 1032 460 588 461 941 45%
502 455 862 458 831 461 735 459 762 458 732 457 708 460
©82 460 655 459 627 456 €07 457 585 457 566 458 547 459
527 458 505 455 489 456 470 454 455 455 439 455 424 455
410 456 396 456 3B0 453 366 452 353 452 343 455 332 456
316 451 305 453 295 455 283 453 272 453 260 450 250 451
239 450 230 451 221 453 212 455 201 452 193 456 183 453
173 451 165 453 155 449 148 455 138 452 130 452 122 454
113 453 105 454 95 448 87 4459 79 450 72 454 &3 451 55 451
48 453 39 447 32 453 23 446 16 451 B 453 -0 451

scanlId: 2

time: 1.234

velocities: 25.00 0.00 0.00

robot: 0 0 0.00

Figure 5. File showing the relevant robot inforraatstored during the learning phase

The relevant data are robot velocities (first numbwalicates translation velocity in
mm/sec, the second one indicates rotation veldoitdeg/sec, and the third one indicates
vertical velocity- since our robot cannot fly, thimlue will always be 0), and the scan
detection to the obstacles inside the laser’s fafldiew (each couple of integers represents
the XY coordinates from the robot perspective @& tiearest obstacle point in each angle, so
there are 161 couple of integers). The figure shomg one scan, but a learning phase of five
minutes provides around 5000 scans.

Afterwards, the information must be processed. dlgerithm finds the specific situation
where the robot is between the 180 possibilitieanks to the laser detections, and stores the
robot velocities for that situation.

In the Bayes networks shown before, every prolghdistribution was discrete. However,
it seems more natural to think of a velocity asaatinuous variable, with an unknown
distribution. Since after a normal learning phasere are typically around 100 velocities
stored for any given situation, by the Central Ltifftieorem of probability we can assume that
those distributions are normal (or Gaussian).

Those distributions are uniquely determined by mhean value and variance. When a
remote operation ends, the robot will estimate eheaslues using their maximum likelihood
estimators, which are the sample mean and the saraphnce.

2.3 Autonomous Execution

There is a general process the robot must follosnglexecution. Each laser scan is the input
of the Bayes network which is transformed into fthistance and Angle variables. These
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variables are used to make a classification intdiscrete” situation which has associated a
normal/Gaussian distribution modeling the robonstation and rotation velocities that are the
results of the probabilistic inference algorithnoposed. Although inference is in general a
NP-hard problem in a Bayes network, in our solutio@ inference is done efficiently thanks
to the simplicity of our network. For clarity, thgocess is detailed as follows. After doing a
complete 160 degree laser scan, the Bayes netwaigtdines the current situation for the
robot by computing Distance and Angle. That sitmtihas a corresponding Gaussian
distribution associated with each velocity, andrandomly generates a value for each
distribution. Then it simply adapts the velocitiesrotation and translation to match those
values. This simple process is repeated severakt@ach second, so the robot adapts quickly
when the situation changes. The robot was taughstép when it reaches the goal
configuration, meaning that the goal configuratioast be different from the configurations
the robot can find along the path (otherwise thbotomight stop halfway, or continue
advancing when the goal is reached). In our test;ghe goal configuration was chosen to be
near a wall or corner, facing the wall.

The robot’s behavior mimics the behavior that wamsan during the learning phase. So in
order to change the desired behavior, for exama#sipg from a behavior that simply dodges
obstacles to a wall-following behavior, an entirelgw learning data must be provided.
Furthermore, to change the robot's environment (ieg) without changing the desired
behavior may also require a new learning patteepedding on the behavior. In our case, the
behavior, going to a desired configuration withaotliding with obstacles, is highly map
dependent, so for each different environment theitebe an independent learning phase.
However, some behaviors such as wall-following dollave the same learning data
independent from the map. Furthermore, indepengeitthe map and the task, some learned
behaviors maintain their validity. For example, whbke robot learns to turn when it is near a
corner, this knowledge transfers from map to magry case, note that the control execution
itself does not need any modification, and oncepftuipposed approach was implemented, the
only thing needed tprogram” a new behavior is remotely operating the robaédther data
needed by the learning phase. It is a task thadi@hycan do (and not just robot experts).

3. TEST CASESAND RESULTS

The following subsections present the mobile rals®d to make tests, the test cases designed
to validate the proposed method, and the resultaired with these test cases under an
experimental environment using the available motuiteot.

3.1 Mobile Robot Specifications

The robot used to test the proposed method is fareliftial mobile robot (i.e. it can be
controlled either by setting the velocities to eadteel or by setting the instant translation and
rotation velocities) Pioneer P3DX (MobileRobots,08) (Figure 6): a 30x30 cdmrobot,
equipped with an URG laser capable of doing a 1&frek sweep in front of the robot, and
returns the distance from the nearest obstacladh angle scanned. This distance is an integer
between 0 (collision) and 3995 (obstacle far awagyl each number represents the distance in
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millimeters. Note that if an obstacle is fartheartt8995 mm, the distance given by the laser is
still 3995 mm.

Figure 6. P3DX mobile robot equipped with an URGtasngefinder
3.2 Test Cases

Three scenarios were designed to test the motiamilegy method. In the first and second
scenarios, learning consisted in an operator cordingnthe robot from an initial
configuration to a target configuration, where afgguration defines position and heading.
Then, the robot was launched, and when it got Itst, operator took over from that
configuration to the target configuration. Only tii&a acquired in this process are used, and
in particular no odometry queries are done. Incalées, the learning phase was done in
simulation.

In the first scenario (Figure 7), the robot statshe initial configuratiorgy (upper left
corner heading to the south) and must go to thal fienfigurationgs (lower right corner
heading to the south). Many tests were done, vgrtfia robot’s initial coordinates and initial
heading (but the robot is never placed while diyefeicing a wall). The robot never received
its initial configuration (position/orientation)nd it used exactly the same learning data code
to solve the problem from all the different configtions.
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Figure 7. (Top) Scenario 1 (5100 x 2100 fimhere the robot starts g and must finish ad.
(Bottom) Experimental scenario in the laboratoryniake tests.

In the second scenario (Figure 8), the robot strtp (lower left corner heading to the
east) and must arrive at (upper right corner heading to the north). Thee tavo ways to
arrive (going below or above the central obstadde},during learning, the robot was always
commanded to take the lower path. So, during aonautous execution it is expected to take

that same path.
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Figure 8. Scenario 2 (5100 x 2100 Awhere the robot starts @ and must finish at

In the third scenario (Figure 9), the robot’s t&skot to reach a destination, but to follow
the wall indefinitely. Learning was done similattythe previous cases, but instead of leading
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the robot to the target configuration as done heeftite operator just leads the robot until it
reaches the initial configuration again. During tharning phase, the robot was only taught
how to follow a wall on its left.

1 M50

&

0
d,(P,:0°)=0;

SN
.~

2100
mm

Al 5100 mm
Figure 9. Scenario 3 (5100 x 2100 Amwithout obstacles where the robot starts and abgls

3.3 Reaultsfor Test Cases

In this section we present the method’s resultbréSults are all obtained from execution with
the physical robot, despite that learning was dargmulation. They vary depending on the
time spent in the learning phase.

Table 1 shows results for the first scenario. Resale quite satisfactory, since the robot
manages to arrive at the target configuration atmwesry time due to the learning process,
even after varying its initial configuration. Alserth mentioning is that, despite no odometry
data are used, when the robot is lifted and put bathe start without shutting it down, it does
not get lost but instead just begins its path anew.

Table 1. Results for scenario 1

Learning time Behavior

5 minutes Robot gets lost very quickly.

20 minutes Robot goes past first obstacle but gets lost afterwards.

40 minutes Robot goes past first obstacle, turns correctly in order to overcome the
second one, but gets lost shortly before doing so.

60 minutes Robot arrives at destination 95% of the time. If the initial configuration is
modified, the robot arrives at destination 80% of the time.

80 minutes Robot arrives at destination 100% of the time. If the initial configuration is

modified, the robot arrives at destination 90% of the time.

Table 2 shows results for the second scenario. &¥dhat the results are again quite good,
despite small mistakes. It is interesting to sed thbot occasionally takes the upper path,
although during learning that path was never exgglokVhat's even more interesting is that it
still manages to find its way around half of thees while taking said path.
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Table 2. Results for scenario 2

Learning time Behavior

5 minutes Robot gets lost very quickly.

15 minutes Robot manages to exit left side of scenario, but gets lost afterwards.

35 minutes Robot manages to exit left side of scenario, and 50% of the time reaches
destination. The other 50% it gets lost along the way.

60 minutes Robot manages to exit left side of scenario, and 80% of tries it takes the

lower path and reaches destination. 10% of times it takes the upper path
and still reaches destination, and 10% of times it takes the upper path and
gets lost along the way.

Table 3 shows results for the third scenario. Ssirgly, this apparently “easier” behavior
required more learning than the previous ones.rAff@0 minutes of learning, the robot
manages to follow the wall successfully, but théiropl behavior of following the wall in a
straight line could not be obtained, and the rdbldws the wall in zigzag. The reason is that
the model used to describe the laser detectiomsw#ty we compute Distance and Angle) was
thought to resolve another problem, and it is hetliest model to follow the wall. Instead, a
new model that takes more into account detectibtiseasides of the robot, with little focus on
the front, would be more adequate. Nevertheless wbrth noting that despite using the same
model we used for path planning, the robot doesagaro follow the wall.

Table 3. Results for scenario 3

Learning time Behavior

5 minutes Robot turns away from wall.

15 minutes Robot follows the wall* before arriving at corners. However it stops when
it reaches corners.

40 minutes Robot follows the wall* before arriving at corners. When it reaches a

corner, it stops and begins turning. 50% of times it turns correctly and
continues following the wall, 50% of times it stops halfway through the
turn.

100 minutes Robot follows the wall* before arriving at corners. When it reaches a
corner, the robot stops and turns correctly, and continues following the
wall.

* Robot does not follow the wall in a straight lirmyt it alternatively approaches then moves awam fr
the wall

4. CONCLUSION

In this paper a motion imitation approach was desigand implemented for a differential
mobile robot using a Bayes network and learningn@es. It was tested with the physical
robot in different scenarios of average complextyd results were quite good.

In comparison with other alternatives, our methattengths are:
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e Only two algorithms, inference and learning, areduso solve different kinds of
problems. These algorithms are general and doeperdd on the problem.

* Once the probabilistic component is implementeis, @ough to modify the learning
data in order to change the robot behavior, andcoge changes are need in the
system.

* To solve a problem that generally requires cootdmand geometric space location,
we use only local sensory information (laser dedes). In particular, no odometry
data is required.

* Robot does not need memory. It is never instrutdedemember what it was doing
previously (like turning) to determine its bestiaot

e The method is robust against inaccuracies (likeyimgr the robot's initial
configuration without notifying it, or manually chging its configuration during
execution).

* To “teach” the robot a behavior, no programmingwlgalge is required. Remotely
operating is enough.

» Programming the robot is a more intuitive taskngeeasier to show the robot the
desired behavior instead of having to translatet thehavior into the robot's
language.

e ltis a generic method for solving different prabke The robot can be configured to
wall following or to go to the target configuratiarsing the same program and the
same Bayes network.

However, using this method also has drawbackscdmatot be ignored:

« Asignificant learning period could be required émmplex tasks.

* The method is not complete. Occasionally the rddits to solve the task.

» It is difficult to find mistakes. If the robot's havior is not as desired, it is hard to
detect what fragment of the learning data is resjpde and the operator must restart
the learning process from scratch.

* This method depends heavily on both the Bayes mktwsed and the data
simplifications. Moreover, there is no tool thatetenines for sure what network and
simplifications will have the best results. Insteade must proceed by trial and error
until a suitable model is found.

e In this case, the Bayes network used is very simaplé is not capable of solving
more complex problems which may arise in mobileotals. However, it is possible
to design much richer networks (for example, oret thcludes odometry data) to
cope with those problems.

We would like to insist again on one of the mogn#icant features of our solution: the
robot does not use odometry data. This is reallgriging, because the robot manages to reach
a destination without really “knowing” its currepbsition, or where the target position is
located. We will use an analogy with human behaviar traditional motion planning
solutions, the robot’s thoughts are “| am at GPSitimm (24.56, 30.32) and | need to arrive at
GPS position (27.40, 25.32), but | detect an olestat (26.77, 28.09)"; in our solution, it
looks more like “when | find the tall building, lilvturn left, and when |1 find the dead end, |
will know that | have reached the goal”. The lattereadily seen to be much more natural (for
a human).
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5. FUTURE WORK

The proposed method in this paper is not direqtipliaable to real life robotics problems,
since its purpose was to explore the possibilities probabilistic networks offer in Robotics.
However the method can be built upon to implemeritia complex application. In this
section, we provide a few ideas for extending thekwpresented.

The basis and most important aspect for the meithtfie underlying Bayes network. We
presented just one possibility, but it is by no neahe only “correct” one. Other Bayes
networks should also be tested, using differenpbfivations and variables, and perhaps even
including odometry data. An alternative would beskdend the network we proposed with two
new variables that can be estimated during executising odometry. One is Current
Configuration, having no predecessors and withrdfet velocities and the detections in each
cone as its successors. The other one is Goal gimafion, a predecessor for the robot's
velocities. The resulting network is more diffictdthandle, but it provides more accuracy and
power.

In this paper, there are only two problems tackladtion planning and wall-following.
There are many more problems in Robotics that easobved with a probabilistic approach as
shown in this paper. Different Bayes networks fiffedent problems should be designed and
implemented.

While in this paper a pure probabilistic approacaswised, totally based on machine
learning, this method is compatible with otheremiatives. In particular, a hybrid approach
could be developed, using both deterministic arubabilistic behaviors, some given a priori
and some acquired through learning. Our methoblesta apply only a behavior to perform a
task (e.g. motion planning), but a solution produd®y mixing behaviors (e.g. pushing
obstacles, object recognition, doing localizatiomag many other possibilities) could equally
be constructed.

In any case, we do believe that there is plentyooim to use probabilistic networks in
Robotics in an innovative way. Those networks aosvgrful tools for reasoning under
uncertainty, a characteristic of most situationkeill applications should therefore be fully
developed.
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