
IADIS International Journal on Computer Science and Information Systems
Vol. 6, No.3, pp. 87-103
ISSN: 1646-3692

87

ROBOT MOTION IMITATION BASED ON BAYES
NETWORKS AND LEARNING

Andrés Gómez. Depto. Ingeniería de Sistemas y Computación, Universidad de los Andes. Bogotá,
Colombia.

Fernando De la Rosa. Depto. Ingeniería de Sistemas y Computación, Universidad de los Andes.
Bogotá, Colombia.

ABSTRACT

In Robotics, one of the core problems is motion planning towards a specified goal. Today, there are
different solutions; however, most of them require complex models of the environment, which are not
intuitive at all, and force the programmer to understand the operating mode in detail of the robot she/he
is working with. Furthermore, most algorithms use inaccurate information which cannot be relied upon.
This paper presents a robot motion imitation approach, using Bayes networks and machine learning,
which does not require much knowledge, neither an environment model. The proposed method defines a
Bayes network based on the distance detections near the robot. A learning phase provides the robot with
a path for solving a motion planning problem and for processing the distance detections and velocities in
order to learn how to control the robot. Finally, the robot can reproduce the learned path by using a
probabilistic inference algorithm. The proposed method was tested both in simulated and experimental
environments with a differential mobile robot.

KEYWORDS

Robot Imitation, Imitation learning, Machine Learning, Bayes network, Mobile Robotics.

1. INTRODUCTION

Today, a lot of powerful and accurate solutions exist for the motion planning problem, i.e.
finding a path from an initial configuration to a target configuration. Although, those solutions
still have some flaws. Most of the algorithms assume a given environment model, which may
adapt perfectly to laboratory conditions for testing, but generally will fail to represent the
complexity of real life applications. Moreover, programming a robot is not an intuitive task
since there is a discrepancy in the languages used: a programmer thinks in terms of obstacles
and motions, and he/she knows that, while approaching a wall, the robot should slow down a

IADIS International Journal on Computer Science and Information Systems

88

turn away from it. However, for a mobile robot the concept of “wall” and “turn” are
unknown. Such a robot works with coordinates, sensor detections and wheel velocities,
processing large quantities of numerical data to adopt the best behavior. Clearly, the
translation from one language to the other is far from obvious. Finally, many of the solutions
involve using odometry data (internal data from the robot, generally used to estimate its
position at any time), which are sometimes far from exact, preventing the robot from reaching
its target. Our solution consists in using a probabilistic approach and does not have those
problems.

The purpose of this paper is to explain a motion imitation method (which takes a mobile
robot from an initial configuration to a final configuration) developed using a probabilistic
approach instead of a more common deterministic approach. Specifically, a Bayes network is
implemented, and the data needed to define the network are obtained through learning. During
the learning process, a human remotely operates the robot, and the machine collects all the
sensor data obtained and uses them afterwards to operate autonomously.

Thanks to the probabilistic approach, this method is quite robust since it allows
uncertainties: even in case of a minor failure in a device (like the laser sensor), the robot can
adopt a behavior that suits well with the situation in a natural manner, increasing the odds to
success. It does require an approximated model, just as other methods do, but this model does
not deteriorate passing from laboratory to real life situations. Data from simulation learning
works also well with the physical robot. Moreover, the method is program friendly since it no
longer needs to worry about the robot details: for instance, to program a turn to get away from
an obstacle, it is enough to “show” the robot what it must do instead of working directly with
the translation and rotation velocities. Furthermore, if one wishes to change the robot’s
behavior (can be a small change, such as accomplishing the same task while staying further
away from obstacles, or a big change such as a robot that pushes obstacles instead of one that
avoids them), it suffices to change the learning data, without modifying a single line of code.
Finally, in this approach, the robot does not use odometry data, only laser detection.

The Bayes network presented in this paper is simple, but could be enlarged to resolve more
difficult tasks. In this sense, this paper is a guide to use probabilistic networks in mobile
robotics.

This paper is organized as follows: First, works related with motion planning and
probabilistic related approaches are discussed. There is a small section explaining the Bayes
network as well. Section 2 presents the main components of our proposed approach. Section 3
shows the test cases and the preliminary results obtained in laboratory with a physical mobile
robot. Finally, section 4 presents some conclusions and section 5 proposes some possibilities
for future work.

1.1 Related Works

To find a path between an initial point and a destination, the Dijkstra algorithm for the shortest
route, or the A* algorithm, comes to mind. To apply these methods in the motion planning
problem, it is required to transform the map of the environment into a graph, so we can apply
these algorithms on that graph. Two of the most popular strategies for obtaining such a graph
are cell decomposition and visibility graph. These methods need the complete map of the
environment a priori, and while they always find a viable solution (if such solution exists,
otherwise they report that there is no solution), they may be computationally heavy, dependent

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

89

of map size, and inflexible. Moreover, once a path is found, having the robot navigate through
that path is a problem in itself, because odometry data must be used and may be inaccurate,
causing the robot to deviate from the path and to become lost or collide with an obstacle.
These algorithms are called global (i.e. they require the environment’s map to make decisions)
and complete (i.e. they find a solution if such solution exists).

An alternative approach is using potential fields where at any given point in the
environment there is a force that draws the robot to its goal, and another one repelling it from
obstacles. The robot makes decisions only based on the forces at that point. This method
doesn’t require a map given a priori, navigation is easier and the method is more flexible, but
the robot might get trapped in local minima, never reaching the destination. Such algorithms,
making decisions based on the immediate surroundings without any guarantee of reaching a
solution, are called local and heuristic.

As a general rule, when working in large environments, global and complete algorithms
are too complex, inflexible, and for this reason they are mostly seen in situations that can
guarantee both a known map to find a solution and good precision to execute its motions.
Under limited conditions, the local algorithms are preferred. La Valle (2006) elaborates further
on these and many others similar methods.

The field of probabilistic networks has recently seen a significant growth, with
applications in distinct areas such as medicine or finances. Those networks are widely used
when one wishes to program a decision making process. Binder and Koller (1997) made a
comparison of learning in Bayes networks versus Neural networks, where the former gained
the upper hand because it supports a priori information from experts, information that is used
to give structure to the network. F. Gagliardi (1998) developed JavaBayes, a Java program for
doing probabilistic inference and experimenting with Bayes networks. There are also some
programs based on learning and designed to play games (Korb and Nicholson, 2004): they
built a program that played a simple form of poker, and after playing against different kinds of
opponents, it learned to adapt to beat those opponents. In the end, their program was able to
beat most of the other programs that did not have this learning mechanism. It was able to beat
novice human opponents that played predictably, but failed against advanced poker players
that varied their style.

In addition, O. Lebeltel et al. (2004) proposed a complex robot based on a probabilistic
approach, designed for firefighting. The robot is provided with probabilistic behaviors which
enable him to resolve a task. However, most probabilistic distributions used are given a priori
(instead of acquired through learning), more inputs are used alongside the laser detections we
focus on, and there is no explicitly defined Bayes network. The resulting robot is composed of
different behaviors, built incrementally, each one with a probabilistic component, and to solve
different tasks it uses a combination of different behaviors. In this paper, we propose a robot
based on one behavior alone and based on learning with very little information given a priori.

There are not many applications of Bayes networks in robotics. However, Zhou and
Sakane (2007) use Bayes networks to solve the lost robot problem (i.e. given the map of an
environment, the robot must find its position on that map). In their paper, they estimate the
sensing costs and the degree of localization certainty (i.e. how certain a robot is about its
possible location) by making inference in a Bayes network, and by using those estimates to
determine the most efficient way of exploring until its location is found with a high degree of
certainty.

Furthermore, a robot imitation approach combined with a probabilistic component has
been used by M. Ollis et al. (2007) for estimating the terrain costs: the robot is remotely

IADIS International Journal on Computer Science and Information Systems

90

navigated by a human operator, and the acquired learning data helps the robot to identify what
terrain type was often used by the human, and what terrain type was avoided. This information
is then used to assign a cost to the terrain which the robot is able to traverse, and with these
costs a map is built and the shortest/easiest path is calculated using standard algorithms.

E. Antonelo et al. (2008) use Recurrent Neural Networks (RNN) with Reservoir
Computing and an imitation learning process to produce a mobile robot for exploration and
target seeking. The results are quite good, and the method is very robust since a noise is
artificially introduced in the sensor detections, and the behavior acquired translates well when
the environment is changed (despite some collisions).

1.2 Bayes Networks

Our method is based on using a Bayes network (or Bayesian network) to model the robot’s
decision process. Next, we will briefly describe what it is, how it operates and how it can be
used.

A Bayes network can be modeled as an acyclic directed graph, modeling causes and
consequences. The predecessors of a vertex (i.e. all vertices such that there exists an edge
from the vertex to) are the causes of , and the successors (i.e. all the vertices such that there
exists an edge from to the vertex) are the consequences of . One of the most common
examples is the burglary-earthquake network, which models the scenario with a house and an
alarm, and the alarm can be set on either by a burglary or an earthquake, and if triggered, the
owner may be called by his neighbors John and/or Mary (Figure 1).

Figure 1. Bayes network for a Burglary-Earthquake scenario. Drakos et al. (2010)

The network is completely determined by the Conditional Probability Tables (CPTs) that
determine the probability distribution of an event occurring given the values taken by his
predecessors. In the example above the probability that the alarm sounds when there is both an
earthquake and a burglary is 95%, the probability of John calling when the alarm sounds is
90%, and the probability of him calling when the alarm does not sound is 5%, and so on. Each
successor has a probability distribution for each combination of values of his predecessors: in
the example, Alarm has four probability distributions associated, while JohnCalls and
MaryCalls have only two. Note that since Burglary and Earthquake have no predecessors, they
just have a single probability distribution that corresponds to the probability of those events
happening without any additional information.

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

91

In a Bayes networks, all events are dependent a priori. However, given some evidence,
they can become independent (in the example above, the events Burglary and JohnCalls are a
priori dependent, but if I know for sure the alarm sounds they become independent).

Furthermore, using Bayes rule, , and other probability techniques, the

probability of any event given any set of evidence can be computed (for example, the
probability of burglary given that John calls and Mary does not, or the probability of John
calling given that there is no earthquake can be computed). This characteristic is what makes
Bayes networks so useful in a decision making process, where the solution can be changed
naturally as evidence is acquired. The process of computing those probabilities is called
inference.

As of today, Bayes networks have two major limitations. Inference is NP-Hard, and the
events’ distributions can only be discrete or Gaussian (also known as Normal distribution).
Nevertheless, they are a valuable tool with many useful applications, in fields such as
marketing, military and medicine (Figure 2).

Figure 2. Bayes network for diagnosing breast disease. Burnside et al. (2009).

IADIS International Journal on Computer Science and Information Systems

92

2. PROPOSED APPROACH

This section presents the main components of our approach which is composed of a designed
Bayes network, a proposed learning algorithm, and a proposed probabilistic inference
algorithm to control the robot.

2.1 Bayes Network Design

We must consider two kinds of variables: input variables, or sensory variables (in this case,
laser detections) and output variables, or driving variables (translation speed and rotation
speed). Our task is to determine a function which transforms input detections provided by the
laser sensor into the output values for the robot translation and rotation speeds that best suit
the situation.

Since there are many possible configurations for the detections given the laser precision,
3995^161 to be exact (e.g. the quantity of atoms in the observable universe is around 10^80),
where 3995 is the laser’s distance range in millimeters and 161 degrees is the laser’s field of
view, we must simplify the possible inputs. The proposed solution is using two new variables,
named Distance and Angle. Distance indicates the robot how close it is to the obstacles. For
simplicity, we only consider laser detections until 600mm. For detections farther than this
distance, they are transformed to the maximum distance (600mm), since we believe such
detections to be irrelevant in the robot’s decision. Distance is just the minimum distance
detected in all possible angles, divided by 100 and rounded to the nearest integer. It can take
seven possible values, from 0 to 6, but since our robot will never approach the obstacles too
closely, it should never take the value 0 and we are left with 6 values (Figure 3).

To calculate Angle, we divide the 160 degrees view laser cone that can be scanned into six
smaller cones, and take the minimum distance in each of the cones (Figure 3). We then select
the two cones with the smaller distance. We get thirty ways to select the two cones (order does
matter). Angle then takes a value between 0 and 29, each value corresponding to a possible
selection of two cones, indicating the robot the direction of the nearest obstacles.

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

93

Figure 3. Intervals of distances and angles taken into account from the laser sensor

We are left with 180 possibilities for the combined values of Distance and Angle, a value
that is small enough to work with, and yet rich enough to accurately model the different
situations that the robot will face.

We propose the design of a Bayes network, based on the laser detections, Distance and
Angle, and translation and rotation velocities. The resulting Bayes network is quite simple:
Distance and Angle are consequences of laser detections, and are causes of the robot
translation and rotation velocities (Figure 4).

In the previous paragraph, we explained how to compute Distance and Angle from the
detections. These values can be viewed as a probability distribution, where they take the value
specified above corresponding with the laser detections with probability 1, and all other values
with probability 0.

We still have to determine the 180 conditional distributions of Translation Velocity and
Rotation Velocity, given each combination of Distance and Angle. These distributions will be
obtained through a learning algorithm.

0

25

50

80 -80

-50

-25

60 50 40 30 20

IADIS International Journal on Computer Science and Information Systems

94

Figure 4. Bayes network based on laser detections inside angular intervals (cones) enabling to infer the
translation and rotation velocities of the robot

2.2 Learning Algorithm

Prior to normal execution, the robot must go through a preliminary phase of learning, to
determine the conditional probabilities of the robot’s velocities. In this phase, a human
operator controls the robot in a way the robot should operate, and the robot stores all the
relevant data necessary, which enables it to infer the desired behavior later.

In our case, learning is done as follows. First, the operator leads the robot from an initial
configuration to a target configuration using a remote operation. During this process, the
robot, as fast as possible (several times per second), stores the laser detections found during
one sweep, and the velocities it had at that given time. A learning data sample is shown below
(Figure 5).

Cone 1
Detections

Cone 2
Detections

Cone 3
Detections

Cone 4
Detections

Cone 5
Detections

Cone 6
Detections

Distance Angle

Translation velocity Rotation velocity

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

95

Figure 5. File showing the relevant robot information stored during the learning phase

The relevant data are robot velocities (first number indicates translation velocity in
mm/sec, the second one indicates rotation velocity in deg/sec, and the third one indicates
vertical velocity- since our robot cannot fly, this value will always be 0), and the scan
detection to the obstacles inside the laser’s field of view (each couple of integers represents
the XY coordinates from the robot perspective of the nearest obstacle point in each angle, so
there are 161 couple of integers). The figure shows only one scan, but a learning phase of five
minutes provides around 5000 scans.

Afterwards, the information must be processed. The algorithm finds the specific situation
where the robot is between the 180 possibilities, thanks to the laser detections, and stores the
robot velocities for that situation.

In the Bayes networks shown before, every probability distribution was discrete. However,
it seems more natural to think of a velocity as a continuous variable, with an unknown
distribution. Since after a normal learning phase there are typically around 100 velocities
stored for any given situation, by the Central Limit Theorem of probability we can assume that
those distributions are normal (or Gaussian).

Those distributions are uniquely determined by the mean value and variance. When a
remote operation ends, the robot will estimate those values using their maximum likelihood
estimators, which are the sample mean and the sample variance.

2.3 Autonomous Execution

There is a general process the robot must follow during execution. Each laser scan is the input
of the Bayes network which is transformed into the Distance and Angle variables. These

IADIS International Journal on Computer Science and Information Systems

96

variables are used to make a classification into a “discrete” situation which has associated a
normal/Gaussian distribution modeling the robot translation and rotation velocities that are the
results of the probabilistic inference algorithm proposed. Although inference is in general a
NP-hard problem in a Bayes network, in our solution the inference is done efficiently thanks
to the simplicity of our network. For clarity, the process is detailed as follows. After doing a
complete 160 degree laser scan, the Bayes network determines the current situation for the
robot by computing Distance and Angle. That situation has a corresponding Gaussian
distribution associated with each velocity, and it randomly generates a value for each
distribution. Then it simply adapts the velocities of rotation and translation to match those
values. This simple process is repeated several times each second, so the robot adapts quickly
when the situation changes. The robot was taught to stop when it reaches the goal
configuration, meaning that the goal configuration must be different from the configurations
the robot can find along the path (otherwise the robot might stop halfway, or continue
advancing when the goal is reached). In our test cases, the goal configuration was chosen to be
near a wall or corner, facing the wall.

The robot’s behavior mimics the behavior that was shown during the learning phase. So in
order to change the desired behavior, for example passing from a behavior that simply dodges
obstacles to a wall-following behavior, an entirely new learning data must be provided.
Furthermore, to change the robot’s environment (the map) without changing the desired
behavior may also require a new learning pattern, depending on the behavior. In our case, the
behavior, going to a desired configuration without colliding with obstacles, is highly map
dependent, so for each different environment there will be an independent learning phase.
However, some behaviors such as wall-following could have the same learning data
independent from the map. Furthermore, independently of the map and the task, some learned
behaviors maintain their validity. For example, when the robot learns to turn when it is near a
corner, this knowledge transfers from map to map. In any case, note that the control execution
itself does not need any modification, and once the proposed approach was implemented, the
only thing needed to “program” a new behavior is remotely operating the robot to gather data
needed by the learning phase. It is a task that anybody can do (and not just robot experts).

3. TEST CASES AND RESULTS

The following subsections present the mobile robot used to make tests, the test cases designed
to validate the proposed method, and the results obtained with these test cases under an
experimental environment using the available mobile robot.

3.1 Mobile Robot Specifications

The robot used to test the proposed method is a differential mobile robot (i.e. it can be
controlled either by setting the velocities to each wheel or by setting the instant translation and
rotation velocities) Pioneer P3DX (MobileRobots, 2008) (Figure 6): a 30x30 cm2 robot,
equipped with an URG laser capable of doing a 160 degree sweep in front of the robot, and
returns the distance from the nearest obstacle in each angle scanned. This distance is an integer
between 0 (collision) and 3995 (obstacle far away), and each number represents the distance in

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

97

millimeters. Note that if an obstacle is farther than 3995 mm, the distance given by the laser is
still 3995 mm.

Figure 6. P3DX mobile robot equipped with an URG laser rangefinder

3.2 Test Cases

Three scenarios were designed to test the motion learning method. In the first and second
scenarios, learning consisted in an operator commanding the robot from an initial
configuration to a target configuration, where a configuration defines position and heading.
Then, the robot was launched, and when it got lost, the operator took over from that
configuration to the target configuration. Only the data acquired in this process are used, and
in particular no odometry queries are done. In all cases, the learning phase was done in
simulation.

In the first scenario (Figure 7), the robot starts at the initial configuration q0 (upper left
corner heading to the south) and must go to the final configuration qf (lower right corner
heading to the south). Many tests were done, varying the robot’s initial coordinates and initial
heading (but the robot is never placed while directly facing a wall). The robot never received
its initial configuration (position/orientation), and it used exactly the same learning data code
to solve the problem from all the different configurations.

IADIS International Journal on Computer Science and Information Systems

98

Figure 7. (Top) Scenario 1 (5100 x 2100 mm2) where the robot starts at q0 and must finish at qf.
(Bottom) Experimental scenario in the laboratory to make tests.

In the second scenario (Figure 8), the robot starts at q0 (lower left corner heading to the
east) and must arrive at qf (upper right corner heading to the north). There are two ways to
arrive (going below or above the central obstacle), but during learning, the robot was always
commanded to take the lower path. So, during an autonomous execution it is expected to take
that same path.

Figure 8. Scenario 2 (5100 x 2100 mm2) where the robot starts at q0 and must finish at qf

In the third scenario (Figure 9), the robot’s task is not to reach a destination, but to follow
the wall indefinitely. Learning was done similarly to the previous cases, but instead of leading

300
450

450

q
f
(p

f
,270°)

| |

|

300

1200

1200

q
0
(p

0
,270°)

2100

450

1050

1800

1500 1200

600

300

q
f
(p

f
,90°)

|

|

|

300

600

1500

450
450

900

q
0
(p

0
,0°)

| 600

1800

1050
450

900

900

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

99

the robot to the target configuration as done before, the operator just leads the robot until it
reaches the initial configuration again. During the learning phase, the robot was only taught
how to follow a wall on its left.

Figure 9. Scenario 3 (5100 x 2100 mm2) without obstacles where the robot starts and ends at q0

3.3 Results for Test Cases

In this section we present the method’s results. All results are all obtained from execution with
the physical robot, despite that learning was done in simulation. They vary depending on the
time spent in the learning phase.

Table 1 shows results for the first scenario. Results are quite satisfactory, since the robot
manages to arrive at the target configuration almost every time due to the learning process,
even after varying its initial configuration. Also worth mentioning is that, despite no odometry
data are used, when the robot is lifted and put back at the start without shutting it down, it does
not get lost but instead just begins its path anew.

Table 1. Results for scenario 1

Learning time Behavior

5 minutes Robot gets lost very quickly.

20 minutes Robot goes past first obstacle but gets lost afterwards.

40 minutes Robot goes past first obstacle, turns correctly in order to overcome the

second one, but gets lost shortly before doing so.

60 minutes Robot arrives at destination 95% of the time. If the initial configuration is

modified, the robot arrives at destination 80% of the time.
80 minutes Robot arrives at destination 100% of the time. If the initial configuration is

modified, the robot arrives at destination 90% of the time.

Table 2 shows results for the second scenario. We see that the results are again quite good,
despite small mistakes. It is interesting to see that robot occasionally takes the upper path,
although during learning that path was never explored. What’s even more interesting is that it
still manages to find its way around half of the times while taking said path.

|

5100 mm

450

450

2100
mm

q
0
(p

0
,0°)=q

f

IADIS International Journal on Computer Science and Information Systems

100

Table 2. Results for scenario 2

Learning time Behavior

5 minutes Robot gets lost very quickly.

15 minutes Robot manages to exit left side of scenario, but gets lost afterwards.

35 minutes Robot manages to exit left side of scenario, and 50% of the time reaches

destination. The other 50% it gets lost along the way.

60 minutes Robot manages to exit left side of scenario, and 80% of tries it takes the

lower path and reaches destination. 10% of times it takes the upper path

and still reaches destination, and 10% of times it takes the upper path and

gets lost along the way.

Table 3 shows results for the third scenario. Surprisingly, this apparently “easier” behavior

required more learning than the previous ones. After 100 minutes of learning, the robot
manages to follow the wall successfully, but the optimal behavior of following the wall in a
straight line could not be obtained, and the robot follows the wall in zigzag. The reason is that
the model used to describe the laser detections (the way we compute Distance and Angle) was
thought to resolve another problem, and it is not the best model to follow the wall. Instead, a
new model that takes more into account detections at the sides of the robot, with little focus on
the front, would be more adequate. Nevertheless, it is worth noting that despite using the same
model we used for path planning, the robot does manage to follow the wall.

Table 3. Results for scenario 3

Learning time Behavior

5 minutes Robot turns away from wall.

15 minutes Robot follows the wall* before arriving at corners. However it stops when

it reaches corners.

40 minutes Robot follows the wall* before arriving at corners. When it reaches a

corner, it stops and begins turning. 50% of times it turns correctly and

continues following the wall, 50% of times it stops halfway through the

turn.

100 minutes Robot follows the wall* before arriving at corners. When it reaches a

corner, the robot stops and turns correctly, and continues following the

wall.

* Robot does not follow the wall in a straight line, but it alternatively approaches then moves away from
the wall

4. CONCLUSION

In this paper a motion imitation approach was designed and implemented for a differential
mobile robot using a Bayes network and learning techniques. It was tested with the physical
robot in different scenarios of average complexity, and results were quite good.

In comparison with other alternatives, our method’s strengths are:

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

101

• Only two algorithms, inference and learning, are used to solve different kinds of
problems. These algorithms are general and do not depend on the problem.

• Once the probabilistic component is implemented, it is enough to modify the learning
data in order to change the robot behavior, and no code changes are need in the
system.

• To solve a problem that generally requires coordinates and geometric space location,
we use only local sensory information (laser detections). In particular, no odometry
data is required.

• Robot does not need memory. It is never instructed to remember what it was doing
previously (like turning) to determine its best action.

• The method is robust against inaccuracies (like varying the robot’s initial
configuration without notifying it, or manually changing its configuration during
execution).

• To “teach” the robot a behavior, no programming knowledge is required. Remotely
operating is enough.

• Programming the robot is a more intuitive task, being easier to show the robot the
desired behavior instead of having to translate that behavior into the robot’s
language.

• It is a generic method for solving different problems. The robot can be configured to
wall following or to go to the target configuration using the same program and the
same Bayes network.

However, using this method also has drawbacks that cannot be ignored:
• A significant learning period could be required for complex tasks.
• The method is not complete. Occasionally the robot fails to solve the task.
• It is difficult to find mistakes. If the robot’s behavior is not as desired, it is hard to

detect what fragment of the learning data is responsible, and the operator must restart
the learning process from scratch.

• This method depends heavily on both the Bayes network used and the data
simplifications. Moreover, there is no tool that determines for sure what network and
simplifications will have the best results. Instead, one must proceed by trial and error
until a suitable model is found.

• In this case, the Bayes network used is very simple and is not capable of solving
more complex problems which may arise in mobile robotics. However, it is possible
to design much richer networks (for example, one that includes odometry data) to
cope with those problems.

We would like to insist again on one of the most significant features of our solution: the
robot does not use odometry data. This is really surprising, because the robot manages to reach
a destination without really “knowing” its current position, or where the target position is
located. We will use an analogy with human behavior: in traditional motion planning
solutions, the robot’s thoughts are “I am at GPS position (24.56, 30.32) and I need to arrive at
GPS position (27.40, 25.32), but I detect an obstacle at (26.77, 28.09)”; in our solution, it
looks more like “when I find the tall building, I will turn left, and when I find the dead end, I
will know that I have reached the goal”. The latter is readily seen to be much more natural (for
a human).

IADIS International Journal on Computer Science and Information Systems

102

5. FUTURE WORK

The proposed method in this paper is not directly applicable to real life robotics problems,
since its purpose was to explore the possibilities that probabilistic networks offer in Robotics.
However the method can be built upon to implement it in a complex application. In this
section, we provide a few ideas for extending the work presented.

The basis and most important aspect for the method is the underlying Bayes network. We
presented just one possibility, but it is by no means the only “correct” one. Other Bayes
networks should also be tested, using different simplifications and variables, and perhaps even
including odometry data. An alternative would be to extend the network we proposed with two
new variables that can be estimated during execution using odometry. One is Current
Configuration, having no predecessors and with the robot velocities and the detections in each
cone as its successors. The other one is Goal Configuration, a predecessor for the robot’s
velocities. The resulting network is more difficult to handle, but it provides more accuracy and
power.

In this paper, there are only two problems tackled: motion planning and wall-following.
There are many more problems in Robotics that can be solved with a probabilistic approach as
shown in this paper. Different Bayes networks for different problems should be designed and
implemented.

While in this paper a pure probabilistic approach was used, totally based on machine
learning, this method is compatible with others alternatives. In particular, a hybrid approach
could be developed, using both deterministic and probabilistic behaviors, some given a priori
and some acquired through learning. Our method is able to apply only a behavior to perform a
task (e.g. motion planning), but a solution produced by mixing behaviors (e.g. pushing
obstacles, object recognition, doing localization among many other possibilities) could equally
be constructed.

In any case, we do believe that there is plenty of room to use probabilistic networks in
Robotics in an innovative way. Those networks are powerful tools for reasoning under
uncertainty, a characteristic of most situations. Their applications should therefore be fully
developed.

REFERENCES

Antonelo, E.A. et al, 2008. Imitation Learning of an Intelligent Navigation System for Mobile Robots
using Reservoir Computing, Proceedings of the IEEE 10th Brazilian Symposium on Neural
Networks, Salvador, Brazil, pp. 93-98.

Binder, J. and Koller, D., 1997. Adaptive Probabilistic Networks with Hidden Variables. Machine
Learning, Vol.29, pp 213-244.

Burnside, E. et al, 2009. Probabilistic Computer Model Developed from Clinical Data in National
Mammography Database Format to Classify Mammographic Findings, Radiology, Vol. 251, No. 3,
pp. 663-672 [Online] Available at: http://radiology.rsna.org/content/251/3/663.full

Drakos, N. and Moore, R., 2010. Machine Learning B - Approximate Inference in Bayesian Networks
[Online] Available at:
http://www.igi.tugraz.at/lehre/MLB/WS10/MLB_Exercises_2010/node15.html

Gagliardi, F., 1998. JavaBayes v0.346. [Online] Available at: http://www.cs.cmu.edu/~javabayes/Home/

ROBOT MOTION IMITATION BASED ON BAYES NETWORKS AND LEARNING

103

Hogg, R. et al, 2005. Introduction to Mathematical Statistics (sixth edition). Pearson, New Jersey, USA.
Knuth, D., 1997. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Reading,

Massachusetts, USA.
Korb, K.B. and Nicholson, A.E., 2004. Bayesian Artificial Intelligence, CRC Press, Florida, USA.
La Valle, S., 2006. Planning Algorithms. Cambridge University Press, Cambridge, USA. [Online]

Available at: http://planning.cs.uiuc.edu/
Lebeltel, O. et al, 2004. Bayesian Robots Programming. Autonomous Robots, Vol. 16, No. 1, pp 49-79.
MobileRobots, 2008. Adept MobileRobots Inc. [Online] Available at: http://www.mobilerobots.com
Ollis, M. et al, 2007.A Bayesian Approach to Imitation Learning for Robot Navigation, Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA, pp.
709-714.

Uffe, B. and Anders, L., 2008. Bayesian Networks and Influence Diagrams. A Guide to Construction and
Analysis. Springer, Spring Street, New York, USA.

Zhou, H. and Sakane, S., 2007. Mobile Robot Localization using Active Sensing based on Bayes
Network Inference. Robotics and Autonomous Systems, Vol. 55, No. 4, pp. 292-305.

