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ABSTRACT 

In Robotics, one of the core problems is motion planning towards a specified goal. Today, there are 
different solutions; however, most of them require complex models of the environment, which are not 
intuitive at all, and force the programmer to understand the operating mode in detail of the robot she/he 
is working with. Furthermore, most algorithms use inaccurate information which cannot be relied upon. 
This paper presents a robot motion imitation approach, using Bayes networks and machine learning, 
which does not require much knowledge, neither an environment model. The proposed method defines a 
Bayes network based on the distance detections near the robot. A learning phase provides the robot with 
a path for solving a motion planning problem and for processing the distance detections and velocities in 
order to learn how to control the robot. Finally, the robot can reproduce the learned path by using a 
probabilistic inference algorithm. The proposed method was tested both in simulated and experimental 
environments with a differential mobile robot. 
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1. INTRODUCTION 

Today, a lot of powerful and accurate solutions exist for the motion planning problem, i.e. 
finding a path from an initial configuration to a target configuration. Although, those solutions 
still have some flaws. Most of the algorithms assume a given environment model, which may 
adapt perfectly to laboratory conditions for testing, but generally will fail to represent the 
complexity of real life applications. Moreover, programming a robot is not an intuitive task 
since there is a discrepancy in the languages used: a programmer thinks in terms of obstacles 
and motions, and he/she knows that, while approaching a wall, the robot should slow down a 
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turn away from it. However, for a mobile robot the concept of “wall”  and “turn”  are 
unknown. Such a robot works with coordinates, sensor detections and wheel velocities, 
processing large quantities of numerical data to adopt the best behavior. Clearly, the 
translation from one language to the other is far from obvious. Finally, many of the solutions 
involve using odometry data (internal data from the robot, generally used to estimate its 
position at any time), which are sometimes far from exact, preventing the robot from reaching 
its target. Our solution consists in using a probabilistic approach and does not have those 
problems. 

The purpose of this paper is to explain a motion imitation method (which takes a mobile 
robot from an initial configuration to a final configuration) developed using a probabilistic 
approach instead of a more common deterministic approach. Specifically, a Bayes network is 
implemented, and the data needed to define the network are obtained through learning. During 
the learning process, a human remotely operates the robot, and the machine collects all the 
sensor data obtained and uses them afterwards to operate autonomously. 

Thanks to the probabilistic approach, this method is quite robust since it allows 
uncertainties: even in case of a minor failure in a device (like the laser sensor), the robot can 
adopt a behavior that suits well with the situation in a natural manner, increasing the odds to 
success. It does require an approximated model, just as other methods do, but this model does 
not deteriorate passing from laboratory to real life situations. Data from simulation learning 
works also well with the physical robot. Moreover, the method is program friendly since it no 
longer needs to worry about the robot details: for instance, to program a turn to get away from 
an obstacle, it is enough to “show” the robot what it must do instead of working directly with 
the translation and rotation velocities. Furthermore, if one wishes to change the robot’s 
behavior (can be a small change, such as accomplishing the same task while staying further 
away from obstacles, or a big change such as a robot that pushes obstacles instead of one that 
avoids them), it suffices to change the learning data, without modifying a single line of code. 
Finally, in this approach, the robot does not use odometry data, only laser detection. 

The Bayes network presented in this paper is simple, but could be enlarged to resolve more 
difficult tasks. In this sense, this paper is a guide to use probabilistic networks in mobile 
robotics. 

This paper is organized as follows: First, works related with motion planning and 
probabilistic related approaches are discussed. There is a small section explaining the Bayes 
network as well. Section 2 presents the main components of our proposed approach. Section 3 
shows the test cases and the preliminary results obtained in laboratory with a physical mobile 
robot. Finally, section 4 presents some conclusions and section 5 proposes some possibilities 
for future work. 

1.1 Related Works 

To find a path between an initial point and a destination, the Dijkstra algorithm for the shortest 
route, or the A* algorithm, comes to mind. To apply these methods in the motion planning 
problem, it is required to transform the map of the environment into a graph, so we can apply 
these algorithms on that graph. Two of the most popular strategies for obtaining such a graph 
are cell decomposition and visibility graph. These methods need the complete map of the 
environment a priori, and while they always find a viable solution (if such solution exists, 
otherwise they report that there is no solution), they may be computationally heavy, dependent 
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of map size, and inflexible. Moreover, once a path is found, having the robot navigate through 
that path is a problem in itself, because odometry data must be used and may be inaccurate, 
causing the robot to deviate from the path and to become lost or collide with an obstacle. 
These algorithms are called global (i.e. they require the environment’s map to make decisions) 
and complete (i.e. they find a solution if such solution exists).  

An alternative approach is using potential fields where at any given point in the 
environment there is a force that draws the robot to its goal, and another one repelling it from 
obstacles. The robot makes decisions only based on the forces at that point. This method 
doesn’t require a map given a priori, navigation is easier and the method is more flexible, but 
the robot might get trapped in local minima, never reaching the destination. Such algorithms, 
making decisions based on the immediate surroundings without any guarantee of reaching a 
solution, are called local and heuristic.  

As a general rule, when working in large environments, global and complete algorithms 
are too complex, inflexible, and for this reason they are mostly seen in situations that can 
guarantee both a known map to find a solution and good precision to execute its motions. 
Under limited conditions, the local algorithms are preferred. La Valle (2006) elaborates further 
on these and many others similar methods.  

The field of probabilistic networks has recently seen a significant growth, with 
applications in distinct areas such as medicine or finances. Those networks are widely used 
when one wishes to program a decision making process. Binder and Koller (1997) made a 
comparison of learning in Bayes networks versus Neural networks, where the former gained 
the upper hand because it supports a priori information from experts, information that is used 
to give structure to the network. F. Gagliardi (1998) developed JavaBayes, a Java program for 
doing probabilistic inference and experimenting with Bayes networks. There are also some 
programs based on learning and designed to play games (Korb and Nicholson, 2004): they 
built a program that played a simple form of poker, and after playing against different kinds of 
opponents, it learned to adapt to beat those opponents. In the end, their program was able to 
beat most of the other programs that did not have this learning mechanism. It was able to beat 
novice human opponents that played predictably, but failed against advanced poker players 
that varied their style. 

In addition, O. Lebeltel et al. (2004) proposed a complex robot based on a probabilistic 
approach, designed for firefighting. The robot is provided with probabilistic behaviors which 
enable him to resolve a task. However, most probabilistic distributions used are given a priori 
(instead of acquired through learning), more inputs are used alongside the laser detections we 
focus on, and there is no explicitly defined Bayes network. The resulting robot is composed of 
different behaviors, built incrementally, each one with a probabilistic component, and to solve 
different tasks it uses a combination of different behaviors. In this paper, we propose a robot 
based on one behavior alone and based on learning with very little information given a priori. 

There are not many applications of Bayes networks in robotics. However, Zhou and 
Sakane (2007) use Bayes networks to solve the lost robot problem (i.e. given the map of an 
environment, the robot must find its position on that map). In their paper, they estimate the 
sensing costs and the degree of localization certainty (i.e. how certain a robot is about its 
possible location) by making inference in a Bayes network, and by using those estimates to 
determine the most efficient way of exploring until its location is found with a high degree of 
certainty. 

Furthermore, a robot imitation approach combined with a probabilistic component has 
been used by M. Ollis et al. (2007) for estimating the terrain costs: the robot is remotely 
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navigated by a human operator, and the acquired learning data helps the robot to identify what 
terrain type was often used by the human, and what terrain type was avoided. This information 
is then used to assign a cost to the terrain which the robot is able to traverse, and with these 
costs a map is built and the shortest/easiest path is calculated using standard algorithms.  

E. Antonelo et al. (2008) use Recurrent Neural Networks (RNN) with Reservoir 
Computing and an imitation learning process to produce a mobile robot for exploration and 
target seeking. The results are quite good, and the method is very robust since a noise is 
artificially introduced in the sensor detections, and the behavior acquired translates well when 
the environment is changed (despite some collisions). 

1.2 Bayes Networks 

Our method is based on using a Bayes network (or Bayesian network) to model the robot’s 
decision process. Next, we will briefly describe what it is, how it operates and how it can be 
used. 

A Bayes network can be modeled as an acyclic directed graph, modeling causes and 
consequences. The predecessors of a vertex (i.e. all vertices such that there exists an edge 
from the vertex to ) are the causes of , and the successors (i.e. all the vertices such that there 
exists an edge from  to the vertex) are the consequences of . One of the most common 
examples is the burglary-earthquake network, which models the scenario with a house and an 
alarm, and the alarm can be set on either by a burglary or an earthquake, and if triggered, the 
owner may be called by his neighbors John and/or Mary (Figure 1).  

 

 

Figure 1. Bayes network for a Burglary-Earthquake scenario. Drakos et al. (2010) 

The network is completely determined by the Conditional Probability Tables (CPTs) that 
determine the probability distribution of an event occurring given the values taken by his 
predecessors. In the example above the probability that the alarm sounds when there is both an 
earthquake and a burglary is 95%, the probability of John calling when the alarm sounds is 
90%, and the probability of him calling when the alarm does not sound is 5%, and so on. Each 
successor has a probability distribution for each combination of values of his predecessors: in 
the example, Alarm has four probability distributions associated, while JohnCalls and 
MaryCalls have only two. Note that since Burglary and Earthquake have no predecessors, they 
just have a single probability distribution that corresponds to the probability of those events 
happening without any additional information.  
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In a Bayes networks, all events are dependent a priori. However, given some evidence, 
they can become independent (in the example above, the events Burglary and JohnCalls are a 
priori dependent, but if I know for sure the alarm sounds they become independent). 

Furthermore, using Bayes rule, , and other probability techniques, the 

probability of any event given any set of evidence can be computed (for example, the 
probability of burglary given that John calls and Mary does not, or the probability of John 
calling given that there is no earthquake can be computed). This characteristic is what makes 
Bayes networks so useful in a decision making process, where the solution can be changed 
naturally as evidence is acquired. The process of computing those probabilities is called 
inference.  

As of today, Bayes networks have two major limitations. Inference is NP-Hard, and the 
events’ distributions can only be discrete or Gaussian (also known as Normal distribution). 
Nevertheless, they are a valuable tool with many useful applications, in fields such as 
marketing, military and medicine (Figure 2). 

 

Figure 2. Bayes network for diagnosing breast disease. Burnside et al. (2009). 
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2. PROPOSED APPROACH 

This section presents the main components of our approach which is composed of a designed 
Bayes network, a proposed learning algorithm, and a proposed probabilistic inference 
algorithm to control the robot. 

2.1 Bayes Network Design 

We must consider two kinds of variables: input variables, or sensory variables (in this case, 
laser detections) and output variables, or driving variables (translation speed and rotation 
speed). Our task is to determine a function which transforms input detections provided by the 
laser sensor into the output values for the robot translation and rotation speeds that best suit 
the situation. 

Since there are many possible configurations for the detections given the laser precision, 
3995^161 to be exact (e.g. the quantity of atoms in the observable universe is around 10^80), 
where 3995 is the laser’s distance range in millimeters and 161 degrees is the laser’s field of 
view, we must simplify the possible inputs. The proposed solution is using two new variables, 
named Distance and Angle. Distance indicates the robot how close it is to the obstacles. For 
simplicity, we only consider laser detections until 600mm. For detections farther than this 
distance, they are transformed to the maximum distance (600mm), since we believe such 
detections to be irrelevant in the robot’s decision. Distance is just the minimum distance 
detected in all possible angles, divided by 100 and rounded to the nearest integer. It can take 
seven possible values, from 0 to 6, but since our robot will never approach the obstacles too 
closely, it should never take the value 0 and we are left with 6 values (Figure 3). 

To calculate Angle, we divide the 160 degrees view laser cone that can be scanned into six 
smaller cones, and take the minimum distance in each of the cones (Figure 3). We then select 
the two cones with the smaller distance. We get thirty ways to select the two cones (order does 
matter). Angle then takes a value between 0 and 29, each value corresponding to a possible 
selection of two cones, indicating the robot the direction of the nearest obstacles.  
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Figure 3. Intervals of distances and angles taken into account from the laser sensor  

We are left with 180 possibilities for the combined values of Distance and Angle, a value 
that is small enough to work with, and yet rich enough to accurately model the different 
situations that the robot will face. 

We propose the design of a Bayes network, based on the laser detections, Distance and 
Angle, and translation and rotation velocities. The resulting Bayes network is quite simple: 
Distance and Angle are consequences of laser detections, and are causes of the robot 
translation and rotation velocities (Figure 4). 

In the previous paragraph, we explained how to compute Distance and Angle from the 
detections. These values can be viewed as a probability distribution, where they take the value 
specified above corresponding with the laser detections with probability 1, and all other values 
with probability 0.  

We still have to determine the 180 conditional distributions of Translation Velocity and 
Rotation Velocity, given each combination of Distance and Angle. These distributions will be 
obtained through a learning algorithm. 
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Figure 4. Bayes network based on laser detections inside angular intervals (cones) enabling to infer the 
translation and rotation velocities of the robot 

2.2 Learning Algorithm 

Prior to normal execution, the robot must go through a preliminary phase of learning, to 
determine the conditional probabilities of the robot’s velocities. In this phase, a human 
operator controls the robot in a way the robot should operate, and the robot stores all the 
relevant data necessary, which enables it to infer the desired behavior later. 

In our case, learning is done as follows. First, the operator leads the robot from an initial 
configuration to a target configuration using a remote operation. During this process, the 
robot, as fast as possible (several times per second), stores the laser detections found during 
one sweep, and the velocities it had at that given time. A learning data sample is shown below 
(Figure 5).  
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Figure 5. File showing the relevant robot information stored during the learning phase 

The relevant data are robot velocities (first number indicates translation velocity in 
mm/sec, the second one indicates rotation velocity in deg/sec, and the third one indicates 
vertical velocity- since our robot cannot fly, this value will always be 0), and the scan 
detection to the obstacles inside the laser’s field of view (each couple of integers represents 
the XY coordinates from the robot perspective of the nearest obstacle point in each angle, so 
there are 161 couple of integers). The figure shows only one scan, but a learning phase of five 
minutes provides around 5000 scans. 

Afterwards, the information must be processed. The algorithm finds the specific situation 
where the robot is between the 180 possibilities, thanks to the laser detections, and stores the 
robot velocities for that situation.  

In the Bayes networks shown before, every probability distribution was discrete. However, 
it seems more natural to think of a velocity as a continuous variable, with an unknown 
distribution. Since after a normal learning phase there are typically around 100 velocities 
stored for any given situation, by the Central Limit Theorem of probability we can assume that 
those distributions are normal (or Gaussian).  

Those distributions are uniquely determined by the mean value and variance. When a 
remote operation ends, the robot will estimate those values using their maximum likelihood 
estimators, which are the sample mean and the sample variance.  

2.3 Autonomous Execution 

There is a general process the robot must follow during execution. Each laser scan is the input 
of the Bayes network which is transformed into the Distance and Angle variables. These 
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variables are used to make a classification into a “discrete” situation which has associated a 
normal/Gaussian distribution modeling the robot translation and rotation velocities that are the 
results of the probabilistic inference algorithm proposed. Although inference is in general a 
NP-hard problem in a Bayes network, in our solution the inference is done efficiently thanks 
to the simplicity of our network. For clarity, the process is detailed as follows. After doing a 
complete 160 degree laser scan, the Bayes network determines the current situation for the 
robot by computing Distance and Angle. That situation has a corresponding Gaussian 
distribution associated with each velocity, and it randomly generates a value for each 
distribution. Then it simply adapts the velocities of rotation and translation to match those 
values. This simple process is repeated several times each second, so the robot adapts quickly 
when the situation changes. The robot was taught to stop when it reaches the goal 
configuration, meaning that the goal configuration must be different from the configurations 
the robot can find along the path (otherwise the robot might stop halfway, or continue 
advancing when the goal is reached). In our test cases, the goal configuration was chosen to be 
near a wall or corner, facing the wall.  

The robot’s behavior mimics the behavior that was shown during the learning phase. So in 
order to change the desired behavior, for example passing from a behavior that simply dodges 
obstacles to a wall-following behavior, an entirely new learning data must be provided. 
Furthermore, to change the robot’s environment (the map) without changing the desired 
behavior may also require a new learning pattern, depending on the behavior. In our case, the 
behavior, going to a desired configuration without colliding with obstacles, is highly map 
dependent, so for each different environment there will be an independent learning phase. 
However, some behaviors such as wall-following could have the same learning data 
independent from the map. Furthermore, independently of the map and the task, some learned 
behaviors maintain their validity. For example, when the robot learns to turn when it is near a 
corner, this knowledge transfers from map to map. In any case, note that the control execution 
itself does not need any modification, and once the proposed approach was implemented, the 
only thing needed to “program”  a new behavior is remotely operating the robot to gather data 
needed by the learning phase. It is a task that anybody can do (and not just robot experts). 

3. TEST CASES AND RESULTS 

The following subsections present the mobile robot used to make tests, the test cases designed 
to validate the proposed method, and the results obtained with these test cases under an 
experimental environment using the available mobile robot. 

3.1 Mobile Robot Specifications 

The robot used to test the proposed method is a differential mobile robot (i.e. it can be 
controlled either by setting the velocities to each wheel or by setting the instant translation and 
rotation velocities) Pioneer P3DX (MobileRobots, 2008) (Figure 6): a 30x30 cm2 robot, 
equipped with an URG laser capable of doing a 160 degree sweep in front of the robot, and 
returns the distance from the nearest obstacle in each angle scanned. This distance is an integer 
between 0 (collision) and 3995 (obstacle far away), and each number represents the distance in 
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millimeters. Note that if an obstacle is farther than 3995 mm, the distance given by the laser is 
still 3995 mm.  
 

 

Figure 6. P3DX mobile robot equipped with an URG laser rangefinder 

3.2 Test Cases 

Three scenarios were designed to test the motion learning method. In the first and second 
scenarios, learning consisted in an operator commanding the robot from an initial 
configuration to a target configuration, where a configuration defines position and heading. 
Then, the robot was launched, and when it got lost, the operator took over from that 
configuration to the target configuration. Only the data acquired in this process are used, and 
in particular no odometry queries are done. In all cases, the learning phase was done in 
simulation.  

In the first scenario (Figure 7), the robot starts at the initial configuration q0 (upper left 
corner heading to the south) and must go to the final configuration qf (lower right corner 
heading to the south). Many tests were done, varying the robot’s initial coordinates and initial 
heading (but the robot is never placed while directly facing a wall). The robot never received 
its initial configuration (position/orientation), and it used exactly the same learning data code 
to solve the problem from all the different configurations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



IADIS International Journal on Computer Science and Information Systems 

98 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. (Top) Scenario 1 (5100 x 2100 mm2) where the robot starts at q0 and must finish at qf. 
(Bottom) Experimental scenario in the laboratory to make tests. 

In the second scenario (Figure 8), the robot starts at q0 (lower left corner heading to the 
east) and must arrive at qf (upper right corner heading to the north). There are two ways to 
arrive (going below or above the central obstacle), but during learning, the robot was always 
commanded to take the lower path. So, during an autonomous execution it is expected to take 
that same path. 

 
 
 
 
 
 
 
 
 
 
 

Figure 8. Scenario 2 (5100 x 2100 mm2) where the robot starts at q0 and must finish at qf 

In the third scenario (Figure 9), the robot’s task is not to reach a destination, but to follow 
the wall indefinitely. Learning was done similarly to the previous cases, but instead of leading 
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the robot to the target configuration as done before, the operator just leads the robot until it 
reaches the initial configuration again. During the learning phase, the robot was only taught 
how to follow a wall on its left. 

 

 

 
 
 
 
 
 
 
 
 

Figure 9. Scenario 3 (5100 x 2100 mm2) without obstacles where the robot starts and ends at q0 

3.3 Results for Test Cases 

In this section we present the method’s results. All results are all obtained from execution with 
the physical robot, despite that learning was done in simulation. They vary depending on the 
time spent in the learning phase.  

Table 1 shows results for the first scenario. Results are quite satisfactory, since the robot 
manages to arrive at the target configuration almost every time due to the learning process, 
even after varying its initial configuration. Also worth mentioning is that, despite no odometry 
data are used, when the robot is lifted and put back at the start without shutting it down, it does 
not get lost but instead just begins its path anew.  

Table 1. Results for scenario 1 

Learning time Behavior 

5 minutes Robot gets lost very quickly.  

20 minutes Robot goes past first obstacle but gets lost afterwards.  

40 minutes Robot goes past first obstacle, turns correctly in order to overcome the 

second one, but gets lost shortly before doing so.  

60 minutes Robot arrives at destination 95% of the time. If the initial configuration is 

modified, the robot arrives at destination 80% of the time. 
80 minutes Robot arrives at destination 100% of the time. If the initial configuration is 

modified, the robot arrives at destination 90% of the time. 
 

Table 2 shows results for the second scenario. We see that the results are again quite good, 
despite small mistakes. It is interesting to see that robot occasionally takes the upper path, 
although during learning that path was never explored. What’s even more interesting is that it 
still manages to find its way around half of the times while taking said path.  
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Table 2. Results for scenario 2 

Learning time Behavior 

5 minutes Robot gets lost very quickly.  

15 minutes Robot manages to exit left side of scenario, but gets lost afterwards. 

35 minutes Robot manages to exit left side of scenario, and 50% of the time reaches 

destination. The other 50% it gets lost along the way. 

60 minutes Robot manages to exit left side of scenario, and 80% of tries it takes the 

lower path and reaches destination. 10% of times it takes the upper path 

and still reaches destination, and 10% of times it takes the upper path and 

gets lost along the way. 

 
Table 3 shows results for the third scenario. Surprisingly, this apparently “easier” behavior 

required more learning than the previous ones. After 100 minutes of learning, the robot 
manages to follow the wall successfully, but the optimal behavior of following the wall in a 
straight line could not be obtained, and the robot follows the wall in zigzag. The reason is that 
the model used to describe the laser detections (the way we compute Distance and Angle) was 
thought to resolve another problem, and it is not the best model to follow the wall. Instead, a 
new model that takes more into account detections at the sides of the robot, with little focus on 
the front, would be more adequate. Nevertheless, it is worth noting that despite using the same 
model we used for path planning, the robot does manage to follow the wall.  

Table 3. Results for scenario 3 

Learning time Behavior 

5 minutes Robot turns away from wall.  

15 minutes Robot follows the wall* before arriving at corners. However it stops when 

it reaches corners. 

40 minutes Robot follows the wall* before arriving at corners. When it reaches a 

corner, it stops and begins turning. 50% of times it turns correctly and 

continues following the wall, 50% of times it stops halfway through the 

turn.  

100 minutes Robot follows the wall* before arriving at corners. When it reaches a 

corner, the robot stops and turns correctly, and continues following the 

wall.  

* Robot does not follow the wall in a straight line, but it alternatively approaches then moves away from 
the wall 

4. CONCLUSION 

In this paper a motion imitation approach was designed and implemented for a differential 
mobile robot using a Bayes network and learning techniques. It was tested with the physical 
robot in different scenarios of average complexity, and results were quite good. 

In comparison with other alternatives, our method’s strengths are: 
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• Only two algorithms, inference and learning, are used to solve different kinds of 
problems. These algorithms are general and do not depend on the problem. 

• Once the probabilistic component is implemented, it is enough to modify the learning 
data in order to change the robot behavior, and no code changes are need in the 
system. 

• To solve a problem that generally requires coordinates and geometric space location, 
we use only local sensory information (laser detections). In particular, no odometry 
data is required. 

• Robot does not need memory. It is never instructed to remember what it was doing 
previously (like turning) to determine its best action.  

• The method is robust against inaccuracies (like varying the robot’s initial 
configuration without notifying it, or manually changing its configuration during 
execution). 

• To “teach” the robot a behavior, no programming knowledge is required. Remotely 
operating is enough. 

• Programming the robot is a more intuitive task, being easier to show the robot the 
desired behavior instead of having to translate that behavior into the robot’s 
language.  

• It is a generic method for solving different problems. The robot can be configured to 
wall following or to go to the target configuration using the same program and the 
same Bayes network.  

However, using this method also has drawbacks that cannot be ignored: 
• A significant learning period could be required for complex tasks. 
• The method is not complete. Occasionally the robot fails to solve the task. 
• It is difficult to find mistakes. If the robot’s behavior is not as desired, it is hard to 

detect what fragment of the learning data is responsible, and the operator must restart 
the learning process from scratch. 

• This method depends heavily on both the Bayes network used and the data 
simplifications. Moreover, there is no tool that determines for sure what network and 
simplifications will have the best results. Instead, one must proceed by trial and error 
until a suitable model is found. 

• In this case, the Bayes network used is very simple and is not capable of solving 
more complex problems which may arise in mobile robotics. However, it is possible 
to design much richer networks (for example, one that includes odometry data) to 
cope with those problems. 

We would like to insist again on one of the most significant features of our solution: the 
robot does not use odometry data. This is really surprising, because the robot manages to reach 
a destination without really “knowing” its current position, or where the target position is 
located. We will use an analogy with human behavior: in traditional motion planning 
solutions, the robot’s thoughts are “I am at GPS position (24.56, 30.32) and I need to arrive at 
GPS position (27.40, 25.32), but I detect an obstacle at (26.77, 28.09)”; in our solution, it 
looks more like “when I find the tall building, I will turn left, and when I find the dead end, I 
will know that I have reached the goal”. The latter is readily seen to be much more natural (for 
a human). 
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5. FUTURE WORK 

The proposed method in this paper is not directly applicable to real life robotics problems, 
since its purpose was to explore the possibilities that probabilistic networks offer in Robotics. 
However the method can be built upon to implement it in a complex application. In this 
section, we provide a few ideas for extending the work presented. 

The basis and most important aspect for the method is the underlying Bayes network. We 
presented just one possibility, but it is by no means the only “correct” one. Other Bayes 
networks should also be tested, using different simplifications and variables, and perhaps even 
including odometry data. An alternative would be to extend the network we proposed with two 
new variables that can be estimated during execution using odometry. One is Current 
Configuration, having no predecessors and with the robot velocities and the detections in each 
cone as its successors. The other one is Goal Configuration, a predecessor for the robot’s 
velocities. The resulting network is more difficult to handle, but it provides more accuracy and 
power. 

In this paper, there are only two problems tackled: motion planning and wall-following. 
There are many more problems in Robotics that can be solved with a probabilistic approach as 
shown in this paper. Different Bayes networks for different problems should be designed and 
implemented.  

While in this paper a pure probabilistic approach was used, totally based on machine 
learning, this method is compatible with others alternatives. In particular, a hybrid approach 
could be developed, using both deterministic and probabilistic behaviors, some given a priori 
and some acquired through learning. Our method is able to apply only a behavior to perform a 
task (e.g. motion planning), but a solution produced by mixing behaviors (e.g. pushing 
obstacles, object recognition, doing localization among many other possibilities) could equally 
be constructed.  

In any case, we do believe that there is plenty of room to use probabilistic networks in 
Robotics in an innovative way. Those networks are powerful tools for reasoning under 
uncertainty, a characteristic of most situations. Their applications should therefore be fully 
developed. 
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