IADIS International Journal on Computer Science brfdrmation Systems
Vol. 6, No.3, pp. 53-69
ISSN: 1646-3692

TOWARDSFLEXIBLE CONVERSATION
PROTOCOL GENERATION AND VERIFICATION:
A SOCIAL COMMITMENT APPROACH

Martin T. PressPCSE, Christopher Newport University. 1 Universitgdel, Newport News, Virginia
USA 23606

Roberto A. FloresPCSE, Christopher Newport University. 1 Universitsice, Newport News,
Virginia USA 23606 (corresponding author)

ABSTRACT

We present a framework supporting the design oégerand flexible conversation protocols for multi-
agent systems. This framework uses a social conenisnapproach in which descriptions are
transformed into finite state machines for subsaj@nbedding in software agents. As part of this
process, it provides a tool to verify the corresmef protocols in terms of their completeness and
resolution of social commitments. The frameworkludes object-oriented concepts such as extension
and aggregation to aid users reuse protocols dtimgigdesign.

KEYWORDS

Agent communication, conversation protocols, socaihmitments.

1. INTRODUCTION

The heterogeneous nature of agents in open envaotsnmeans that no assumptions can be
made about their inner workings. This constraint particularly acute in their
communications—the use of messages and protocomse-shese communications must be
understood in terms that are external to agents.

At the higher level, a protocol can be seen agstand transition events, where events are
message exchanges and states indicate goal advemicatra particular point between these
exchanges. Currently, most protocols are develspaitally at design time and cannot easily
change at runtime. This lack of flexibility makdsein impractical in open environments
where agents must adapt their communications atuptd the state of the environment and
to their particular abilities and preferences.

53

IADIS International Journal on Computer Science brfdrmation Systems

In this view, our goal is to provide a frameworkewh flexible protocols are formalized
and verified at design time. In general, theretane requirements when developing protocols:
they should have goals and they should be verdiabh the one hand, goals are ascribed to
protocols at design time (Miller and McBurney, 2R0OBhese goals can be modeled as the end
states a designer intends a protocol to reach.h®rother hand, verification happens when
protocols are proven to reach a goal state on enery(Gouda, 1993). The verification of
flexible protocols differs from that of static poabls in that the transitions and intermediate
states toward goal states may vary during differens of the same protocol. Accordingly, a
key requirement to verify flexible protocols is anag that they can reach an end state
regardless of variations between runs.

With the aim of flexible protocol verification in imd, we present a framework where
flexible protocols can be defined in terms of thegtions and goals, and whose correctness is
verified by identifying that their end states aezached on every run.

In a nutshell, the framework allows designing gendiexible protocols that can be
transformed into working non-generic protocols fater implementation in agents. In
addition, it supports protocol specialization agagy to ease the design process and encourage
reusability. These topics are discussed in the iredea of the article as follows: Section 2
gives a brief overview of the framework’s foundasoand its extensions. Section 3 gives an
overview of the protocol generation features of framework. Section 4 overviews the
design, generation and verification process withdhl of a use-case. Section 5 gives a view
of related work in the field of protocol generatiand Section 6 presents conclusions and
future work.

2. PROTOCOL FOR PROPOSALS

One way to define conversation protocols is usingjad commitments (Yolum, 2007, Flores
& Kremer, 2005). In this view, commitments are adidend discharged as messages are
exchanged between agents.

A social commitmenis an obligation put upon an agent to perform etioa (Verdicchio
& Colombetti, 2003). Each commitment involves twgeat rolescreditors(who benefit from
the commitment) andebtors(who are responsible to satisfy it). Commitmer#n be in one
of several states, such as active, fulfilled aralated (Flores, Pasquier & Chaib-draa, 2007).
A commitment becomegctiveonce it is adopted by its debtors, who are redptto satisfy
its conditions, and becomédalfilled and can be discharged if its creditors accept itisat
conditions have been satisfied; otherwise the camanit remains active until its conditions
cannot be satisfied (e.g., its expected completiore has expired), making it become
violated

Our framework uses a meta-protocol for building v@msation protocols using social
commitments called thprotocol for proposal§PFP) (Flores and Kremer, 2005). PFP is a
mechanism that allows agents to the agreed uptakedécharge of commitments (thus
supporting agent autonomy) and their negotiatiog@s/ersations progress (thus supporting
flexible conversations at runtime). As shown inligy 1, the initial message in a PFP instance
is propose Proposals trigger the only conversational nornthzn PFP: that the receiver of a
propose message is committed to reply. Replies the/é@rm of either aaccept arejector a
counter-proposemessage. By defining a counter-propose as a i@jedf its immediate

54

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

propose and a propose with an alternate commitrtten®FP guarantees the continuity of the
conversation until an accept or a reject messaggsiged. Accepting a proposal cements the
(adoption or discharge of the) proposed commitnRajecting a proposal leaves agents in the
same state they were prior to the PFP conversation.

counter(B,ASC,, (..).5C,..(])) counter(B,ASC, .. (-.).5C,,..(-.)) counter(A,B,5C ...(-.).5C .. (.-}

I SC(A,B,reply) SC(B,A,reply) I

counter(AB,SC, .. (L.).5C,.. (...
accept(BASC(..))

propose(A,B,5C{...))

accept(B,A,5C(...))

1‘eiect{:A|_,,B.\1,SC{,,,)]O reject(B, A, SC[...)

[empry]

[SC(..]
Figure 1. State diagram of the Protocol for Profsosa

The PFP was originally defined to operate on alsisgmmitment, thus limiting the type
of protocols it can create. Our work extends iblgwing sequential and alternative actions to
occur throughcomposite social commitmentds shown in the simplified BNF notation
below, composites use andand logical operators to link commitments.

<PFPCommitment> — (add | remove) <CompositeCommitment>
<CompositeCommitment> — <SocialCommitment> { <Logical> <CommitmentTerm> }
<CommitmentTerm> - (<CompositeCommitment>) | <CompositeCommitment>
<SocialCommitment> — SocialCommitment({ creditor }', { debtor }", { action }')
<Logical> — (ands; | andequence | OFapriori | OFaposteriori)

Commitments in a composite can be linked émd (conjunction) andor (disjunction)
logical connectors. Disjunction is either priori, if the debtor is required to indicate at
acceptance time which choice of commitments it pilisue; ol posteriorj if the debtor has
the option of defining its choice of commitmentther now (at acceptance time) or later (at
the time of fulfillment). Conjunction can be eitheset if commitments are fulfilled in any
order; or ssequencgif they must be fulfilled in the indicated order.

For example, a customer and a vendor can use acsii@Eommitment to buy an item,
which can be defined as paying and receiving tleen.tlf the vendor accepts these
commitments and they were linked asetthen the vendor is allowed to choose whether to
receive the payment first and send the item latedeliver first and be paid later. Differently,
if the commitments were linked asaquencéehen the vendor could only proceed in the order
indicated.

55

IADIS International Journal on Computer Science brfdrmation Systems

3. CONVERSATION PROTOCOLSFRAMEWORK

At a high level, our framework is composed of thim®cessesaction design protocol
generation & verificationand protocol implementationAlthough in this article we cover
notions of the first process (action design) we rastly concerned with the second process
(generation and verification). The third procesaplementation) is left as future work. In
brief, the generation & verification process reesivobjects and actions in a XML-based
language we name@enAct and allows designers to visualize, edit inforimatand verify the
correctness of protocols before saving them far lahplementation.

In the following sections, we provide a few basiotpcol definitions followed bysenAct
examples.

3.1 Protocol Paths

Protocol instances can take one of several availphths at runtime. pathis a sequence of
states and transitions in a protocol. We identliye¢ different types of pathsptimal
successfuandexception An optimal pathis the shortest path leading to the intended gbal
the protocol, and where thietended goals the end state favored by the protocol's desgne
In PFP, an optimal path would have propose andphcnessages only. Optimal paths do not
have any reject (which make a protocol return poeviously agreed state) or counter-propose
messages (which would increase the message couatd¢h a goal). Auccessful patls a
path in which the intended outcome is achieved rdiges of the messages required.
Successful paths could include propose, accemctreind counter-propose messages for as
long as the goals of the protocol are reach&d.optimal path is a special case of a successful
path with no counter-proposals or rejections. ekaeption pathis any path not reaching the
goal given rejections or unfulfiled commitments.

3.2 Protocol Types

We identify two types of protocols in the framewotkncreteandabstract

A concrete protocois a protocol where there is a complete tempadéiing of states and
transitions, and where all agent roles and activasiefined. The only aspect that could be left
unspecified is the time expected between messa&ggs,replying to a propose is expected
within 5 seconds. In addition, time can be absotutepecified as an offset of the starting time
of the protocol.

An abstract protocolis a protocol whose states and transitions armetkfat design time
but whose actions and sequencing are not. For dearafBuy abstract protocol may not
specify what item will be bought, the amount thall e spent on it, whether the customer
should pay before or after delivery of the itemwrether the item is paid with cash or a credit
card.

! Although it is easier to envision a successfuhpaith counter-proposals (e.g., “Let’s go to theviee at 4 pm”

followed by “What about 7 pm instead?” and an ageee leads to the intended goal “Go to the mowegther”),

they can also include rejections. For example, &4 B have agreed that B will build a chair forafd B attempts to
discharge this commitment (e.g., “Here is the chair requested”) but A rejects (“But...it's missiadeg!”) makes
the state of the conversation fall to a previowblst state (i.e., B will build a chair for A). Ihis example, the
conversational goal “B built a chair for A” can tEached if A agrees with a subsequent dischargmpttfrom B.

56

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

Concrete protocols are created from abstract potgoghose values and allowed paths are
all identified. We derive that a concrete protoisch subset of its abstract protocol, and that an
abstract protocol embodies all the features ofadtscrete protocols. In addition, our language
promotes protocol and action reuse through extendiomheritance) and aggregation
(adoption).

3.3 Designing Actions

We define anactivity as a non-empty set of actions, which togetherndethe goal of a
protocol. Activities use object-oriented programgparadigm techniques such as inheritance
and polymorphism.

3.3.1Basic Hierarchy

Figure 2 shows the basic primitives in our languaggect agent social commitmenand
action

Activity

Negotiation,,,

Other User-defined Objects & Activities J

Figure 2. UML diagram oenActprimitive types
An objectis the basis for any entity, such asagent which is an actor in the system.
<Agent type="Object" />

As shown in the belowaction is an agent performance over a subject, and this far
activity structures. Note that the tageclare> is used for declaring new entities within a
definition. Other available tags atsssign>, for binding entities in aggregated definitionada
the activity-only tagsactivities>, to aggregate activities within an activity, afydotocol>, to
indicate ordering of aggregated/inherited actigifjexamples to follow).

<Action type="0Object">
<declare>

57

IADIS International Journal on Computer Science brfdrmation Systems

<Agent name="performer" />
<Object name="subject" />
</declare>
</Action>

<Activity type="Action" />

A social commitmenis a directed obligation to perform an action.shgh, they declare a
creditor agent, a debtor agent and an action.

<SocialCommitment type="Object">
<declare>
<Agent name = "creditor" />
<Agent name = "debtor" />
<Action name = "action" />
</declare>
</SocialCommitment>

Activities are negotiated through PFP action piives such asffer andpropose which
have a sender, a receiver and a commitmentoffer is an occurrence where the speaker is
the debtor of the commitment, angb@posalis an occurrence where the hearer is the debtor
of the commitment.

<Negotiation type="Activity" >
<declare>
<Agent name="sender" />
<Agent name="receiver" />
<SocialCommitment name="commitment" />
</declare >
</Negotiation>

<Propose type="Negotiation" >
<assign>
<commitment:creditor name="sender" />
<commitment:debtor name="receiver" />
<commitment:action:performer name="receiver" />
</assign>
</Propose>

<Offer type="Negotiation" >
<assign>
<commitment:creditor name="receiver" />
<commitment:debtor name="sender" />
<commitment:action:performer name="sender" />
</assign>
</Offer>

Using these types, designers can add their ownitgesi and objects, such as currency and
credit card.
<Currency type="Object" />
<CreditCard type="Currency" />

58

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

3.3.2 Defining Activities

Activities have four sectionsibject definitionobject assignmensub-activitiesandprotocol

In theobject definitionsection (using thedeclare> tag), objects are defined with a type and
name and can be referenced in this and other tesivin theobject assignmergection (using
the <assign> tag), objects are linked to existing objects asrimherited activities and sub-
activities. In thesub-activitiessection (using theactivities> tag), existing activities can be
added to the current activity, and their orderisgléfined in therotocol section (using the
<protocol> tag). TheBuy activity below exemplifies the use of these tags.

<Buy type="Activity" >
<declare>
<Agent name="seller" />
<Agent name="buyer" />
<Object name="goods" />
<Currency name="currency" />
</declare>
<activities>
<Offer name="pay" >
<assign>
<sender name="buyer" />
<receiver name="seller" />
<commitment:action:subject name="currency" />
</assign>
</Offer>
<Offer name="deliver">
<assign>
<sender name="seller" />
<receiver name="buyer" />
<commitment:action:subject name="goods"/>
</assign>
</Offer>
</activities>
<protocol>
<set>
<pay />
<deliver />
</set>
</protocol>
</Buy>

As shown above, thedeclare> section indicates thd@uy involves a seller and a buyer
agents, a generic type of goods and a currencycbbjfe<activities> section adds the sub-
activitiespay anddeliver (of type offer). This is illustrated in Figure 3, which shows ibdhe
aggregation of these activities and the inter-iefahip between the objects they define. In
particular, the sub-activitpay has arxassign> tag indicating that the buyer is the sender, the
seller is the receiver, and the currency is thgesilof the offer. By recalling the definition of
offer, we also know that the seller is the crediddrthe commitment, and the buyer is the
debtor of the commitment and the performer of ttioa of sending the currency. Likewise,

59

IADIS International Journal on Computer Science brfdrmation Systems

the sub-activitydeliver has arxassign> tag indicating that the seller is the sender &edbtuyer
the receiver of the goods; and from the definitafnoffer we also know that the seller is
committed to the buyer to deliver these goods.

Buy
pay : Offer

commitment : SocialCommitment

seller receiver: creditor

sencleri—}debmr

action : Action
performer

subject

currency

deliver : Offer

commitment : SocialCommitment

buyer > receiver > creditor

—)seritler<—><iel)tor

action : Action
performer

> subject

goods

Figure 3. Sub-activities and the inter-relationgbfipheir objects in thBuy activity

The <protocol> section specifies the ordering of sub-activitiesthis case using theset>
tag to indicate that there is no ordering—eithdivéeng could predate paying or vice versa,
or they could occur concurrently; it neverthelessdates that these sub-activities will happen
as part of the activity. If ordering was neededsigigers can create a new activity inheriting
from Buy, for example,PayAndDeliver(shown below) in which the protocol section is
overridden to mandate that inherited sub-activitiefld in a certain way, in this case tpaty
must go beforeeliver.

<PayAndDeliver type="Buy">
<protocol>
<sequence>
<pay />
<deliver />
</sequence>
</protocol>
</PayAndDeliver>

In brief, the protocol section currently suppottg tags<choice>, <set> and <sequence>.
The choicetag defines a divergent path of activities, whené/ one path can followed; the
sequencdag lists activities in the order in which they shibe executed; and, ttset tag

60

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

indicates inclusion of activities but not their erdof execution (thus any sequence of
occurrence is permitted).

As exemplified aboveGenAct promotes reuse through extension (inheritance) and
adoption (aggregation) mechanisms, where all défotgects are visible within the activities
in which they are reused. In addition, inheritedeots can be overridden with other (type
compatible) objects by using the same name asnbeirothe parent activity. For example,
BuyWithCreditCard(shown below) can be defined as an activity thaerits fromBuy and
overridescurrencywith an object of type&reditCard (which was defined earlier as a subtype
of Currency).

<BuyWithCreditCard type="Buy" >
<declare>
<CreditCard name="creditCard"/>
</declare>
<assign>
<currency name="creditCard" />
</assigns>
</BuyWithCreditCard>

3.4 From Actionsto Protocols

By defining PFP negotiations in terms of social agitments and activities, we can map
actions into finite state machines of PFP instanceparticular, any action is translated into a
pair of PFP instances, one in which the commitnbeiain activity is added, and another one in
which the commitment is deleted. Moreover, adopti@m deletion) of a composite
commitment implies adoption (or deletion) of alf #nclosed commitments; and composites
can be removed if the negotiation of their committadails.

3.4.1 Finite State M achines

Control tags in activities support the generatibfiexible PFP finite state machines.

The set tag indicates a divergent path of PFP instancesuylting in paths with all
permutations of actions in the tag. Each path cawehwo outcomes: one in which all
commitments are satisfied and the end state iheei@nother in which there is at least one
case where a commitment is not satisfied. In thenéw, the composite commitment is
removed after all its commitments are naturallyfifed. In the latter, an exception path is
taken to remove the composite, and thus all itsmitments. In the case of thiguy activity,
we defined it with assettag with activitiesdeliver andpay. As shown in Figure 4, the initial
PFP would add the composiBuy and its commitments ipay and deliver. After this PFP
there are two paths where the protocol could ge:where paying comes first and delivering
comes later; and the other where delivering coritesdnd paying later. Exception paths are
shown as dashed lines between PFP instances toeghm composite.

61

IADIS International Journal on Computer Science brfdrmation Systems

Add: Buy

{Buy, Pay, Deliver }

===

Remove: Pay Remove: Deliver

{ Buy, Deliver } J Lo { {Buy, Pay } |
Svenm e T v
\ {Buy } o {Buy} J

T
| () J

v

Figure 4. Example of a PFP protocol usinggbtcontrol tag

The choicetag has mutually exclusive paths, each with exeeppaths to remove the
composite in case of failure. Figure 5 shovgugTrainOrAirTicketactivity with the choice of
buying either a train or an airplane ticket. Whesing ana posteriori connector, both
commitments are added but only one is to be fatfillin this example, if the PFP for buying a
bus ticket is successful then the commitment foridoy an airplane ticket is also discharged
(without fulfillment). The exception path behaves the same way as in the earliset
example, removing the composite and all its endasammitments (if any remain).

Add: BuyTrainOrAirTicket

{BuyTrainOrAirTicket, (BuyTrainTicket | BuyAirTicket) }

Remove: BuyTrainTicket Remove: BuyAirTicket

I I
t {BuyTrainOrAirTicket } J : : {BuyTrainOrAirTicket } J
I I -

S

Figure 5. Example of a PFP protocol using¢heicecontrol tag

Lastly, thesequencdag states the linear order of the actions it @iost One example
activity is that of registering for classes, in whistudents must first offer their resolved
schedule of classes to an advisor before this adtiands to the student the PIN required for
registration. This activity is defined as follows:

62

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

<Register type="Activity" >
<declare>
<Agent name="student" />
<Agent name="advisor" />
<Object name="schedule" />
<Object name="PIN" />
</declare>
<activities>
<Offer name="offerSchedule ">
<assign>
<sender name="student" />
<receiver name="advisor" />
<initial:action:subject name="schedule" />
</assign>
</Offer>
<Propose name="requestPIN">
<assign>
<sender name="advisor" />
<receiver name="student" />
<initial:action:subject name="PIN"/>
</assign>
</Propose>
</activities>
<protocol>
<sequence>
<offerSchedule />
<requestPIN />
</sequence>
</protocol>
</Register>

Figure 6 shows this activity and its correspondirgeption paths.

63

IADIS International Journal on Computer Science brfdrmation Systems

Add: Register

{ Register, offerSchedule, requestPIN} |

Remove: offerSchedule

{ Register, requestPIN }

(I
1
|
|
|
1
: Remove: requestPIN
|
|
1
|
|
I _

{ Register }

~I/

Figure 6. Example of a PFP protocol usinggbguenceontrol tag

Lastly,we show the language’s ability to extendtpcols by creating &egisterHonors
activity that extends frorRegister In this (hypothetical) activity, students have thption of
either getting their PIN from their advisor (as astydent would do) or they can get an
approval signature from the Dean. Such an actigityefined below (note the use of the tag
<super /> to include the protocol inherited froRegisteras part of the current protocol).

<RegisterHonors type="Register" >
<declare>
<Agent name="Dean" />
<Object name="signature" />
</declare>
<activities>
<Propose name="requestSignature">
<assign>
<sender name="student" />
<receiver name="dean" />
<initial:action:subject name="signature"/>
</assign>
</Propose>
</activities>
<protocol>
<choice>
<requestSignature />
<super />
</choice>
</protocol>
</RegisterHonors>

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

3.5 Conversation Protocol Verification

The protocol verification part of the process has purposes: to check that protocols are
semantically valid, and to ensure that commitmangsresolved at their end states.

In agent based systems, there are three requirsnfienta protocol to be considered
semantically valid (Yolum, 2007): (a) that the pmwal is free of cyclic runs, (b) that it is
deadlock free, and (c) that it has valid end stategrotocol is non-cyclic if there is at least
one transition exiting a cycle of states. This pra@s a protocol from containing a loop of
transitions that can never reach an end state.ofoqol is deadlock free if agents are not
allowed to create commitments that contradict egbbr. For example, an agent may agree to
wash a car but it has previously made a commitmehtto wash it, which would make it
impossible for the agent to fulfill both in overf@ipg contexts. Lastly, a protocol has end
states if it has states with no outgoing transgtion

3.5.1 Non-Cyclic and Complete Protocols

Using of PFP as the building block of protocolewattes verifying that they are non-cyclical.
At every node of a PFP there are two internal staige with a commitment to reply; and in
each there is at least one transition to an eateqbeside an acceptance from the receiver, a
propose can be counter-proposed or rejected bythethearer and the speaker, if it changes
its mind). Even with counter-proposals adding cychdl of them are escapable by any agent
at any time througheject or acceptmessages. Therefore, since PFP instances cansalway
reach an exit state, we can be sure that we cathese without checking for cycles within
generated protocols.

On the other hand, to check that protocols baseti@®PFP are valid we perform a depth-
first search with loop detection, verifying whetliee node reaches an end state. Otherwise the
protocol is cyclic and invalid.

3.5.2 Resolved Commitments

To verify that a protocol is correct from the stpaoht of commitments can be done by

simulating runs of the protocol through all patesquding counter-proposals) to show that all

commitments are satisfied when the end state ishezh By using a commitment store, a

simulator adds and removes commitments as it aggaticough a path. To succeed, the store
should be empty when the simulator reaches thegeatlfor all paths, and no cases should
exist in which a non-existent commitment is attezdpfor removal.

4. SYSTEM IMPLEMENTATION

4.1 Design and Generation

As it was shown earlier, Buy activity is defined in XML as an activity that spay and
deliver sub-activities within aset tag. Once defined, this activity can be loaded itite
GenActprogram (shown in Figure 7), where the activityparsed for syntactical errors and
rendered as a graph.

65

IADIS International Journal on Computer Science brfdrmation Systems

Figure 7. ThesenActGUI software interface

Once the protocol has been syntax-checked, ith&ilin an abstract state until all involved
creditor and debtor agents are specified. As shawie figure, the program displays concrete
nodes (in green) and abstract nodes (in red). @lickn any of these nodes allows correcting
or adding information. The verification process aarly begin when all nodes have been
changed from abstract to concrete.

4.2 Verification

As mentioned earlier, a depth-first search is usetheck that all PFP nodes can reach an end
state. This search is not enough to verify thafpttadocol is correct, since abstract nodes could
be incorrectly edited and may not necessarily Ifudfi commitments. This may lead to two
possible execution errors: agents trying to remmw®mmitment they do not have, or agents
whose state has a commitment leftover. In theses¢dke simulator can check that all paths
end with an empty commitment states for all intdracagents, reporting any non-relieved
commitments. With this feedback, designers canitewdies to ensure all commitments are
satisfied, before saving the protocol as XML dat agents can be programmed to follow.

5. RELATED WORK

In this section we describe and compare againsiasifframeworks dealing with protocol
specification and verification.

66

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

5.1 Meta-Protocols

McGinnis (2006) introduced a BDI game theory frarodwto generate agent-based protocols,
in which a set of information-seeking games costrifle structure of protocols. In this
framework, agents participate in a protocol onlthgy have agreed to enter it. Our framework
takes a similar approach but simplifies controstéad of high-level protocols for path control,
PFP imbeds control into negotiated commitmentsclviaigents can reject if they do not find
them favorable. In addition, we take a social cotnrant (rather than a BDI) approach, which
can support protocol correctness without haviniggpect the internal states of agents.

Another meta-protocol approach is the voting systiscribed by Artikis (2009). In this
system, each protocol has a number of variabldiedcdegrees of freedom) that can be voted
by agents at runtime. These variables are defihddsign time and cannot be changed during
execution. Also a degree of institutional authoigygiven to the agents at different levels.
Agents at higher levels can participate in higlexels of nested voting, which leads to their
imposition of protocols to lower-level agents. Biéntly, PFP agents are not subject to
institutional constraints and thus are more poetanld flexible to implement.

5.2 Social Commitments

Yolum and Singh (2002) describe a framework forimocommitment protocols, called
commitment machines, in which protocols do not haveefinitive start state; instead, any
state can be a starting state as long as the comemitstates of agents match the states of a
protocol. The framework does not specify all thesgible transitions or runs of protocols;
instead it defines the meaning of each state fimseof commitments), the actions allowed,
and the new states after these actions. Our framkeisomore robust since protocol states
naturally emerge from the negotiation of commitrseand are not mandated by design.

Mallya and Singh (2005) propose a mechanism, calididing, to attach protocols to other
protocols at runtime, allowing them to return t@ithnormal execution in case of failure.
Splicing has the disadvantage of needing a preeléffat design time) library for exceptions.
We have similar mechanisms on exception paths ahdnorphism, since the former allow
agents to recover from failure, and the lattervedlachild activities to override the behavior
defined in their parent without affecting the resft the protocol. In addition, we are
considering dailure tag in our language (future work) that would pos/irecovery paths in
cases of failure. Lastly, we recently found work Kgemer (2012) in which protocols are
defined as extensible LISP modules in the CollatbaraAgents Systems Architecture
(CASA). Protocols are based on conversation templtitat indicate the policies and standard
behavior that apply to message types. Similarlguoapproach, protocols are built by reusing
other protocols, and the states of the sub-prosome synchronized according to the messages
received and the state of the enclosing protoduk &pproach has the advantages of allowing
conversation policies and LISP executable code a$ @of the protocols. One possible
advantage of our approach is that it caters torbgémeous systems where executable
languages are not mandated.

67

IADIS International Journal on Computer Science brfdrmation Systems

6. CONCLUSION AND FUTURE WORK

Our framework has room for practical and theor¢ticgrovements. On the theoretical side,
we need to support language extensions at desigmdnd dynamic protocols at runtime. On
the practical side, improvements are still neededtlee framework’s workflow and the
program’s user interface.

On the theoretical side, we have noticed that spr#cols should leave commitments
after their execution, and some others require t@gém have commitments before these
protocols take place. For example, agents usingetéing-married protocol end up with
marriage commitments when the protocol ends. Caelgra getting-divorced protocol will
require that agents have the commitments gaineslidiir marrying each other prior to its
execution. Commitments intended to remain at the @ha protocol are part of the post-
conditions of protocols, and can be identifiedtees commitments adopted and not discharged
at the end of successful paths. In addition to cdmemts, pre- & post-conditions may
include objects; for example, a customs agent duhgia traveler into the country would need
a passport and visa as pre-condition objects, anddaresult on an official stamp as its post-
condition. Adding pre- & post-conditions would réguadding XML tags to our language and
extending the verification process (which currentblidates that a protocol discharges all
commitments) to check that successful paths camlgtresult on the intended protocol post-
conditions. Other language extensions are dpgonal and failure tags. Theoptional tag
would indicate secondary but complementing acésitin a protocol; for example, a movie-
night activity may indicate buying popcorn and s@$aoptional activities. This tag would
substantially reduce the number of paths that wdwddgenerated otherwise if usirog
(alternative) tags. Thiailure tag would indicate paths that could be followedeoover from
a failure by defining actions that can only be pers if the intended path cannot be
completed; for example, in a class-override agtj\ét student could request permission to the
Dean to get into a class only if the instructondt available. A third extension is allowing
preferences in alternative paths andetactivities. By indicating preferences (either asign
or runtime) agents could have a mechanism to inflae(but not mandate) the flow of a
protocol and its activities; for example, a protombuy a train or an airplane ticket would
indicate that the proposing agent would prefer tharain ticket be bought although the
protocol’'s goal would also be satisfied if the &ire ticket was bought instead.

One other research avenue we will pursue has titthothe compatibility of protocols in
inherited activities. At the present time, declgra protocol section in an activity effectively
overrides the behavior in the parent activity legvino assurances that the new protocol
complies with the intention in the older. We planeixplore pertinent disciplines (e.g., graph
theory) to identify possible models or methodolsdteat could improve our approach.

On the practical side, there is room to improve®w program in several fronts, such as
supporting action design (the editing of XML tagsdone by manually writing to text files),
improved usability (nodes are displayed and thatadan be edited but there is no graphical
support to link objects and actions in activitiesto edit nested activities) and a thorough
support to our language (currently only the altéweaa priorior and the sequenand tags
are supported).

A further area of exploration is the deploymenpaftocols in agents, either by designing
an environment in which agents can be programméolltiw a protocol or can generate their
own protocols dynamically; in this latter case, wleenew protocol is required, agents could

68

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIEATION: A
SOCIAL COMMITMENT APPROACH

dynamically generate one and propose it to othéerpial interacting agents using existing
framework mechanisms.

To conclude, in this article we presented an adbased framework for designing multi-
agent protocols. This framework is based on the Riela-protocol and a XML language
called GenActin which designers can generate correct prototaisare verified in terms of
completeness and resolved social commitments.

ACKNOWLEDGEMENTS

We are thankful to the National Science Foundatjramt No. 0841295 for partially funding
our effort, to the reviewers and organizers of 13811 for their support, and especially
grateful to Robert Kremer at the University of Galgfor sharing his thoughts, invaluable
advice and encouragement to improve this work.

REFERENCES

Artikis, A., 2009, Dynamic Protocols for Open AgeBystems.Proceedings of the"BInternational
Conference on Autonomous Agents and Multiagent Bgs(AAMAS 2009)Budapest, Hungary,
ACM, pp. 97-104.

Flores, R.A., and Kremer, R.C. 2005. Commitment-basew/€rsation Protocol®roceedings of the's
IASTED International Conference on Computationaklligence (Cl 2005)Calgary, Canada, pp.
147-152.

Flores, R.A., Pasquier, P. and Chaib-draa, B., 2003nv€sational Semantics Sustained by
Commitments.Autonomous Agents and Multi-Agent Systemdume 14, Number 2, Springer-
Verlag, pp. 165-186.

Gouda, M.G., 1993. Protocol Verification Made SimpA Tutorial. Computer Networks and ISDN
Systemsvolume 25, number 9, Elsevier Science Publishmgrs969-980.

Kremer, R.C. (2012) “Defining Conversation Protodol€ASA”. To be published.

Mallya, A.U. and Singh, M.P., 2005. Modeling Exdepts Via Commitment Protocol®roceedings of
the 4" International Conference on Autonomous Agents kluttiagent Systems (AAMAS 2005)
Utrech, The Netherlands, ACM, pp. 122-129.

McGinnis, J.P., 20060n the Mutability of ProtocolsPh.D. thesis. University of Edingburg. Last
accessed: December 2010. http://www.cisa.inf.eaké&gsp/pubs/mcginnis_phd.pdf

Miller, T. and McBurney, P., 2008. On lllegal Comgimsi of First-Class Agent Interaction Protocols.
Proceedings of the $1Australasian Conference on Computer Science (ACSGC W8llongong,
Australia, Australian Computer Society, pp. 127-136.

Verdicchio, M. and Colombetti, M., 2003. A Logical ddel of Social Commitments for Agent
Communication.Proceedings of the "? International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 200B)elbourne, Australia, ACM, pp. 528-535.

Yolum, P., 2007 Design Time Analysis of Multiagéhibtocols.In Data and Knowledge Engineering
volume 63, number 1, Elsevier Science Publishgrs1g7-154.

Yolum, P. and Singh, M.P., 2002. Commitment Machirneroceedings of the "8 International
Workshop on Intelligent Agents VIII (ATAL '0$pringer-Verlag, pp. 235-247.

69

