
IADIS International Journal on Computer Science and Information Systems
Vol. 6, No.3, pp. 53-69
ISSN: 1646-3692

53

TOWARDS FLEXIBLE CONVERSATION
PROTOCOL GENERATION AND VERIFICATION:
A SOCIAL COMMITMENT APPROACH

Martin T. Press. PCSE, Christopher Newport University. 1 University Place, Newport News, Virginia
USA 23606

Roberto A. Flores. PCSE, Christopher Newport University. 1 University Place, Newport News,
Virginia USA 23606 (corresponding author)

ABSTRACT

We present a framework supporting the design of generic and flexible conversation protocols for multi-
agent systems. This framework uses a social commitments approach in which descriptions are
transformed into finite state machines for subsequent embedding in software agents. As part of this
process, it provides a tool to verify the correctness of protocols in terms of their completeness and
resolution of social commitments. The framework includes object-oriented concepts such as extension
and aggregation to aid users reuse protocols during their design.

KEYWORDS

Agent communication, conversation protocols, social commitments.

1. INTRODUCTION

The heterogeneous nature of agents in open environments means that no assumptions can be
made about their inner workings. This constraint is particularly acute in their
communications—the use of messages and protocols—since these communications must be
understood in terms that are external to agents.

At the higher level, a protocol can be seen as states and transition events, where events are
message exchanges and states indicate goal advancement at a particular point between these
exchanges. Currently, most protocols are developed statically at design time and cannot easily
change at runtime. This lack of flexibility makes them impractical in open environments
where agents must adapt their communications according to the state of the environment and
to their particular abilities and preferences.

IADIS International Journal on Computer Science and Information Systems

54

In this view, our goal is to provide a framework where flexible protocols are formalized
and verified at design time. In general, there are two requirements when developing protocols:
they should have goals and they should be verifiable. On the one hand, goals are ascribed to
protocols at design time (Miller and McBurney, 2008). These goals can be modeled as the end
states a designer intends a protocol to reach. On the other hand, verification happens when
protocols are proven to reach a goal state on every run (Gouda, 1993). The verification of
flexible protocols differs from that of static protocols in that the transitions and intermediate
states toward goal states may vary during different runs of the same protocol. Accordingly, a
key requirement to verify flexible protocols is ensuring that they can reach an end state
regardless of variations between runs.

With the aim of flexible protocol verification in mind, we present a framework where
flexible protocols can be defined in terms of their actions and goals, and whose correctness is
verified by identifying that their end states are reached on every run.

In a nutshell, the framework allows designing generic flexible protocols that can be
transformed into working non-generic protocols for later implementation in agents. In
addition, it supports protocol specialization as a way to ease the design process and encourage
reusability. These topics are discussed in the remainder of the article as follows: Section 2
gives a brief overview of the framework’s foundations and its extensions. Section 3 gives an
overview of the protocol generation features of our framework. Section 4 overviews the
design, generation and verification process with the aid of a use-case. Section 5 gives a view
of related work in the field of protocol generation, and Section 6 presents conclusions and
future work.

2. PROTOCOL FOR PROPOSALS

One way to define conversation protocols is using social commitments (Yolum, 2007, Flores
& Kremer, 2005). In this view, commitments are added and discharged as messages are
exchanged between agents.

A social commitment is an obligation put upon an agent to perform an action (Verdicchio
& Colombetti, 2003). Each commitment involves two agent roles: creditors (who benefit from
the commitment) and debtors (who are responsible to satisfy it). Commitments can be in one
of several states, such as active, fulfilled and violated (Flores, Pasquier & Chaib-draa, 2007).
A commitment becomes active once it is adopted by its debtors, who are responsible to satisfy
its conditions, and becomes fulfilled and can be discharged if its creditors accept that its
conditions have been satisfied; otherwise the commitment remains active until its conditions
cannot be satisfied (e.g., its expected completion time has expired), making it become
violated.

Our framework uses a meta-protocol for building conversation protocols using social
commitments called the protocol for proposals (PFP) (Flores and Kremer, 2005). PFP is a
mechanism that allows agents to the agreed uptake and discharge of commitments (thus
supporting agent autonomy) and their negotiation as conversations progress (thus supporting
flexible conversations at runtime). As shown in Figure 1, the initial message in a PFP instance
is propose. Proposals trigger the only conversational norm in the PFP: that the receiver of a
propose message is committed to reply. Replies have the form of either an accept, a reject or a
counter-propose message. By defining a counter-propose as a rejection of its immediate

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

55

propose and a propose with an alternate commitment, the PFP guarantees the continuity of the
conversation until an accept or a reject message is issued. Accepting a proposal cements the
(adoption or discharge of the) proposed commitment. Rejecting a proposal leaves agents in the
same state they were prior to the PFP conversation.

Figure 1. State diagram of the Protocol for Proposals

The PFP was originally defined to operate on a single commitment, thus limiting the type
of protocols it can create. Our work extends it by allowing sequential and alternative actions to
occur through composite social commitments. As shown in the simplified BNF notation
below, composites use or and and logical operators to link commitments.

<PFPCommitment> → (add | remove) <CompositeCommitment>

<CompositeCommitment> → <SocialCommitment> { <Logical> <CommitmentTerm> }

<CommitmentTerm> → (<CompositeCommitment>) | <CompositeCommitment>

<SocialCommitment> → SocialCommitment({ creditor }
+
, { debtor }

+
 , { action }

+
)

<Logical> → (andset | andsequence | orapriori | oraposteriori)

Commitments in a composite can be linked by and (conjunction) and or (disjunction)
logical connectors. Disjunction is either a priori, if the debtor is required to indicate at
acceptance time which choice of commitments it will pursue; or a posteriori, if the debtor has
the option of defining its choice of commitments either now (at acceptance time) or later (at
the time of fulfillment). Conjunction can be either a set, if commitments are fulfilled in any
order; or a sequence, if they must be fulfilled in the indicated order.

For example, a customer and a vendor can use a composite commitment to buy an item,
which can be defined as paying and receiving the item. If the vendor accepts these
commitments and they were linked as a set then the vendor is allowed to choose whether to
receive the payment first and send the item later, or deliver first and be paid later. Differently,
if the commitments were linked as a sequence then the vendor could only proceed in the order
indicated.

IADIS International Journal on Computer Science and Information Systems

56

3. CONVERSATION PROTOCOLS FRAMEWORK

At a high level, our framework is composed of three processes: action design, protocol
generation & verification and protocol implementation. Although in this article we cover
notions of the first process (action design) we are mostly concerned with the second process
(generation and verification). The third process (implementation) is left as future work. In
brief, the generation & verification process receives objects and actions in a XML-based
language we named GenAct, and allows designers to visualize, edit information and verify the
correctness of protocols before saving them for later implementation.

In the following sections, we provide a few basic protocol definitions followed by GenAct
examples.

3.1 Protocol Paths

Protocol instances can take one of several available paths at runtime. A path is a sequence of
states and transitions in a protocol. We identify three different types of paths: optimal,
successful and exception. An optimal path is the shortest path leading to the intended goal of
the protocol, and where the intended goal is the end state favored by the protocol’s designers.
In PFP, an optimal path would have propose and accept messages only. Optimal paths do not
have any reject (which make a protocol return to a previously agreed state) or counter-propose
messages (which would increase the message count to reach a goal). A successful path is a
path in which the intended outcome is achieved regardless of the messages required.
Successful paths could include propose, accept, reject and counter-propose messages for as
long as the goals of the protocol are reached.1 An optimal path is a special case of a successful
path with no counter-proposals or rejections. An exception path is any path not reaching the
goal given rejections or unfulfilled commitments.

3.2 Protocol Types

We identify two types of protocols in the framework: concrete and abstract.
A concrete protocol is a protocol where there is a complete temporal ordering of states and

transitions, and where all agent roles and actions are defined. The only aspect that could be left
unspecified is the time expected between messages, e.g., replying to a propose is expected
within 5 seconds. In addition, time can be absolute or specified as an offset of the starting time
of the protocol.

An abstract protocol is a protocol whose states and transitions are defined at design time
but whose actions and sequencing are not. For example, a Buy abstract protocol may not
specify what item will be bought, the amount that will be spent on it, whether the customer
should pay before or after delivery of the item, or whether the item is paid with cash or a credit
card.

1 Although it is easier to envision a successful path with counter-proposals (e.g., “Let’s go to the movies at 4 pm”
followed by “What about 7 pm instead?” and an agreement leads to the intended goal “Go to the movies together”),
they can also include rejections. For example, if A and B have agreed that B will build a chair for A, and B attempts to
discharge this commitment (e.g., “Here is the chair you requested”) but A rejects (“But...it’s missing a leg!”) makes
the state of the conversation fall to a previous stable state (i.e., B will build a chair for A). In this example, the
conversational goal “B built a chair for A” can be reached if A agrees with a subsequent discharge attempt from B.

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

57

Concrete protocols are created from abstract protocols whose values and allowed paths are
all identified. We derive that a concrete protocol is a subset of its abstract protocol, and that an
abstract protocol embodies all the features of its concrete protocols. In addition, our language
promotes protocol and action reuse through extension (inheritance) and aggregation
(adoption).

3.3 Designing Actions

We define an activity as a non-empty set of actions, which together define the goal of a
protocol. Activities use object-oriented programming paradigm techniques such as inheritance
and polymorphism.

3.3.1 Basic Hierarchy

Figure 2 shows the basic primitives in our language: object, agent, social commitment and
action.

Figure 2. UML diagram of GenAct primitive types

An object is the basis for any entity, such as an agent, which is an actor in the system.

 <Agent type="Object" />

As shown in the below, action is an agent performance over a subject, and the basis for
activity structures. Note that the tag <declare> is used for declaring new entities within a
definition. Other available tags are <assign>, for binding entities in aggregated definitions, and
the activity-only tags <activities>, to aggregate activities within an activity, and <protocol>, to
indicate ordering of aggregated/inherited activities (examples to follow).

 <Action type="Object">

 <declare>

IADIS International Journal on Computer Science and Information Systems

58

 <Agent name="performer" />

 <Object name="subject" />

 </declare>

 </Action>

 <Activity type="Action" />

A social commitment is a directed obligation to perform an action. As such, they declare a
creditor agent, a debtor agent and an action.

 <SocialCommitment type="Object">

 <declare>

 <Agent name = "creditor" />

 <Agent name = "debtor" />

 <Action name = "action" />

 </declare>

 </SocialCommitment>

Activities are negotiated through PFP action primitives such as offer and propose, which
have a sender, a receiver and a commitment. An offer is an occurrence where the speaker is
the debtor of the commitment, and a proposal is an occurrence where the hearer is the debtor
of the commitment.

 <Negotiation type="Activity" >

 <declare>

 <Agent name="sender" />

 <Agent name="receiver" />

 <SocialCommitment name="commitment" />

 </declare >

 </Negotiation>

 <Propose type="Negotiation" >

 <assign>

 <commitment:creditor name="sender" />

 <commitment:debtor name="receiver" />

 <commitment:action:performer name="receiver" />

 </assign>

 </Propose>

 <Offer type="Negotiation" >

 <assign>

 <commitment:creditor name="receiver" />

 <commitment:debtor name="sender" />

 <commitment:action:performer name="sender" />

 </assign>

 </Offer>

Using these types, designers can add their own activities and objects, such as currency and
credit card.

 <Currency type="Object" />

 <CreditCard type="Currency" />

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

59

3.3.2 Defining Activities

Activities have four sections: object definition, object assignment, sub-activities and protocol.
In the object definition section (using the <declare> tag), objects are defined with a type and

name and can be referenced in this and other activities. In the object assignment section (using
the <assign> tag), objects are linked to existing objects across inherited activities and sub-
activities. In the sub-activities section (using the <activities> tag), existing activities can be
added to the current activity, and their ordering is defined in the protocol section (using the
<protocol> tag). The Buy activity below exemplifies the use of these tags.

<Buy type="Activity" >

 <declare>

 <Agent name="seller" />

 <Agent name="buyer" />

 <Object name="goods" />

 <Currency name="currency" />

 </declare>

 <activities>

 <Offer name="pay" >

 <assign>

 <sender name="buyer" />

 <receiver name="seller" />

 <commitment:action:subject name="currency" />

 </assign>

 </Offer>

 <Offer name="deliver">

 <assign>

 <sender name="seller" />

 <receiver name="buyer" />

 <commitment:action:subject name="goods"/>

 </assign>

 </Offer>

 </activities>

 <protocol>

 <set>

 <pay />

 <deliver />

 </set>

 </protocol>

</Buy>

As shown above, the <declare> section indicates that Buy involves a seller and a buyer
agents, a generic type of goods and a currency object. The <activities> section adds the sub-
activities pay and deliver (of type offer). This is illustrated in Figure 3, which shows both the
aggregation of these activities and the inter-relationship between the objects they define. In
particular, the sub-activity pay has an <assign> tag indicating that the buyer is the sender, the
seller is the receiver, and the currency is the subject of the offer. By recalling the definition of
offer, we also know that the seller is the creditor of the commitment, and the buyer is the
debtor of the commitment and the performer of the action of sending the currency. Likewise,

IADIS International Journal on Computer Science and Information Systems

60

the sub-activity deliver has an <assign> tag indicating that the seller is the sender and the buyer
the receiver of the goods; and from the definition of offer we also know that the seller is
committed to the buyer to deliver these goods.

Figure 3. Sub-activities and the inter-relationship of their objects in the Buy activity

The <protocol> section specifies the ordering of sub-activities, in this case using the <set>
tag to indicate that there is no ordering—either delivering could predate paying or vice versa,
or they could occur concurrently; it nevertheless mandates that these sub-activities will happen
as part of the activity. If ordering was needed, designers can create a new activity inheriting
from Buy, for example, PayAndDeliver (shown below) in which the protocol section is
overridden to mandate that inherited sub-activities unfold in a certain way, in this case that pay
must go before deliver.

<PayAndDeliver type="Buy">

 <protocol>

 <sequence>

 <pay />

 <deliver />

 </sequence>

 </protocol>

</PayAndDeliver>

In brief, the protocol section currently supports the tags <choice>, <set> and <sequence>.
The choice tag defines a divergent path of activities, where only one path can followed; the
sequence tag lists activities in the order in which they must be executed; and, the set tag

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

61

indicates inclusion of activities but not their order of execution (thus any sequence of
occurrence is permitted).

As exemplified above, GenAct promotes reuse through extension (inheritance) and
adoption (aggregation) mechanisms, where all defined objects are visible within the activities
in which they are reused. In addition, inherited objects can be overridden with other (type
compatible) objects by using the same name as the one in the parent activity. For example,
BuyWithCreditCard (shown below) can be defined as an activity that inherits from Buy and
overrides currency with an object of type CreditCard (which was defined earlier as a subtype
of Currency).

<BuyWithCreditCard type="Buy" >

 <declare>

 <CreditCard name="creditCard"/>

 </declare>

 <assign>

 <currency name="creditCard" />

 </assigns>

</BuyWithCreditCard>

3.4 From Actions to Protocols

By defining PFP negotiations in terms of social commitments and activities, we can map
actions into finite state machines of PFP instances. In particular, any action is translated into a
pair of PFP instances, one in which the commitment to an activity is added, and another one in
which the commitment is deleted. Moreover, adoption (or deletion) of a composite
commitment implies adoption (or deletion) of all its enclosed commitments; and composites
can be removed if the negotiation of their commitments fails.

3.4.1 Finite State Machines

Control tags in activities support the generation of flexible PFP finite state machines.
The set tag indicates a divergent path of PFP instances, resulting in paths with all

permutations of actions in the tag. Each path can have two outcomes: one in which all
commitments are satisfied and the end state is reached; another in which there is at least one
case where a commitment is not satisfied. In the former, the composite commitment is
removed after all its commitments are naturally fulfilled. In the latter, an exception path is
taken to remove the composite, and thus all its commitments. In the case of the Buy activity,
we defined it with a set tag with activities deliver and pay. As shown in Figure 4, the initial
PFP would add the composite Buy and its commitments in pay and deliver. After this PFP
there are two paths where the protocol could go: one where paying comes first and delivering
comes later; and the other where delivering comes first and paying later. Exception paths are
shown as dashed lines between PFP instances to remove the composite.

IADIS International Journal on Computer Science and Information Systems

62

Figure 4. Example of a PFP protocol using the set control tag

The choice tag has mutually exclusive paths, each with exception paths to remove the
composite in case of failure. Figure 5 shows a BuyTrainOrAirTicket activity with the choice of
buying either a train or an airplane ticket. When using an a posteriori connector, both
commitments are added but only one is to be fulfilled. In this example, if the PFP for buying a
bus ticket is successful then the commitment for buying an airplane ticket is also discharged
(without fulfillment). The exception path behaves in the same way as in the earlier set
example, removing the composite and all its enclosed commitments (if any remain).

Figure 5. Example of a PFP protocol using the choice control tag

Lastly, the sequence tag states the linear order of the actions it contains. One example
activity is that of registering for classes, in which students must first offer their resolved
schedule of classes to an advisor before this advisor hands to the student the PIN required for
registration. This activity is defined as follows:

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

63

 <Register type="Activity" >

 <declare>

 <Agent name="student" />

 <Agent name="advisor" />

 <Object name="schedule" />

 <Object name="PIN" />

 </declare>

 <activities>

 <Offer name="offerSchedule ">

 <assign>

 <sender name="student" />

 <receiver name="advisor" />

 <initial:action:subject name="schedule" />

 </assign>

 </Offer>

 <Propose name="requestPIN">

 <assign>

 <sender name="advisor" />

 <receiver name="student" />

 <initial:action:subject name="PIN"/>

 </assign>

 </Propose>

 </activities>

 <protocol>

 <sequence>

 <offerSchedule />

 <requestPIN />

 </sequence>

 </protocol>

 </Register>

Figure 6 shows this activity and its corresponding exception paths.

IADIS International Journal on Computer Science and Information Systems

64

Figure 6. Example of a PFP protocol using the sequence control tag

Lastly,we show the language’s ability to extend protocols by creating a RegisterHonors
activity that extends from Register. In this (hypothetical) activity, students have the option of
either getting their PIN from their advisor (as any student would do) or they can get an
approval signature from the Dean. Such an activity is defined below (note the use of the tag
<super /> to include the protocol inherited from Register as part of the current protocol).

 <RegisterHonors type="Register" >

 <declare>

 <Agent name="Dean" />

 <Object name="signature" />

 </declare>

 <activities>

 <Propose name="requestSignature">

 <assign>

 <sender name="student" />

 <receiver name="dean" />

 <initial:action:subject name="signature"/>

 </assign>

 </Propose>

 </activities>

 <protocol>

 <choice>

 <requestSignature />

 <super />

 </choice>

 </protocol>

 </RegisterHonors>

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

65

3.5 Conversation Protocol Verification

The protocol verification part of the process has two purposes: to check that protocols are
semantically valid, and to ensure that commitments are resolved at their end states.

In agent based systems, there are three requirements for a protocol to be considered
semantically valid (Yolum, 2007): (a) that the protocol is free of cyclic runs, (b) that it is
deadlock free, and (c) that it has valid end states. A protocol is non-cyclic if there is at least
one transition exiting a cycle of states. This prevents a protocol from containing a loop of
transitions that can never reach an end state. A protocol is deadlock free if agents are not
allowed to create commitments that contradict each other. For example, an agent may agree to
wash a car but it has previously made a commitment not to wash it, which would make it
impossible for the agent to fulfill both in overlapping contexts. Lastly, a protocol has end
states if it has states with no outgoing transitions.

3.5.1 Non-Cyclic and Complete Protocols

Using of PFP as the building block of protocols alleviates verifying that they are non-cyclical.
At every node of a PFP there are two internal states, one with a commitment to reply; and in
each there is at least one transition to an exit state (beside an acceptance from the receiver, a
propose can be counter-proposed or rejected by both the hearer and the speaker, if it changes
its mind). Even with counter-proposals adding cycles, all of them are escapable by any agent
at any time through reject or accept messages. Therefore, since PFP instances can always
reach an exit state, we can be sure that we can use them without checking for cycles within
generated protocols.

On the other hand, to check that protocols based on the PFP are valid we perform a depth-
first search with loop detection, verifying whether the node reaches an end state. Otherwise the
protocol is cyclic and invalid.

3.5.2 Resolved Commitments

To verify that a protocol is correct from the standpoint of commitments can be done by
simulating runs of the protocol through all paths (excluding counter-proposals) to show that all
commitments are satisfied when the end state is reached. By using a commitment store, a
simulator adds and removes commitments as it advances through a path. To succeed, the store
should be empty when the simulator reaches the end goal for all paths, and no cases should
exist in which a non-existent commitment is attempted for removal.

4. SYSTEM IMPLEMENTATION

4.1 Design and Generation

As it was shown earlier, a Buy activity is defined in XML as an activity that uses pay and
deliver sub-activities within a set tag. Once defined, this activity can be loaded into the
GenAct program (shown in Figure 7), where the activity is parsed for syntactical errors and
rendered as a graph.

IADIS International Journal on Computer Science and Information Systems

66

Figure 7. The GenAct GUI software interface

Once the protocol has been syntax-checked, it will be in an abstract state until all involved
creditor and debtor agents are specified. As shown in the figure, the program displays concrete
nodes (in green) and abstract nodes (in red). Clicking on any of these nodes allows correcting
or adding information. The verification process can only begin when all nodes have been
changed from abstract to concrete.

4.2 Verification

As mentioned earlier, a depth-first search is used to check that all PFP nodes can reach an end
state. This search is not enough to verify that the protocol is correct, since abstract nodes could
be incorrectly edited and may not necessarily fulfill all commitments. This may lead to two
possible execution errors: agents trying to remove a commitment they do not have, or agents
whose state has a commitment leftover. In these cases, the simulator can check that all paths
end with an empty commitment states for all interacting agents, reporting any non-relieved
commitments. With this feedback, designers can reedit nodes to ensure all commitments are
satisfied, before saving the protocol as XML data that agents can be programmed to follow.

5. RELATED WORK

In this section we describe and compare against similar frameworks dealing with protocol
specification and verification.

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

67

5.1 Meta-Protocols

McGinnis (2006) introduced a BDI game theory framework to generate agent-based protocols,
in which a set of information-seeking games controls the structure of protocols. In this
framework, agents participate in a protocol only if they have agreed to enter it. Our framework
takes a similar approach but simplifies control. Instead of high-level protocols for path control,
PFP imbeds control into negotiated commitments, which agents can reject if they do not find
them favorable. In addition, we take a social commitment (rather than a BDI) approach, which
can support protocol correctness without having to inspect the internal states of agents.

Another meta-protocol approach is the voting system described by Artikis (2009). In this
system, each protocol has a number of variables (called degrees of freedom) that can be voted
by agents at runtime. These variables are defined at design time and cannot be changed during
execution. Also a degree of institutional authority is given to the agents at different levels.
Agents at higher levels can participate in higher levels of nested voting, which leads to their
imposition of protocols to lower-level agents. Differently, PFP agents are not subject to
institutional constraints and thus are more portable and flexible to implement.

5.2 Social Commitments

Yolum and Singh (2002) describe a framework for social commitment protocols, called
commitment machines, in which protocols do not have a definitive start state; instead, any
state can be a starting state as long as the commitment states of agents match the states of a
protocol. The framework does not specify all the possible transitions or runs of protocols;
instead it defines the meaning of each state (in terms of commitments), the actions allowed,
and the new states after these actions. Our framework is more robust since protocol states
naturally emerge from the negotiation of commitments, and are not mandated by design.

Mallya and Singh (2005) propose a mechanism, called splicing, to attach protocols to other
protocols at runtime, allowing them to return to their normal execution in case of failure.
Splicing has the disadvantage of needing a predefined (at design time) library for exceptions.
We have similar mechanisms on exception paths and polymorphism, since the former allow
agents to recover from failure, and the latter allows child activities to override the behavior
defined in their parent without affecting the rest of the protocol. In addition, we are
considering a failure tag in our language (future work) that would provide recovery paths in
cases of failure. Lastly, we recently found work by Kremer (2012) in which protocols are
defined as extensible LISP modules in the Collaborative Agents Systems Architecture
(CASA). Protocols are based on conversation templates that indicate the policies and standard
behavior that apply to message types. Similarly to our approach, protocols are built by reusing
other protocols, and the states of the sub-protocols are synchronized according to the messages
received and the state of the enclosing protocol. This approach has the advantages of allowing
conversation policies and LISP executable code as part of the protocols. One possible
advantage of our approach is that it caters to heterogeneous systems where executable
languages are not mandated.

IADIS International Journal on Computer Science and Information Systems

68

6. CONCLUSION AND FUTURE WORK

Our framework has room for practical and theoretical improvements. On the theoretical side,
we need to support language extensions at design time and dynamic protocols at runtime. On
the practical side, improvements are still needed on the framework’s workflow and the
program’s user interface.

On the theoretical side, we have noticed that some protocols should leave commitments
after their execution, and some others require agents to have commitments before these
protocols take place. For example, agents using a getting-married protocol end up with
marriage commitments when the protocol ends. Conversely, a getting-divorced protocol will
require that agents have the commitments gained through marrying each other prior to its
execution. Commitments intended to remain at the end of a protocol are part of the post-
conditions of protocols, and can be identified as the commitments adopted and not discharged
at the end of successful paths. In addition to commitments, pre- & post-conditions may
include objects; for example, a customs agent admitting a traveler into the country would need
a passport and visa as pre-condition objects, and would result on an official stamp as its post-
condition. Adding pre- & post-conditions would require adding XML tags to our language and
extending the verification process (which currently validates that a protocol discharges all
commitments) to check that successful paths consistently result on the intended protocol post-
conditions. Other language extensions are the optional and failure tags. The optional tag
would indicate secondary but complementing activities in a protocol; for example, a movie-
night activity may indicate buying popcorn and soda as optional activities. This tag would
substantially reduce the number of paths that would be generated otherwise if using or
(alternative) tags. The failure tag would indicate paths that could be followed to recover from
a failure by defining actions that can only be pursued if the intended path cannot be
completed; for example, in a class-override activity, a student could request permission to the
Dean to get into a class only if the instructor is not available. A third extension is allowing
preferences in alternative paths and in set activities. By indicating preferences (either at design
or runtime) agents could have a mechanism to influence (but not mandate) the flow of a
protocol and its activities; for example, a protocol to buy a train or an airplane ticket would
indicate that the proposing agent would prefer that a train ticket be bought although the
protocol’s goal would also be satisfied if the airplane ticket was bought instead.

One other research avenue we will pursue has to do with the compatibility of protocols in
inherited activities. At the present time, declaring a protocol section in an activity effectively
overrides the behavior in the parent activity leaving no assurances that the new protocol
complies with the intention in the older. We plan to explore pertinent disciplines (e.g., graph
theory) to identify possible models or methodologies that could improve our approach.

On the practical side, there is room to improve the GUI program in several fronts, such as
supporting action design (the editing of XML tags is done by manually writing to text files),
improved usability (nodes are displayed and their data can be edited but there is no graphical
support to link objects and actions in activities or to edit nested activities) and a thorough
support to our language (currently only the alternative a priori or and the sequence and tags
are supported).

A further area of exploration is the deployment of protocols in agents, either by designing
an environment in which agents can be programmed to follow a protocol or can generate their
own protocols dynamically; in this latter case, when a new protocol is required, agents could

TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A
SOCIAL COMMITMENT APPROACH

69

dynamically generate one and propose it to other potential interacting agents using existing
framework mechanisms.

To conclude, in this article we presented an action-based framework for designing multi-
agent protocols. This framework is based on the PFP meta-protocol and a XML language
called GenAct in which designers can generate correct protocols that are verified in terms of
completeness and resolved social commitments.

ACKNOWLEDGEMENTS

We are thankful to the National Science Foundation grant No. 0841295 for partially funding
our effort, to the reviewers and organizers of ISA 2011 for their support, and especially
grateful to Robert Kremer at the University of Calgary for sharing his thoughts, invaluable
advice and encouragement to improve this work.

REFERENCES

Artikis, A., 2009, Dynamic Protocols for Open Agent Systems. Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary,
ACM, pp. 97-104.

Flores, R.A., and Kremer, R.C. 2005. Commitment-based Conversation Protocols. Proceedings of the 4th
IASTED International Conference on Computational Intelligence (CI 2005), Calgary, Canada, pp.
147-152.

Flores, R.A., Pasquier, P. and Chaib-draa, B., 2007. Conversational Semantics Sustained by
Commitments. Autonomous Agents and Multi-Agent Systems, Volume 14, Number 2, Springer-
Verlag, pp. 165-186.

Gouda, M.G., 1993. Protocol Verification Made Simple: A Tutorial. Computer Networks and ISDN
Systems, volume 25, number 9, Elsevier Science Publishers, pp. 969-980.

Kremer, R.C. (2012) “Defining Conversation Protocols in CASA”. To be published.
Mallya, A.U. and Singh, M.P., 2005. Modeling Exceptions Via Commitment Protocols. Proceedings of

the 4th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005),
Utrech, The Netherlands, ACM, pp. 122-129.

McGinnis, J.P., 2006. On the Mutability of Protocols. Ph.D. thesis. University of Edingburg. Last
accessed: December 2010. http://www.cisa.inf.ed.ac.uk/ssp/pubs/mcginnis_phd.pdf

Miller, T. and McBurney, P., 2008. On Illegal Composition of First-Class Agent Interaction Protocols.
Proceedings of the 31st Australasian Conference on Computer Science (ACSC '08), Wollongong,
Australia, Australian Computer Society, pp. 127-136.

Verdicchio, M. and Colombetti, M., 2003. A Logical Model of Social Commitments for Agent
Communication. Proceedings of the 2nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2003), Melbourne, Australia, ACM, pp. 528-535.

Yolum, P., 2007 Design Time Analysis of Multiagent Protocols. In Data and Knowledge Engineering,
volume 63, number 1, Elsevier Science Publishers, pp. 137-154.

Yolum, P. and Singh, M.P., 2002. Commitment Machines. Proceedings of the 8th International
Workshop on Intelligent Agents VIII (ATAL '01), Springer-Verlag, pp. 235-247.

