
IADIS International Journal on Computer Science and Information Systems
Vol. 6, No. 2, pp. 69-94
ISSN: 1646-3692

69

USING CONTEXT MODELING AND DOMAIN
ONTOLOGY IN THE DESIGN OF PERSONALIZED
USER INTERFACE

Firas Bacha, Káthia Oliveira and Mourad Abed
University of Valenciennes and Hainaut Cambrésis, LAMIH, F-59313 Valenciennes, France, CNRS,
FRE 3304, F-59313 Valenciennes, France University of Lille North of de France

ABSTRACT

With the diversity of computer devices and the increasing number of software systems to support daily
activities, personalization became an important requirement in software development. User interface of
such systems should not only be customized in terms of layout, screen resolution, and other design
aspects, but should also provide the user with pertinent information that takes into account the context
when using the system. We argue that personalized information should guide interface design aspects as
well as the choice of the relevant information to be provided through such interface. To address this idea,
we explicitly define a context model to capture all relevant information related to the user. This context
model is generic and could be used in the design of any user interface. To adapt such model to a specific
application domain, we propose that the context model concepts are mapped to the concepts of an
ontology that captures the knowledge of an application domain. In this way, it is possible to indicate
which specific application domain information should be provided as input/output in the user interface
based on the context. In addition, we embed the context model and the domain ontology in a model-
driven architecture framework to allow semi-automatic generation of personalized user interfaces.
Finally, an illustrative example of the proposed approach is presented.

KEYWORDS

Context Modeling, Personalization, User Interface Design, Ontology, Model-Driven Architecture

1. INTRODUCTION

The proliferation of electronic information available via different computer devices with
several interaction modes brings a new challenge to system development: presenting the
relevant information for a specific user in a suitable manner for that user (Van Setten, 2001),
that is, to generate personalized information. In this way, the user feels like the software
system was developed for him/her and the software system becomes more productive and

IADIS International Journal on Computer Science and Information Systems

70

attractive to the user, which results in a better acceptation and use of the system. To address
this important challenge, information about the user and his/her situation or context while
using a system is usually organized in models that are integrated to the software system. We
argue that this personalized information should also be used in the design of user interfaces.

Recognizing this need, some approaches emerged to consider the context in the user
interface design (e.g. Calvary et al., 2003; Vanderdonckt, 2005; Taconet and Aoul, 2008; Ayed
et al., 2007; Hachani et al., 2009). These approaches use information about the user and the
context to set how to present information and to customize the interface for different devices.
However, the personalized information should also be used to set the pertinent input/output
content in the interface fields. In other words, while designing a user interface, we would like
to personalize the way information will be presented (i.e., the container) and to indicate which
information should be presented (i.e. the content) considering what we know about the user
such as personal data, preferences, hardware s-he is using, etc. To that end, we propose to use
a context model with personalized information about the user and an ontology for the specific
application domain. These models are used in a model-driven architecture (MDA) approach
(OMG, 2001) to support the user interface generation.

When talking about personalization, one can think of information retrieval domain
methods and techniques to identify personalized information about the user such as: cognitive
methods and collaborative filtering (Cinquin et al., 2002). In general, these approaches use
some basic information about the user, a class of users, and/or an analysis of contextual data
(historical information) to identify the preferences, profile, and characteristics of the user. Our
goal is not to provide a method like these approaches, but rather to use the information
generated by them in the design of user interfaces. The information related to a particular user
is viewed as an instance of a general model of context. This paper presents how this context
model is defined for our purposes and its association with domain ontology in order to be used
during the user interface design following a MDA approach.

The remainder of this paper is organized as follows. Section 2 presents some definitions
and relevant research on personalization and context modeling. Section 3 describes our
proposition of context modeling and how it is associated to domain ontologies to allow
personalization. Then, in section 5, these models are used in a MDA approach to generate
personalized user interfaces. Section 5 and 6 present, respectively, some related works and
limitations of our approach. Finally, Section 6 presents our conclusions.

2. PERSONALIZATION AND CONTEXT MODELING

There is no consensual definition of personalization. Usually, authors define personalization
based on their specific goals and applications (Anli, 2006 and Bouzghoub, 2004). Some
important definitions from the Human-Computer Interaction and Information Research
domains are:
• “Personalization is the ability to provide content and services that are tailored to

individuals based on knowledge about their preferences and behavior” (Hagen et al.,
1999).

• “Personalization is the capability to customize communication based on knowledge
preferences and behaviors at the time of interaction” (Dyche, 2002).

• “Personalization means delivering to a group of individuals, relevant information that is

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

71

retrieved, transformed, and/or deduced from information sources” (Won, 2002).
Besides the diversity of definitions, personalization is often confused with “adaptation”.

Ledoux (2001) defines adaptation as the process of modifying systems to work adequately in a
given context, which means the system suits perfectly user expectation in a given context.
Some authors (Kappel et al., 2000; Mobasher, 2000 and Ledoux, 2001) argue that
personalization and adaptation are synonymous; others (Anli, 2006 and Won, 2002) consider
that personalization is part of adaptation. Garía-Barrios et al. (2005) define personalization as
“adaptation towards a named user for which an internal and individual model is needed”.
Simonin and Carbonell (2006) describe personalization as “the dynamic adaptation of the
interface to the profile”. In general, we can say that personalization deals with the capacity of
adaptation of a user interface (UI) considering some information related to this user. The
personalization can take into account several aspects (e.g., navigation, structure,
functionalities) and it can be performed basically on the interface containers presentation; i.e.,
layout, colors, sizes, and other design elements, and content; i.e., data, information, document
(Anli, 2006 and Brossard et al., 2007). Figure 1 illustrates examples of content and
containers’ personalization of a system for travel planning. For instance, the adaptation of the
size of interface elements such as fonts and widgets represents a personalization of the
container presentation based on the specific platform/device (in this case, IPhone) used by the
user. Information about the departure city and departure date (Figure 1(a)) are examples of
personalization of content. Departure city is automatically filled based on the location where
the user is at the time of using the system. Departure date is the current day. Another example
of personalization of content is presented in Figure 1(b). In this example the user is unable to
walk; thus, the system will propose to him only direct itineraries with a reduced price
(according to his/her age).

.

(a) (b)

Figure 1. Examples of user interface personalization in a transport system

Different approaches have been proposed to support personalization. Many of them are
based on algorithms that recognize user behavior patterns when interacting with computing
systems to predict user next move (Hirsh et al., 2000). Using the past and recent information
about the user’s interaction, different techniques of filtering and recommendation have been
explored - see for example (Brusilovsky et al. 2007) for different studies on web
personalization. Other studies focused on the definition of user profile models to perform
personalization (Brusilovsky et al. 2007). Moreover, some authors (e.g. Calvary et al., 2003;
Vanderdonckt, 2005, Hachani et al., 2009 and Ayed et al., 2007) proposed to use context

IADIS International Journal on Computer Science and Information Systems

72

models to allow the user interface adaptation or container’s personalization.
According to (Dey, 2001) when a system uses context to provide relevant information

and/or services to the user, it is considered context-aware. This is a generalization of the first
definition for context-aware computing which considered that context-aware software (Schilit
et al. , 1994) “adapts according to the location of use, the collection of nearby people, hosts,
and accessible devices, as well as to changes to such things over time”, that is, context-ware
applications adapts themselves according to the context. In this sense and based on the
previous definitions of personalization, we can say that if we do personalization by using the
context, we are building context-aware software system.

Context is being also largely defined. Schilit et al. (1994) introduced that the important
aspects of context are: where you are, who you are with, and what resources are nearby. From
this definition, several authors explored different context elements, such as location,
environment, states of interest, time, activity, and so on. After analyzing several definitions of
context, Abowd et al. (1999) defined context as any information that can be used to
characterize the situation of an entity (person, place, or object) considered relevant to an
interaction between a user and a system. Finally, in the user interface design research (our
particular interest in this paper), Calvary et al. (2003) defined that context is composed of
three classes of entities: the user of the system, the platform (hardware and software) that is
used for interacting with the system and the physical environment where the interaction takes
place.

The context can be modeled in different ways (Strang and Linnhoff-Popien, 2004): using a
simple list of attributes with values (named Key-Value model); based on XML composed of
tags; using entity-relationship models; using UML or ECORE diagrams; using fact and rules
(i.e., logic based models) or ontologies.

We found 18 proposals of context modeling in literature. We classified them in three
groups considering the context dimension defined by Calvary et al. (2003). The first group
refers to the proposals that consider only one of the context dimensions, that are: context
models that focus on user dimension, like profile, interests, and so on (UMO, 2003; Rousseau
et al., 2004 and Kostadinov, 2008), that detail the platforms (FIPA, 2001) and its relation with
the environment (W3C, 2009); or that focus on the environment, in particular considering
information about the location (Becker and Dürr, 2005) and the time (Hobbs and Pan, 2006).

In the second group, we included the proposals that consider all the dimensions but are
specific to a particular domain or technology which implies that they are detailed to answer
their specificity. In this group, we quote: purposes for ubiquitous computing (Chen et al, 2004;
Lin et al. 2005), for smart homes (Kim and Choi, 2006), for mobile applications (Weißenberg,
2004; Schmidt et al., 1999 and Korpipää et al., 2003) and for e-commerce applications
(Taconet and Aoul, 2008).

Finally, in the third group we included the proposals that are domain-independent and that
contain the three context dimensions (user, environment and platform), however, not well-
detailed. Preuveneers et al. (2004), for example, includes the definition of user profile in user
dimension, but do not identify what to consider in this profile. Wang et al (2004) and
Arabshianand and Schulzrinne (2006) proposed upper-level ontologies with very general
concepts (such as computing device and location/physical environment) that should be
mapped to a specific domain of interest. Finally, UsiXML project (Vanderdonckt, 2005;
Limbourg et al. 2005 and UsiXML, 2007) explored more the platform dimension than the
other dimensions, since its main goal is to support the adaptation UI. The environment model
takes into account only three aspects (light, noise and stress). The user model, initially limited

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

73

to a few attributes that describe the experience of the user with the platform, was recently
modified to consider features that affect a UI (Tesoriero and Vanderdonckt, 2010). This is done
in two levels of abstraction: a feature level where the designer define the user features that is
relevant to the application domain; and, a profile level that characterize the features according
to runtime situations. Although this meta-definition provides flexibility in defining the user
dimension, it requires an extra-effort of the designer to define all the features for each new
application domain.

3. OUR CONTEXT MODELING AND ONTOLOGY MAPPING

As mentioned previously, our goal is to use context modeling from the beginning of user
interface design to personalize its containers and content being, therefore, context-awareness.
To allow better productivity and semi-automatic generation of user interfaces from its design,
it is essential to use a generic context model that can be used in the design of any interface
independently of the domain, software, and hardware platforms. However, this context model
should be detailed enough to make content personalization feasible, where we should take into
account the information of a specific domain. The main difficulty in defining such context
model is to find a compromise between generality and specificity so that the proposed model
is reusable in different user interface designs, on one hand, and could be adapted for different
application domains, on the other hand.

The first idea was to reuse an existing context model. However, as presented in the
previous section, we concluded that the proposed context models were either very generic that
would make difficult the content personalization, or too specific for a particular domain or for
a single context dimension that could not be re-used in different applications. We decide,
therefore, to consider the literature but to define our own context model. To represent the
context model, we decided to use the ECORE diagrams that can be easily represented and
integrated in a MDA approach for user interface generation (see Section 4).

Next sections present how we define this context model (Section 3.1) and how we use this
model for content personalization (Section 3.2).

3.1 Context Modeling

To address context modeling, we analyzed all the concepts and proprieties of the 18 proposals
of context modeling presented in section 2. Then, we classified them in categories of concepts
according to their meaning (e.g., user name, address, phone were classified as user
identification). Finally, we organize categories around the three main context dimensions
proposed for UI design (presented in Section 2): user, platform and environment.

Tables 1, 2 and 3 show a summary of all concepts, their category, and their references for
the environment, user, and platform dimensions, respectively. These concepts were organized
either as classes or attributes of classes using ECORE diagram. Next sub-sections present the
detailed model for user (Section 3.1.1), platform (Section 3.1.2), and environment (Section
3.1.3).

IADIS International Journal on Computer Science and Information Systems

74

3.1.1 User Modeling

The user profile is composed of five major categories that describe the user during its
interaction with the platform (Figure 2): demographic information, contact information, user
preferences, user state, and user abilities and proficiencies.

In the literature, some authors (Kostadinov, 2008; Jrad et al., 2007 and UMO, 2003)
separate "contact information" and "User Demographic data» and others (Rousseau et al.,
2004; Lin et al., 2005 and Preuveneers et al., 2004) mix them. For clarity, we followed the first
team, as follows:
• Contact information – contains personnel data (address, tel. number…) that can be

changed;
• Demographic information - contains basic data of the user that usually do not change,

such as date and place of birth or gender.

The Preference class represents the user's preferences and interests taken from different
dimensions. Some approaches use only the term "preference" (Kostadinov, 2008; Preuveneers
et al., 2004 and UMO, 2003), while others (Rousseau et al., 2004) use the term "interest".
Although there is the possibility of using complex types to express preferences (preference
compound, binary together ...) such as those proposed by Kostadinov (2008), we have chosen
only unitary and simple preferences, composed of a single attribute with a Boolean type in
order to indicate if the user likes or not the specific preference. The User State class presents
the state of the user when interacting with the system. From the literature, this state may be
emotional, physiological (Shmidt et al., 1999 and UMO, 2003) or may be an activity practiced
by the user (Kim and Choi, 2006 and Korpipää et al., 2003). We did not include the emotional
state in our model, since it is rarely used when describing the user. Finally, Ability and
Proficiency class represents the user knowledge, skills (e.g., computing, well-writing) and
abilities (e.g., walk, hear). This class is an adaptation of that proposed in (UMO, 2003).

Table 1. Concepts of environment dimension

Category - Concepts Reference

L
o

ca
tio

n

Location (IndoorSpace – OutdoorSpace) (Wang et al, 2004)
Geometric (GPS), Symbolic (Becker and Dürr, 2005)

Building { Indoors, Outdoors }, GPS Location (Korpipää et al., 2003)
Country, City, zip code, longitude, latitude, coordinates (Arabshianand, 2006)
Geographical place (street, city, province, country) (Kim and Choi, 2006)
Geocordinates, UTMCoordinates, WGS84Coordinates,
Geographical Coordinate Reference System

(W3C, 2009)

Relative, absolute (Preuveneers et al., 2004)
location (absolute position, relative position, co-location) (Schmidt et al., 1999)

T
im

e

Time (Arabshianand, 2006),
(Korpipää et al., 2003)

TemporalEntity, Interval, Instant, DurationDescription,
TemporalUnit

(Hobbs and Pan, 2006)

E
xt

er
n

al

ev
en

ts
 Sound: Intensity { Silent, Moderate, Loud } (Korpipää et al., 2003)

Light: Intensity { Dark, Normal, Bright }
Light: Type { Artificial, Natural }
Light: Source Frequency { 50Hz, 60Hz, Not Available }
Temperature { Cold, Normal, Hot }

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

75

Humidity { Dry, Normal, Humid }
Sound: Type { Car, Elevator, Rock Music, Classical Music,
Tap Water, Speech, Other Sound }
Temperature Value (Taconet and Aoul, 2008),

(Kim and Choi, 2006),
(Preuveneers et al., 2004)

Lighting (Lin et al., 2005),
(Preuveneers et al., 2004) Noise

IsNoisy – IsStressing – LightingLevel (UsiXML, 2007)
Humidity – Pressure - Environmental condition (Preuveneers et al., 2004)
physical conditions (noise, light, pressure, temperature
,acceleration)

(Schmidt et al., 1999)

Table 2. Concepts of User Profile Dimension

Category - Concepts Reference

U
se

r
id

e
nt

ifi
ca

tio
n Family name, address, e-mail, phone/ fax number (Kostadinov, 2008)

Name (Kostadinov, 2008),
(Weißenberg, 2004)

Contact Information/detail (city, country, email, family
name, fax/ phone number, full name, postal code, street)

(UMO, 2003) ,
(Rousseau et al., 2004)

U
se

r
de

m
og

ra
ph

ic
d

at
a

Date of birth, occupation, children, revenue, marital status (Kostadinov, 2008)
Demographics (age, age group, birthday, birthplace, salary,
employment, family status, first language, gender, wealth)

(UMO, 2003)

Gender (Lin et al., 2005),
(Kostadinov, 2008)

Affiliation (Rousseau et al., 2004)

In
te

re
st

s/
 p

re
fe

re
n

ce
s

Preference (interface preference, privacy preference) (UMO, 2003)

Movie preference, music preference, news preference (Kim and Choi, 2006)
Preference profile (Preuveneers et al., 2004)

Simple preference, complex preference (Weißenberg, 2004),
(Kostadinov, 2008)

Interest (UMO, 2003),
(Rousseau et al., 2004)

Interests (Olympic, shopping, sightseeing, entertainment) (Weißenberg, 2004)

S
ki

lls

First Language, Second Language, Knowledge, Computer
skills, Reading skills, writing skills, typing skills

(UMO, 2003)

Career (Lin et al., 2005)
language read – language spoken – language written (Weißenberg, 2004)
Competency (Skills, knowledge), Qualifications (Rousseau et al., 2004)
Habits (Schmidt et al., 1999)

Le
ve

l
of

 e
du

-
ca

tio
n

 Author, developer, learner, reader, teacher, user, ... (UMO, 2003)
Profession (Kostadinov, 2008)

A
b

ili
ty

 /
D

is
a

bi
lit

y

Abilities, disabilities (Rousseau et al., 2004)
Ability and Proficiency (ability to talk, to drive, to hear, to
see …)

(UMO, 2003)

U
se

r
S

ta
te

Physiological State (blood pressure, injury, respiration,
temperature , ...)

(UMO, 2003),

IADIS International Journal on Computer Science and Information Systems

76

Motion (lying, going up stairs, sitting, standing, walking)

Emotional state(anger, anxiety, disgust, happiness, sadness)
Mental State (depression – irritation – nervousness –
psychopathy – trauma)
Emotional state - biophysiological conditions (Schmidt, et al., 1999)

Activity (Sleeping, Watching TV, Cleaning, Getting Up) (Kim and Choi, 2006),
(Preuveneers et al., 2004),
(Weißenberg, 2004),
(Rousseau et al., 2004),
(Korpipää et al., 2003)
(Wang et al, 2004)

Mood (Preuveneers et al., 2004)

Table 3. Concepts of platform dimension

Category - Concepts Reference

S
o

ft
w

ar
e

Operating system (Win Mobil, Symbian, Android) (Taconet and Aoul, 2008)
API, RuntimeEvironment (W3C, 2009)
OS (name-vendor-version) (FIPA, 2001),

(Preuveneers et al., 2004)
(UsiXML, 2007)

Software (name, edition, version), virtual machine,
middleware, rendering engine, operating system

(Preuveneers et al., 2004)

H
ar

d
w

ar
e

Memory, CPU (Taconet and Aoul, 2008),
(FIPA , 2001),
(Preuveneers et al., 2004)
(W3C, 2009)

Connection (Taconet and Aoul, 2008),
(FIPA, 2001)

Display (resolution) (Taconet and Aoul, 2008)
Keyboard type (Numeric, qwerty , Touch screen)
Network Interface (3G, WIFI, Bluetooth)

UI-screen (width-height-unit-resolution-color) (FIPA, 2001)

Connection (information-QOS information)
Network (Lin et al., 2005),

(Preuveneers et al., 2004)
(Wang et al, 2004)

Resource (Power – memory – CPU – storage – network) (Preuveneers et al., 2004)
File format (Kostadinov, 2008)
NetworkEntity (NetworkMode – NetworkSupport –
NetworkTechnology)

(W3C, 2009)

 Screen Width – Screen Hight – Screen Size Char - Max
Screen Char - Is image capable - Pointing device – Has
Touch Screen - Storage Capacity

(UsiXML, 2007)

 Surrounding resources for computation (Schmidt et al., 1999)

3.1.2 Platform Modeling

This model (Figure 3) is necessary since it describes the platform that the user will interact
with – this is the reason we should use a generic way to characterize the platform. According

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

77

to the literature (Preuveneers et al., 2004; Kostadinov, 2008; FIPA, 2001; W3C, 2009 and
UsiXML, 2007), the classical classification to describe a platform is to differentiate between
hardware and software. In addition, each platform has a well-defined type (e.g., Laptop - PC -
PDA) (Taconet and Aoul, 2008; Kim and Choi, 2006 and FIPA, 2001) and must have a unique
identifier (e.g., the serial number).

The hardware part describes all platforms’ physical aspect and it is composed of four
subparts as defined by Taconet and Aoul (2008), FIPA (2001) and Preuveneers et al. (2004):
• Memory - to specify the RAM size of the platform.
• CPU - to represent the processor embedded in the platform and its speed. This

information may be useful to know whether the target platform can execute or not the user
interface.

Figure 2. The user profile model

• Network - in order to provide general information about the characteristics of the network
installed on the platform. We can exploit this information to determine if the platform has
the ability to be mobile or not (in the case of Wi-Fi applications).

• User interface - to indicate the height and width of the user interface as well as its image
resolution. The attribute "Color" is used to indicate whether this is a color interface or not.
This type of feature is important to involve because the adaptation of the size of
interaction interface’s elements takes place according to him.

IADIS International Journal on Computer Science and Information Systems

78

The Software part defines the software side of the platform and is composed of four
subparts as defined by Preuveneers et al. (2004):
• Virtual machine - to describe the set of execution environments whose platform is

equipped with. We can exploit this information in case of having a portable code (e.g.
Java) where it is important to know if the platform contains the suitable VM to execute
the (e.g., Java VM).

• Application system - to specify the set of applications installed on the platform.
• Operating System (OS) - to introduce the operating system that the platform works with.

Such information is essential in order to check compatibility with the application since
some libraries of the operating system could be necessary for the execution of certain
programs.

• Rendering engine - to describe the engine that can interpret some source code to generate
the final suitable interfaces. For our proposed model such information is considered
among the most important ones as we are working within a MDE context, where the
target platform has to interpret the source code generated automatically.

Figure 3. The platform model

3.1.3 Environment Modeling

This model (Figure 4) describes all information about the environment where the interaction
takes place between the user and the platform. Most of the information related to this model
are dynamic and can impact the content to be presented.

While analyzing the state of the art of this dimension (Korpipää et al., 2003; Kostadinov,
2008; Arabshianand and Schulzrinne, 2006 and Preuveneers et al., 2004), we noted that it is
composed of two main classes. The first one, named Location, refers to the place where the
user is located at the time of interaction with the platform. This place can be described in a
deterministic manner through the use of geometric data (such as GPS coordinates, city, street,

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

79

etc.) or through symbolic data relative to another geometric location (opposite, next to , …) as
proposed in Becker and Dürr (2005). Li et al. (2007) , affirms that among challenges that faces
a location-aware application designer, is that users environment changes dynamically and it is
not static. This idea was also proposed by Gu et al. (2005) indicating that to develop location-
aware applications, designers have not only to model physical aspects (Persons and objects)
but they have also to use this information in the definition of proactive services a to make
adaptation more suitable and more intelligent.

The second one considers the time, which indicates the moment of interaction with the
platform (Arabshianand, 2006; Korpipää et al., 2003 and Hobbs and Pan, 2006). By analogy
with the location dimension, time could be described by the exact time (year, month, day, ...)
or by a symbolic time; that is, a description such as summer, school holidays, etc.

Besides Location and Time, some authors (Korpipää et al., 2003; Lin et al., 2005;
Preuveneers et al., 2004; Kim and Choi, 2006 and Schmidt et al., 1999) include additional
information to describe the environmental dimension (such as weather, sound, etc.). This
additional information related to the environment was integrated into our model as a class
named Environmental Condition.

Figure 4. The environment model

3.2 Mapping Context Model with Application Domain

Once a context model is specified, the next question to address is how it could be used in a
specific application domain, since personalization should be done in specific application
domains. For example, with respect to Figure 1, how can we set that “city” is the city where
the user is at the time of using the system or that, for the proposed itineraries, we should
consider the age and the ability of the user? To address this problem we propose to map the
context related concepts to the specific concepts of the application domain.

To establish the mappings we assume that the vocabulary of an application domain is
defined in a domain ontology. Domain ontologies (Guarino, 1998) express conceptualizations
(i.e., description of entities and their properties, relationships, and constraints) that are specific
to a domain (e.g., medicine or transportation) to be used in several applications from this
domain.

IADIS International Journal on Computer Science and Information Systems

80

Considering the elements of a domain ontology (i.e., concepts, properties, relationships,
and axioms) and those of a context model (i.e., concepts, attributes and relationships), we
propose a meta-model (see Figure 5) that sets a mapping between any element from a context
model and any element from a domain ontology, except for the constraints. The constraints
express rules to infer new instances from concepts or new concept classifications, i.e., the
concepts/attributes, which are used in the mappings. Such meta-model exploits three types of
mappings:
• Direct mapping, when some information of the domain is directly associated with the

information modeled in the context in that they have the same meaning. For example, any
information to identify the user in the domain ontology is directly associated with the
name of the user in the context. The departure city name in Figure 1(a) is another example
of direct mapping. To define a direct mapping the designer just look in the domain
ontology if there is any information that is the same of some information defined in the
context model;

• Indicative mapping - when some information of the context indicates the presence or
absence of some information in the domain. For example, the information about a user
interest such as s-he practices cycling as sport can indicate the kind of book s-he can be
interested in a domain of bookstores. The preferred transportation mode in Figure 1(a) is
also an example of indicative mapping. To define an indicative mapping the designer
should verify for each context element defined as a Boolean attribute if there is some
concept in the domain that represents that context element;

• Indirect mapping - when some information of the domain ontology is influenced by some
information in the context model. For example, the price of travelling for seniors or
students is indirectly associated with demographic information about age that will
influence the search for prices. The proposed itineraries in Figure 1(b) are another
example of indirect mapping where the itineraries are indirectly associated with the age
and abilities of the user. To define an indirect mapping the designer should verify if there
is any information in the domain ontology that could vary depending on some personnel
information modeled in the context.

Note that in Figure 5 any element of an ontology (concepts or attributes) can be mapped
onto any element of the context of use (concepts or attributes). For each mapping, the type
(direct, indicative or indirect) should be set. Note also that we can have domain concepts
without any mapping, or with more than one mapping.

Figure 5. Meta-model for mapping context and ontology elements

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

81

4. USING CONTEXT MODELING AND ONTOLOGY IN A MDA
APPROACH

In the last decade, Model-Driven Architecture (MDA) has gained attention from the human-
computer interface community, because of its capability of code generation from abstract
models and transformations. Successful MDA-compliant tools (e.g., OlivaNova, Teresa,
UsiXML toolkit) automatically generate user interfaces personalized for specific platforms,
considering design elements such as fields, screen resolution, screen size, and so on. Due to
those reasons (capability of working with models from the beginning of UI conception till the
code generation and the successful use of this technology for UI purposes), we decide to
explore MDA to address our goal of including some content personalization from the
beginning of the UI design (Bacha et al., 2011). Recall that MDA is an approach for specifying
a system independently of the platform that supports it; and for transforming the specification
into a software system, for a particular platform. To do so, three viewpoints of a system are
specified by different models: computation independent model (CIM), that focuses on the
requirements for the system; platform independent model (PIM) that specifies a degree of
platform independence suitable to be used with different specific platforms; and, platform
specific model (PSM) that combines the specifications in the PIM with details that specify
how that system uses a particular type of platform. Transformations are used to convert a
model to another model of the same system (from CIM to PIM, and from PIM to PSM).

In this section we present the models of our MDA approach (section 4.1), the models
transformations (section 4.2) and an illustrative example.

4.1 Approach Models

In our approach (Figure 6), the Context model, the Domain ontology and its mapping are the
core for the generation of a personalized UI considering its containers and content. Once the
user connects to a system application (runtime), a specific module of the system receives
his/her identification and generates his/her personalized information as an instance of our
Context Model. Since the context model and the mapping with the domain are used during
design, the final interface will use the instance to provide the interface with personalized
contents in its input/output fields.

IADIS International Journal on Computer Science and Information Systems

82

Figure 6. Our MDA approach for user interface personalization

During design time, the first main model in the MDA structure is the Business Process
Model (BPM) that allows the definition of tasks to support the business goal (interactive tasks,
non-interactive tasks and manual tasks) and the information flow between tasks since we are
interested in content personalization. We chose to use BPMN notation (Business Process
Model Notation) because of its capability to model the passage of information flow and the
dynamic application aspect. The idea of using BPMN at the CIM level is also shared by other
authors (e.g., Touzi et al., 2008; Rodriguez et al., 2007 and Brossard et al. 2007). As we
model the tasks, they should be annotated with:
• the concept of the domain ontology, whenever possible, and its pertinent mapping with

the context model. In this case, we can use a predefined mapping between the domain
ontology and the context model elements, or to define a new mapping for specific
purposes.

• interaction elements, in the case of interactive tasks. Interaction elements are an abstract
view of type of interaction with the user such as: different type of input of information
(informed by the user – named UIFieldManual, selected from a defined set of information
– named UIFieldOneChoice, etc.), output information (named UIFieldOutput) or the
idea of a group of information (named UIUnit).

At the PIM and PSM level, there are respectively two models: the Platform Independent
Interaction Model (PIIM) and Platform Specific Interaction Model (PSIM). Those models are
specified in UIML (User Interface Markup Language) (Helms et al., 2009). We chose UIML
as a language for PIM and PSM levels representation because it provides the tools
development for the creation of platform independent interfaces. Indeed, the conversion from
UIML to code in different platforms is already provided (for example, the LiquidApps toolkit
implements the conversion from UIML to Java, HTML, WML, VoiceXML).

An UIML model is composed of two main components: interface and peers . The
interface component represent the description of the interface threw four parts:
structure , that represents the organization and hierarchies of all UI parts; content that

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

83

describes the set of the application information that will be displayed (e.g. in different
languages), behavior that represent the behavior of the application at the user interaction
time, and style that defines all properties specific for each UI element. The Peers
component links the generic UI elements and their properties, to a specific platform using the
presentation part. Indeed, it describes the calling conventions for methods that are
invoked by the UIML code in the Logic part. The Logic part links methods that are used in
UIML with other ones used in a platform-specific source code.

The PIIM is composed of the structure , behavior , content and style parts. To
manipulate the content, UIML offers two choices: either to integrate it within the style part,
or to separate it under the content part. The second alternative is useful only if designers
have several contents for an interaction element and only if the contents are already known.
For that reason, we decide to adopt the first choice by integrating the content part within
the style one. In the PIIM, the style part contains only properties related to content.

The PSIM is composed of the style , presentation and logic parts. The style
part here contains the layout information using the appropriate style properties based on the
chosen platform. The presentation part serves to map generic UIML classes with
platform-specific ones and the logic part contains mappings between the methods used in
the behavior part and those that will be used on the platform-specific source code.

4.2 Models Transformation

Transformations were written using ATL (ATLAS Transformation Language). During the first
transformation (from BPM to PIIM), in addition to the BPM we use the mapping metamodel,
the context model and the domain ontology as input. The following parts are generated in the
PIIM : the structure , the behavior , and properties related to content manipulated by the
style part.

To generate the structure part we defined the UIML code that should be set for each
BPMN element used in the BPM and the specific interaction element. In general, for each
interaction element, a UIML <class> is created under the <part> clause. For example, for
each “Pool” element in the Business Process Model, a <part> element is created with the
<class> attribute G:TopContainer . Then, we analyze all elements that compose this
“Pool”. For each element, a <part> is created with the correspondent class attribute, and
with the same “id” from the BPM element.

The behavior part is created for each BPM tasks that are annotated with the associated
domain ontology concepts and the corresponding mapping type with the context. To set the
behavior, we used the UIML rule statements which are composed of a set of condition s
and associated actions . The condition is used to keep the dynamics of the application
modeled in the BPM when transforming to UIML. This is done by the use of activation
variables that controls when the task (or other elements) will be performed and after that
which next elements should be activated to be, then, executed. An action (i.e., when-true
statement) is defined for each kind of mapping as follows:
• for direct mappings the value of the context concept mapped to the used domain concept

is set to the input/output field depending on the kind of interaction element. For instance,
for the information informed by the user (i.e. UIFieldInManual) and that the mapping

IADIS International Journal on Computer Science and Information Systems

84

type is “Direct”, the when-true part sets that the “g:text ” property will be filled-in
automatically by the value taken from the context by calling the
GetValueFromContext method.

• for the indicative mapping, the value of the context element (true/false) is verified to
decide the value (selected/not selected) of the interaction element. This is done by
including a condition statement in the UIML rule that verifies the value of the
context element mapped to the ontology element. The generated when-true statement,
set the g:selected property of the created UIML to true.

• for indirect mappings, a <call > UIML statement is generated in PIIM under the
when-true statement. The <call > statement represents a call to an external method
or function (that uses a language other than UIML). It defines which information should
be returned based on parameters (elements indirectly associated to the domain concept). It
is done by a definition of a Get _element method where the first parameter is the
information to be searched and the other parameters are the criteria that should be taken
into account.

In the behavior part, the generated UIML code manipulates style properties that are
related to content (such as g:text , g:selected).

From PIIM to PSIM we do a transition and not a transformation. We named transition
because we do not generate code from the information of PIIM but rather we integrate
remaining UIML parts related to the target platform. The transition from PIIM to PSIM
considers characteristics of specific platforms (e.g. desktop, IPhone, etc.) by integrating
specific remaining style part layout properties for each UI element. Moreover, for each
call generated for the indirect mappings at the PIIM, a logic statement will be added with
the information about the implemented code for this method. This code is implemented by the
software designer to search the required information based on the defined parameters.

Figure 5 shows an example of ATL rule for a task to which is associated a Direct mapping
(as verified in line 19-20). We note that ATL code lines (from 23 to 26) generate condition
statement and (from 27 to 38) generate action statement.

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

85

Figure 7. ATL transformation rule – example of behavior part generation (Direct mapping)

4.3 An Example of user Interface Design

Let us suppose that the interface showed in Figure 1(a) (Section 2) is part of a system for
planning a trip. Figure 8 shows the BPM related to this interface. We note that for each BPM
element, we define: an id, its type (user task, when it means interaction with the user; or sub-
process, when it means it will be decomposed in other elements). We have also to define the
related interaction element associated to it, the domain ontology concept associated and the
kind of mapping, if applicable. The idea is that the departure city and preferences of transport
mode should be already filled in by the system. Although, the user can change this
information, the system should provide the form with personalized content collected based on
the user context.

Using a public transportation ontology previously defined in (Houda et al., 2010) we
mapped the information of the Context Model and the concepts of the ontology. This ontology
has the knowledge about public transportation, including itineraries, stop points, cities,
transport modes used, geographic elements surrounding the stop points (libraries, bank, etc).
Table 4 shows some mappings defined. For indirect mappings, we set that
DirectJourneyPattern (a kind of itinerary where the user do not need to do any connection
change) is indirectly associated with the attributes Age and To walk from Demographic
Information and Ability classes respectively.

1. module TransformationCode;
2. create OUT : uiml from IN : bpmn, IN1 : mapping, IN2 : StaticUI;
3. --- The Input and output metamodels
4. rule UIMLRulefromTask {
5. from
6. bpd :bpmn!BusinessProcessDiagram
7. using{
8. --- Variables declaration …
9. }
10. do {
11. …
12. for (task in pool . ContainedElements)
13. {
14. if (task . ContainedElementType = #UserTask
15. and task . Related_Static_Element . oclIsTypeOf (StaticUI!UIFieldInManual))
16. {
17. for (mapp in mapping!Mapping . allInstancesFrom ('IN1'))
18. {
19. if (task . RelatedOntologyElement . OntologyElementName = mapp . Source . Ontology_Element_Name
20. and mapp. MappingType = #Direct and task . RelatedOntologyElement . MappingType = #Direct)
21. --- Filling the behavior part if conditions are Tru e
22. rulle <- thisModule . createBehaviorRule ('OnlyActivatedrule' + task . Id . toString () , behavior) ;
23. condition <- thisModule . createRuleCondition (rulle) ;
24. op <- thisModule . createConditionOperation ('Equal' , condition) ;
25. variable <- thisModule . createOperationVariable (task . Id . toString () + 'isactivated' ,op) ;
26. thisModule . createOperationConstant ('true' ,op) ;
27. action <- thisModule . createRuleAction (rulle) ;
28. whentrue <- thisModule . createWhenTrueAction (action) ;
29. --- If the conditions of the “condition” part is tr ue, generating the “when-true” part then
30. --- g:text property will be filled-in automaticall y by the value taken from the context
31. --- threw the “GetValueFromContext” method
32. property <- thisModule . createWhenTruePropertyCall (task . Id . toString () , 'g:text' ,whentrue) ;
33. call <- thisModule . createPropertyCall (task . Id + 'Context' , task . Id + 'GetValueFromContext' ,
34. property) ;
35. --- The parameter of the “GetValueFromContext” met hod will be the name of the
36. --- ontology element related to the task
37. thisModule . createCallParam (mapp. Target . Context_Element_Name, call) ;
38. thisModule . createWhenTrueProperty (task . Id . toString () , 'g:visible' , 'true' ,whentrue) ;
39. } } }
40. …

IADIS International Journal on Computer Science and Information Systems

86

Figure 8. Business Process Model example

Table 4. Example of Domain ontology and Context of Use mapping

Domain
ontology concept

Mapping
type

Context element

City Direct City (from Geometric)
Transportation Mode Indicative TGV and TER (from Train)
Direct Journey Pattern Indirect To walk (from Ability)
Price Indirect Age (from Demographic Information)

In Figure 8, we identify the following input fields: departure date, departure city,

destination city and the means of transportation (TGV - high-speed train or TER - Regional
Express Train). We note that the task 25 named Departure City is associated to the ontology
element City with a direct mapping (Figure 8(a)). The mapping was already set as it is
presented in Table 4. That means that the value of the input field of the city shall be filled
automatically by the value of the context element mapped directly to the concept of ontology
City. In the same way, the modes of transportation were set as indicative mapping with the
correspondent ontology concept (Figure 8(b) and (c)). It means that the selection or not of this
element depends on the value of the context element mapped to the concept of ontology. In
this example, we have associated to the task (0029) the TGV ontology concept to show that the
choice of option depends on the user preferences (prefers or not travelling by TGV). Finally,
the task named Results Displaying serves as an output of information. We associated with this
task an indirect mapping where the searched concept is Journey Pattern (a concept ontology
that represents the path of the train). Since it is an indirect mapping the criteria to define the
searched concept was established with two concepts: Direct Journey Pattern and Price (Figure
8 (d)). Since the concept Direct Journey Pattern is associated with the context attribute

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

87

ToWalk (see Table 4), if the value of the attribute ToWalk = true , then the system must
search paths of all types, else (if the user cannot walk) the criteria ToWalk the will be taken
into account during the research process and the system should provide only direct journey
patterns.

Figure 9 presents a part of the transformation result from BPM to PIIM. We note the
structure and behavior PIIM parts that were generated with the transformation rule
defined in ATL and presented in Figure 7. As a direct mapping, the property g:text of the
element 25, is filled in with the value of the City attribute deduced from the context model
through the 0025GetValueFromContext method. After that the element 25 should
transfer the activation to the next element.

Figure 9. Example of PIIM generated by transformation from BPM to PIIM

Figure 9 presents also the PIIM generated for the indirect mapping. Since this element will
serve to display information, in the generated when-true part, the method
0032Get-Element is called threw the call statement, and it has as parameters, firstly the
searched element (Journey Pattern) followed by the parameters that the system should
consider during searching process (Direct Journey Pattern and Price).

Figure 10 shows part of the result of the transformation from PIIM to PSM supposing that
the target platform will have Java as a programming language. The generated PIIM

<UIML:Structure>
 ..
 <part class="G:TopContainer" id="0033">
 ...
 <part class="G:TextField" id="0025"/>
 ...
 <part class="G:CheckBoxButton" id="0031"/>
 ...
 </part>
 ...
</UIML:Structure>
...
<UIML:Behavior id="Main Behavior">
 <rule id="Rule0050">
 <condition>
 <op name="Equal">
 <variable name="0025isactivated"/>
 <constant value="true"/>
 </op>
 </condition>
 <action>
 <whenTrue>
 <property name="g:text" partName="0025">
 <call componentId="0025Context" methodId= "0025GetValueFromContext">
 <param name="City"/>
 </call>
 </property>
 <property name="g:visible" partName="0025">
 <constant value="true"/>
 </property>
 <variable name="0004isactivated" value="tru e"/>
 </whenTrue>
 </action>
 </rule>
 <rule id="Rule0032">
 <condition>
 <op name="Equal">
 <variable name="0032isactivated"/>
 <constant value="true"/>
 </op>
 </condition>
 <action>
 <whenTrue>
 <property name="g:text" partName="0032">
 <call componentId="0032Context" methodId= "0032Get-Element">
 <param name="Journey Pattern"/>
 <param name="Direct Journey Pattern"/>
 <param name="Price"/>
 </call>
 </property>
 ...
 /whenTrue>
 </action>
 </rule>
</UIML:Behavior>

Generated
Structure part

PIIM

Generated
Behavior

Rule part for the
element 25

(Direct mapping)
PIIM

Generated
Behavior

Rule part for the
element 32

(Indirect mapping)
PIIM

IADIS International Journal on Computer Science and Information Systems

88

structure class named G:TextField will be mapped to the JTextField Swing
library class. The generated method named 0025GetValueFromContext is mapped to
the platform-specific method named Lamih.Context.GetValueFromContext that
allows getting information from context. The 0032GetElement method sets the method to
search an element (param1_32) considering two criteria (param2_32 and
param3_32).

Figure 10. Example of code integrated to PSIM

5. RELATED WORK

Personalization or adaptation of user interfaces has been studied by different research groups
in Human-Computer Interaction community. Some of the most known studies are:
i. TERESA (Berti et al., 2004) that is interested in the automatic interfaces generation

problem for multi-devices applications; e.g., PDA, phone, computer. The generation is
done through a set of heuristics that allow decomposing the application into a set of
workspaces. Only the platform is taken into account in the design time. That means, like
our approach, the generation of containers UI is based on the kind of platform.

ii. The CAMELEON framework (Calvary et al., 2003) for the generation of design time and
runtime plastic applications based on a context of use. This framework is composed of
four levels of models and transformations between two of those models, similar to MDA
approaches. As previously defined (section 3.1), we defined the context model with the
same dimensions of the context of use; that is, user, environment, and platform. However,
since CAMELEON is a reference framework, no context model has been developed
leaving to the designer of a specific approach to define it.

iii. UsiXML (Vanderdonckt, 2005 and Limbourg et al., 2005), an environment based on the
CAMELEON framework, generates UI for different multimodal, multilanguage, and
multi-context platforms. Similarly to our approach, UsiXML is MDA-compliant.
However, the environment model take into account only three aspects (light - noise –
stress) and the user model is defined in a meta-level that should be specified for each
application domain.

iv. Bouchelliga et al., (2010), follow a more extended version of CAMELEON, to propose a

...
<UIML:Peers id=”MainPeers”>

 < UIML:Presentation id=”MainPresentationPart”>
 <d-class id="G:TextField" used-in-tag="part" ma ps-type="class" maps-to="javax.swing.JTextField">
 <d-property id="text" maps-type="setMethod" ma ps-to="setText">
 <d-param type="java.lang.String"/>
 </d-property>
 <d-class
 </ UIML:Presentation>

 <UIML:logic id="MainLogicPart">
 <dComponent id="0025Context" mapsTo="Lamih.Cont ext">
 <dMethod id= "0025GetValueFromContext" maps To="Lamih.Context.GetValueFromContext">
 <dParam id= "param0025GetValueFromContext " type="String"/>
 </dMethod>
 </dComponent>
 <dComponent id="0032Context" mapsTo="Lamih.Con text">
 <dMethod id= "0032Get-Element" mapsTo="Lami h.Context.Get-Element">
 <dParam id= "param1_32" type="String"/>
 <dParam id= "param2_32" type="String"/>
 <dParam id= "param3_32" type="String"/>
 </dMethod>
 </dComponent>
 </UIML:logic>
</UIML:Peers>

Integrated
Presentation

part
PSIM

Integrated
Logic

part
PSIM

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

89

MDE approach for generating plastic interfaces for workflow information system. Unlike
our purpose, it considers only the container aspect when adapting interfaces.

v. Sottet et al. (2007) define an approach for adaptive generation of plastic human-computer
interface during runtime. That means, they propose to do containers adaptation at the
moment the user is using the system. This idea of defining the kind of adaptation during
UI design in a way that can be dynamic used during runtime is similar to our approach,
since we consider that we set all mappings and generic transformation to allow the
dynamic content personalization at the moment the user is using the system. However, for
them this dynamic aspect is done for the UI container elements, and for us, for the UI
content elements.

vi. SUPPLE tool (Gajos et al., 2010) aims to generate an interface adapted to user, his
preferences and his abilities by associating the suitable widget with the appropriate user.
Unlike the previous approaches, and similar to ours one, this method consider effectively
the user preferences and abilities during interface adaptation. Nevertheless, it adapts only
the interface presentation and does not consider the environment during the
transformations.

vii. Brossard et al. (2007) propose a methodology for the development of personalized
information system in the transportation domain using a MDA approach. This
methodology suggests the use of fourteen models including domain ontology, user model,
geographical model and a model of external systems. The personalization is defined by
the inclusion of business rules in the task modeling that uses the concepts from the
domain ontology. This work is similar to ours since it considers some kind of content
personalization, however, all models, and in particular, the user, external systems and
geographical models that could be considered as context are not designed, as his goal was
only to define the methodology.
Table 5 summarizes the differences among the approaches presented above.

Table 5. Approaches Comparative table

Characteristic (i) (ii) (iii) (iv) (v) (vi) (vii) Our
approach

Context
model
development

User � � � � �
Environment � � � �
Platform � � � � � �

Adaptation Container � � � � � � �
Content � �

When ? Design time � � � � � � � �
Runtime � � � � �

MDA-compliant � � �

6. SHORTCOMINGS OF THE APPROACH

As presented in the previous section, our approach provides a way for developing a full
personalization (containers and content) since the design of interactive system. As an MDA-
compliant approach, this facility can brings productivity for the system production since we
are integrating personalization concerns during the whole development process, being reusable
for several applications in the same domain. However, several limitations could be identified:

IADIS International Journal on Computer Science and Information Systems

90

• Need of a domain ontology – Usually the MDA approaches for UI design consider a
domain application model that is defined specifically for the software system to be
developed. We chose to use domain ontology because of its nature of defining the domain
independently of the system being developed, and therefore able to be reused for the
development of various applications of the same domain. Nevertheless, we pay the effort
of having an ontology.

• Need of a mapping between ontology and context model – This mapping requires a deep
knowledge of the application domain in order to choose which concept should be mapped
with which context element and how it should be mapped. However, once we have
defined these mappings, this knowledge can be used in several applications. Therefore,
this approach is justified only for domains where we wonder to develop several software
systems (same reason for the choice of ontologies), or that we wonder to code the same
application in several kind of platforms. If we plan to develop a single and specific
software system, it will be easier to do the personalization in a different way.

• Need of addition codification for indirect mappings - For direct and indicative mappings
the transformations already include directly which context information should be
considered. However for indirect mappings, we just prepared the interface methods with
the respective input parameters to be used in the queries that should be written in the
specific source code language.

• UIML dependency – Our approach generates the code in UIML, this code must therefore
to be translated to the specific language using UIML generators. To deal with the dynamic
part of task models (that is the sequence of tasks) and the content personalization we used,
for example, the notion of variables that is provided only in UIML 4.0, which does not
have yet the code generation for any platform and language as we wished, and therefore
limits our approach.

• Difficulty of identification that it paid-off – Since our choices (ontology, mappings and
MDA) looked for being reused in several application developments in the same domain,
the return on investment can take time as any other MDA approach.

7. CONCLUSION

With the large use of software systems to support all daily activities, the individual becomes
increasingly dependent of the use of computerized services. To make these services more
attractive to the users, it is important to provide systems that are personalized for each one of
them. The user should feel like the application was developed for him/her, respecting his/her
personal features and identifying the specific situation s-he is using the system (e.g., at home
or public places, using a tablet PC or a mobile, etc.) to provide personalized information,
which result in a direct gain of time.

We believe that to meet this need, it is crucial to consider the context modeling in the
production of interactive systems. With this on mind, we defined a context model that could be
used during the design of user interfaces to allow personalization of containers and content.
Our goal was to set still in design time which information is important to generate
personalized user interfaces. In this way, we defined a model that considers the user, the
platform s-he will use and the possible environment s-he is while using the software system.
All this information is used to perform a dynamic personalization of the user interface

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

91

contents at the moment of use. To that end the context was modeled in a generic way and
should be associated with specific domain ontologies at the moment of the user interface
design. Finally, these models are used within a MDA approach to generate by transformations
the final user interface.

We are now working on doing mappings with other domain ontologies to confirm the
generality of the context model. We are also developing a tool to support this approach.

REFERENCES

Abowd G., Dey A., Brown P., Davies N., Smith M. and Steggles P., 1999. Towards a better
understanding of context and context-awareness. In : Handheld and ubiquitous computing 99,
LNCS, Vol. 1707, Springer, Berlin, pp. 304-307

Anli A., 2006. Méthodologie de développement des systèmes d’information personnalisés. PhD Thésis.
University of Valenciennes et du Hainaut-Cambrésis, France.

Arabshianand K. and Schulzrinne H., 2006. Distributed context-aware agent architecture for global
service discovery. In: SWUMA 2006, Trentino, Italy.

Ayed D., Delanote D. and Berbers Y., 2007. MDD Approach for the Development of Context-Aware
Applications. In Kokinov et al. (eds.), Modeling and Using Context, CONTEXT'07, Roskilde,
Denmark. Lecture Notes in Computer Science 4635. Springer-Verlag Berlin Heidelberg, pp. 15-28..

Bacha F., Oliveira K. And Abed M., 2011. A Model Driven Architecture Approach for User Interface
Generation Focused on Content Personalization. In Proceedings of the IEEE International
Conference on Research Challenges in Information Science, RCIS 2011, Guadeloupe, France.

Becker C. and Dürr F., 2005. On location models for ubiquitous computing. Personal and Ubiquitous
Computing, Vol. 9, No. 1, pp. 20-31.

Berti S., Mori G., Paternò F., and Santoro C., 2004. TERESA: A Transformation-Based Environment
for Designing Multi-Device Interactive Applications. In Proceedings of CHI 2004, CHI '04 extended
abstracts on Human factors in Computing Systems, ACM Press, Wien, Austria, pp.793-794.

Bouchelliga W., Mahfoudi A., Benammar L., Rebai S., Abed M.,2010. An MDE Approach for User
Interface Adaptation to the Context of Use. Bernhaupt R. et al. (Ed.), Human-Centred Software
Engineering, Third International Conference, HCSE 2010, Reykjavik, Iceland, October 2010,
Proceedings, LNCS 6409, Springer, Reykjavik, Islande, pp. 62-78, octobre.

Bouzghoub M., 2004. Action Spécifique sur la Personnalisation de l'Information – CNRS.

Brossard A., Abed M. and Kolski C, 2007. Modélisation conceptuelle des IHM : Une approche globale
s'appuyant sur les processus métier. Ingénierie des Systèmes d'Information (ISI) - Networking and
Information Systems, Vol 12, pp. 69-108.

Brusilovsky P., Kobsa, A., and Nejdl, W. (Eds.), 2007. The Adaptive Web: Methods and Strategies of
Web Personalization., Vol. 4321, Springer. [online] Available at: <{HYPERLINK
http://www.springer.com/series/558}>.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vanderdonckt, J., 2003. A
Unifying Reference Framework for Multi-Target User Interfaces, Interacting with Computers, Vol.
15, No. 3, pp. 289-308.

Chen H., Perich F., Finin T. and Jochi A., 2004. SOUPA: Standard ontology for ubiquitous and
pervasive applications. IEEE Computer Society, pp. 258-267.

Cinquin L., Lalande P. A and Moreau N. Le projet ECRM : Relation client et Internet. Editions Eyrolle,
Paris, 2002.

Dey A., 2001. Understanding and Using Context. Journal of Personal and Ubiquitous Computing, Vol.
5, pp. 4-7.

IADIS International Journal on Computer Science and Information Systems

92

Dyche J., 2002. The CRM Handbook: A Business Guide to Customer Relationship Management.
Addison-Wesley Educational Publishers, USA.

FIPA, Device Ontology Specification, 2001. [online] Available at:
<http://www.fipa.org/specs/fipa00091/PC00091A.html>.

Gajos K., Weld D. and Wobbrock J., 2010. Automatically generating personalized user interfaces with
Supple. Artificial Intelligence, Vol. 174, Issues 12-13, pp. 910-950.

Garía-Barrios V., Mödritscher F. and Gütl C., 2005. Personalisation versus Adaptation? A User-centred
Model Approach and its Application. In K. Tochtermann, & H. Maurer: Proceedings of the
International Conference on Knowledge Management, Graz, Austria, pp. 120-127.

Gu H., Shi Y., Xu G. and Chen Y., 2005. A Core Model Supporting Location-Aware Computing in mart
Classroom. R.W.H. Lau et al. (Eds.), LNCS 3583, Springer-Verlag Berlin Heidelberg, pp. 1-13.

Guarino N., 1998. Formal Ontology in Information Systems. Proceedings of FOIS’98, Italy.
Hachani S., Chessa S. and Front A., 2009. Une approche générique pour l'adaptation dynamique des

IHM au contexte. Proceedings of the 21st International Conference on Association Francophone
d'Interaction Homme-Machine. Grenoble, France, pp. 89-96.

Hagen P., Manning, H. and Souza, R., 1999. Smart Personalization. Forrester Research, USA.
Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A. and Vanderdonckt, J., 2009.

Human-Centered Engineering with the User Interface Markup Language, in Seffah, A.,
Vanderdonckt, J., Desmarais, M. (eds.), Human-Centered Software Engineering, Chapter 7, HCI
Series, Springer, London, pp. 141-173.

Hirsh H., Basu C. and Davison B., 2000. Learning to Personalize. Communications of the ACM , Vol. 43,
N° 8., pp. 102-108.

Houda, M.., Khemaja M., Oliveira K., Abed M., 2010. A public transportation ontology to support user
travel planning, In: IEEE Proceedings of Research Challenges in Information Science, pp. 127-136.

Hobbs J. and Pan F., 2006. Time Ontology in OWL. Ontology Engineering Patterns Task Force of the
Semantic Web Best Practices and Deployment Working Group, World Wide Web Consortium
(W3C) notes. [online] Available at: <{HYPERLINK http://www.w3.org/TR/owl-time/}>

Jrad Z., Aufaure M. and Hadjouni M., 2007. Contextual User Modelling for Web Personalisation. PAWI
2007 (Personalized Access to Web Information), Workshop of the 8th Conference on Web
Information System Engineering (WISE 2007), Lecture Notes in Computer Science LNCS 4832,
Nancy. pp. 350-361.

Kappel G., Retschitzegger W. And Schwinger W., 2000. Modeling Customizable Web Applications – A
Requirement's Perspective, Proceedings of the International Conference on Digital Libraries, Kyoto,
Japan

Kim E. and Choi J., 2006. An Ontology-Based Context Model in a Smart Home. Computational Science
and Its Applications, pp.11-20.

Korpipää P., Mäntyjärvi J., Kela J., Keränen H., and Malm E., 2003. Managing Context Information in
 Mobile Devices. IEEE Pervasive Computing, Vol. 2, No. 3, pp. 42-51.
Kostadinov D., 2008. Personnalisation de l’information : une approche de gestion de profils et de

reformulation de requêtes. PhD Thesis. University of Versailles Saint-Quentin –en-Yvelines.
Ledoux T., 2001. Etat de l'art sur l'adaptabilité. Research Report RNTL ARCAD, number Livrable D1.1
Li Y., Hong J.I. and Landay J.A.., 2007. Design Challenges and Principles for Wizard of Oz Testing of

Location-Enhanced Applications. IEEE PervasiveComputing, Vol. 6, pp. 70–75.
Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L. and Lopez, V., 2005. UsiXML: a Language

Supporting Multi-Path Development of User Interfaces, Proc. of 9th IFIP Working Conference on
Engineering for Human-Computer Interaction jointly with 11th Int. Workshop on Design,
Specification, and Verification of Interactive Systems EHCI-DSVIS’2004. LNCS, Vol. 3425,
Springer-Verlag, Berlin, pp. 200-220.

USING CONTEXT MODELING AND DOMAIN ONTOLOGY IN THE DESIGN OF
PERSONALIZED USER INTERFACE

93

Lin X., Li S., Xu J. , Shi W., and Gao Q., 2005. An Efficient Context Modeling and Reasoning System in
Pervasive Environment: Using Absolute and Relative Context Filtering Technology. Advances in
Web-Age Information Managemen, Lecture Notes in Computer Science, Vol. 3739, pp. 357-367.

Mobasher B., 2000. Automatic personalization based on Web usage mining. Communications of the
ACM, Vol. 43, pp. 142-151.

OMG, 2003. MDA Guide Version 1.0.1. [online] Available at: <{HYPERLINK http://www.omg.org/cgi-
bin/doc?omg/03-06-01}>.

Preuveneers D., Bergh J., Wagelaar D. , Georges A., Rigole P., Clerckx T. and Berbers Y., 2004.
Towards an Extensible Context Ontology for Ambient Intelligence. Ambient Intelligence, pp. 148-
159.

Rodríguez A., Fernández-Medina E. and Piattini M., 2007. Towards CIM to PIM Transformation: From
Secure Business Processes Defined in BPMN to Use-Cases. In Business Process Management, Vol.
4714, Springer Berlin / Heidelberg pp. 408-415.

Rousseau B., Browne P., Malone P. and Ofughlu M., 2004. User Profiling for Content Personalisation in
Information Retrieval. In ACM Symposium on Applied Computing, Nicosia, Chypre.

Schilit B., Adams N., and Want R., 1994. Context-aware computing applications. In Proceedings of the
International Workshop on Mobile Computing Systems and Applications, IEEE Computer Society,
pp. 85-90.

Schmidt A., Beigl M. and Gellersen H., 1999. There is more to Context than Location. Computers &
Graphics Journal, Elsevier, Vol 23, No.6, pp. 893-902.

Simonin J. and Carbonell N., 2006. Interfaces adaptatives : adaptation dynamique à l’utilisateur
courant. In Saleh, I. and Regottaz, D., Interfaces numériques, Paris : Hermes Lavoisier (coll.
Information, hypermédias et communication).

Sottet J.S., Ganneau V., Calvary G., Coutaz J., Demeure A., Favre J.M. and Demumieux R. , 2007.
Model-Driven Adaptation for Plastic User Interfaces. Human-Computer Interaction – INTERACT
2007 In Human-Computer Interaction – , Vol. 4662 , pp. 397-410.

Strang T. and Linnhoff-Popien C., 2004. A Context Modeling Survey. Workshop on Advanced Context
Modelling, Reasoning and Management as part of UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, Nottingham, England.

Taconet C. and Kazi Aoul Z., 2008. Context-awareness and Model Driven Engineering: Illustration by
an e-commerce application scenario. CMMSE'08 Worshop, In ICDIM proceedings.

Tesoriero, R. and Vanderdonckt, J., 2010. Extending UsiXML to support User-aware Interfaces, Proc.
of 3rd IFIP Conf. on Human-Centred Software Engineering HCSE 2010 (Reykjavik, October 14-15,
2010), R. Bernhaupt, P. Forbrig, J. Gulliksen and M. Lárusdóttir (eds.), Lecture Notes in Computer
Science, Vol. 6409, Springer-Verlag, pp. 95-110.

Touzi J., Bénaben F. and Pingaud H., 2008. Prototype to Support Morphism between BPMN
Collaborative Process Model and Collaborative SOA Architecture Model. Enterprise
Interoperability III, Springer-London, pp. 145-157.

UMO, User Model Ontology, 2003. [online] Available at:
<{HYPERLINK http://www.u2m.org/2003/02/UserModelOntology.daml}>

UsiXML, USer Interface eXtensible Markup Language (version 1.8), 2007. , Université catholique de
Louvain (Eds), Belgium.

Vanderdonckt J., 2005. A MDA-Compliant Environment for Developing User Interfaces of Information
Systems. In Proceedings of the 17th Conference on Advanced Information System Engineerings,
CAiSE 2005, Porto, Portugal, pp. 16-31.

Van Setten M., 2001. Personalized Information Systems. Giga CE project part of Gigaport Project,
Telematica Institut, Netherlands.

IADIS International Journal on Computer Science and Information Systems

94

Wang X., Gu T., Zhang D. and Pung H., 2004. Ontology based context modeling and reasoning using
OWL. Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, pp. 18-22.

Weißenberg N., 2004. Using ontologies in personalized mobile applications, In GIS ’04: Proceedings of
the 12th annual ACM international workshop on Geographic information systems, ACM Press, pp.
2-11.

Won K., 2002. Personalization: Definition, Status, and Challenges ahead. Journal of Object Technology,
Vol 1, pp. 29-40.

W3C, 2009, Delivery Context Ontology (DCO). [online] Available at: <{HYPERLINK
http://www.w3.org/TR/2009/WD-dcontology-20090616/}>

