IADIS International Journal on Computer Science brfdrmation Systems
Vol. 6, No. 2, pp. 1-23
ISSN: 1646-3692

INVOLVING END-USERS IN DATABASE DESIGN
— THE RAINBOW APPROACH

Ravi Ramdoyal, Jean-Luc Hainaut
Laboratory of Database Application Engineering —e#RSE Research Center, Faculty of Computer
Science, University of Namur, Rue Grandgagnage B15000 Namur, Belgium

ABSTRACT

The first step of most information systems desigethmdologies consists in eliciting part of the user
requirements from various sources such as usavietes and corporate documents. Regarding the core
of the information system, that is, the databakesd requirements are formalised into a conceptual
schema of the application domain. Despite the tinriess and expressiveness qualities of conceptual
formalisms, conceptual schemas have proved diffitulvalidate due to understandability limitations
from the end-users standpoint. On the contrargtreic forms are known to be a natural and intaiti
way to express data requirements for laymen. Besttiesnecessity to associate end-users of a future
system with its specification and development stegs long been advocated. In this paper, we study
data requirements elicitation techniques relyinguear-drawn electronic forms. We explore the ravers
engineering of form-based interfaces to performimteractive database conceptual analysis, and
subsequently present the tool-supported RAINBOW amiraresulting from this investigation. This
user-oriented approach relies on the adaptatiorirdegration of principles and techniques comiragrfr
various fields of study, ranging from database fmdvand reverse engineering to prototyping and
participatory design.

KEYWORDS

Information Systems, Requirements Engineering, RembForward Engineering, Database Reverse
Engineering, Human-Computer Interfaces, Prototypegticipatory Design.

1. INTRODUCTION

In the realm of information systems engineeringuieements engineering is a key step that
defines the necessary specifications for furthedyais, design and development. Within this
process, database engineering focuses on data Imgdeihere data requirements are
typically expressed by means of a conceptual scherizh is an abstract view of the static
objects of the application domain. Since long, éaogpnceptual schemas have proved to be

IADIS International Journal on Computer Science brfdrmation Systems

difficult to validate by laymen. In addition, endars are often considered passive information
sources, so that traditional database requirenadiottation techniques, such as the analysis of
corporate documents and interviews of stakeholdexgally do not actively and interactively
involve them in the overall specification and deyghent process. Paradoxically, the
necessity to associate end-users of a future irdtbom system within those steps has long
been advocated. In particular, the process oftiglicistatic data requirements should make
end-users feel more involved and give them intaitind expressive means to convey their
requirements to analysts. Conversely, analystsldhalso be able to capture and validate
these requirements by discussing them with endsubtany users feel (and actually are) quite
able to deal with complex data structures provittery are expressed through more natural
and intuitive layouts, such as electronic forms.

This paper investigates the adaptation and intiegratf techniques coming from various
fields of study, such as the reverse engineeringisgr-drawn form-based interfaces, to
perform an interactive database conceptual analffggigitating this communication and
allowing users to be more deeply involved. Sectbmpresents the research context and
exposes the state of the art as well as the cuimeitations of available techniques. Section 3
presents the tool-supported RAINBOW approach feerse engineering user-drawn form-
based interfaces and how it deals with the diffei@allenges put in light in the previous
section. Section 4 discusses the specificitiescamdributions of this approach, while Section
5 addresses its validation. Finally, Section 6 twhes the discussion.

2. RESEARCH CONTEXT & STATE OF THE ART

Defining the application domain of an informatiogs&em project and structuring the
information that needs to be manipulated are trst fiteps oDatabase Engineering This
process of designing and implementing a databagentts to meet specific user requirements
has been described extensively in the literatuaifiBet al, 1992; Elmasri & Navathe, 2006)
and has been available for several decades in GA8E. The most important and complex
step of Database Engineering is t@®enceptual designwhich aims at expressing user
requirements into a conceptual schema, that is, eehnblogy-independent abstract
specification of the future database, also knowraaBlatform-Independent Model (PIM).
From the conceptual schema, the transformationatoggh (Hainaut2006) allows database
engineers to automate the production of logical pigsical counterparts, targeting specific
technology families and including performance-otéeh aspects. Afterwards, from these
schemas, well-mastered (semi-)automated techniquigish have long been studied in the
database research community and applied in industigw artefacts of the final application
to be produced: typically interfaces, programs.abase code, etc. (Schewe & Thalheim,
2005).

Various techniques exist to elicit static data regaents, such as the analysis of corporate
documents and interviews of stakeholders, and tit@éyeERelationship (ER) model has long
been the most popular medium to express such caremquirements (Shoval & Shiran,
1997). However, these techniques usually do natedgtand interactively involve end-users,
while the necessity to actively involve end-usdra éuture IT system during its specification
and development steps has proved to be one of éjlesieccess factors. Besides, the ER
formalism often fails to meet its objectives aseffiective end-users communication medium,

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

though its simplicity, its graphical representatand its availability in numerous CASE tools
should make it the ideal communication medium betwdesigners and users (Ramdoyal et
al, 2010).

On the other hand, most users are quite able ond#sacomplex data structures, provided
they are organized according to familiar layoutsparticular, electronic forms have proved to
be more natural and intuitive than usual concepfmahalisms to express data requirements
(Choobineh et al, 1992), while making the semanticthe underlying data understandable
(Terwilliger et al, 2006). This strong link exisginbetween graphical interfaces and data
models is usually exploited in forward engineeritgpically to produce artefacts such as
form-based interfaces from a conceptual schemavé&sely, a form contains data structures
that can be seen as a particuiew of the conceptual schema.

The transition from one to another has been shanpet formally tractable (Rollison &
Roberts, 1998), so th@tatabase Reverse EngineerinBRE) techniques can be applied to
recover a fragment of the conceptual schema. IndeB@RE notably consists in recovering
the database requirements (i.e. the conceptuahsghigom multiple system artefacts that are
usually obtained through schema transformationh sa& documentation (when available),
DDL code of the database, data instances, formssandce code of application programs
(Chikofsky & Cross, 1990; Hall, 1992; Hainaut, 2002

Such techniques can be combined wRtototyping, which usually acts as a basis for
interviews or group elicitation (Nuseibeh & Eastexdk, 2000), while providing early
feedback (Davis, 1992). A prototype can indeed bfinéd as a dynamic and interactive
visual working model of user requirements that banused as a communication tool for
developers, customers and future end-users by @imyithe latter with a physical
representation of key parts of the system befongldmentation (Connell & Shafer, 1995;
Pomberger et al, 1991).

Deriving requirements from prototype artefacts &deng tradition. In 1984, Batini et al.
studied paper forms as a means to collect and caoncate data in the office environment
(Batini et al, 1984). Later on, Choobineh et alplered a form-based approach for database
analysis and design, and developed an analystteddform Definition System and an Expert
Database Design System that incrementally prodaocdR diagram based on the analysis of
a set of forms (Choobineh et al, 1992). Kdsteraletintroduced a requirements analysis
method combining user interface and domain analy&isters et al, 1996), while Rollinson
and Roberts studied the problem of non-expert ooigtition of database user interfaces and
developed a set of graph-oriented transformatiorsxtract an Extended Entity-Relationship
schema describing an interface's information cdn{®ollinson & Roberts, 1998). More
recently, Terwilliger et al. defined the formal GVA (GUi As View) framework to use the
user interface directly as a conceptual model, xptaiting the hierarchical nature of forms-
based user interfaces to provide a simple reprasent of their informational content,
including the relationships between forms (Tergdli et al, 2006). Rode et al. investigated
the feasibility of end-user web engineering for wisters without programming experience
and developed a prototypical tool for the end-ukmrelopment of web application involving
non professional programmers (Rode et al, 2005ngYat al. also inquired about the
WYSIWYG user-driven development of Data Driven Waspplications, while transparently
generating their underlying application model oa fiiy (Yang et al, 2008).

We can observe that all these approaches rely@same core principles: (1) build a set
of form-based interfaces; (2) extract the undegyiorm model; (3) translate the form model
into a working data schema; (4) progressively baitdintegrated data schema by looking for

IADIS International Journal on Computer Science brfdrmation Systems

structural redundancies as well as constraintsd@pe&ndencies. However, several limitations
must be underlined in most of these approachest Bir all, end-users are not involved
intimately in the overall process, and the toolsviied for the drawing of the interfaces are
not dedicated to this purpose and/or not converig@rend-users. The underlying form model
of the interfaces must typically be constructedabglyzing the physical composition (layout)
before the informational composition (content) loé tform, and in parallel, the prototypical
form-based interfaces do not use a generic langthegenvould enable GUI generation of an
application on any target platform. Regarding tbberence of the interfaces, it is assumed
that the labels are used consistently through lmutdifferent forms, and little care is given to
possible lexical variation (paronymy, feminine, nal spelling, mistakes, etc.) and ontological
ambiguity (polysemy, homography, synonymy). The aé@&xamples (either through static
statements or dynamic interaction) is not systesalyi used to elicit constraints and
dependencies, and the final integrated schema &dtks refinement, such as specialisation
hierarchies, existence constraints or functiongledeencies. Besides, this resulting schema is
not systematically submitted to end-users in a emgbling easy validation, and its possible
evolution through time is not considered. Liftingese limitations is clearly a necessity to
design comprehensive interactive database desighod@ogies.

3. PROPOSAL

3.1 Challenges

As we have seen, Prototyping has proved to be figiesit technique to elicit and validate
static data requirements. In particular, form-bagéetrfaces appear to be a powerful means of
communication between all the stakeholders of &rmmation System project, since they can
be used to express formal data requirements arefibéom reverse engineering techniques
to derive valuable data user requirements. Howeretptypes are still mainly used as a one-
way communication channel, since they are desigmgedanalysts rather than end-users.
Moreover, the limitations exposed in existing agmtees call for a special attention to notably
manage the unification of terminology and structafehe intended conceptual schema, its
enrichment to include hierarchies, constraints dependencies, as well as the generation of
usable applicative components. Besides, since s \ahnt to involve intimately end-users,
we must also provide them with adequate means poesg requirements and map them to
their database engineering counterparts.

These challenges are dealt by specific disciplifmg, their concerns and subsequent
processing overlay in the context of our inquiBatabase forward engineeringnotably
deals with the clarification of terminological amtructural ambiguities, the elicitation of
constraints and dependencies, schema integratiah the generation of applicative
components. For our purpodeatabase reverse engineeringan address the extraction of
data schemas from form-based interfaces, whilgtotyping should allow users to express
and validate concepts and requirements through-fmsed interfaces. Finally, since we want
to emphasizeiser-involvement we need to find ways to involve them and possihilpr and
integrate existing techniques. From these obsemstiwe can wonder if it could not be
possible to make prototyping accessible to anyhef stakeholders, in order to let them

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

transparently express formal requirements on whichild be applied transformational
techniques, and therefore aim at an approach gy the principles oParticipatory
Design(Schuler & Namioka, 1993).

3.2 Overview

In order to bridge the gap between end-users aatysta to provide a better requirements
acquisition process for Database Engineering amucowe the understandability limitations
of the ER model, we propose to use user-drawn foseed interfaces as a two-way channel to
express, capture and validate static data requitesmeith end-users by taking advantage of
reverse engineering techniques.

More precisely, we consider an environment for Wwhiorms are a privileged way to
exchange information and stakeholders are familigin form-based (computer) interaction
and the application domain. We claim that givenhsi context, we can exploit the
expressiveness of form-based user interfaces aotbtppes, and specialise and integrate
standard techniques to help acquire and validate stzecifications from existing artefacts in
order to use form-based user interfaces as a twoekannel to communicate static data
requirements between end-users and analysts. Titesaction can produce a conceptual
schema that includes integrity constraints, extsetonstraints and functional dependencies,
and represents a major part of the application donvehich can be furthermore enriched in
cooperation with other elicitation techniques.

Indeed, since existing artefacts can be used twezthe underlying requirements through
well-mastered reverse engineering techniques, wecatie using such tailored techniques in
forward engineering by working with the virtual efdcts produced by end-users. This
approach benefits from the advantages of rapidopnoing, while making the user a central
actor of the process, and designing a set of sisgheantic interfaces rather than a complete
application.

In order to formalise this approach, we need te takaccount several specificities, among
which a high level of interaction with end-usetse possibility to involve different levels of
participants (ranging from laymen to experts) tigto@ modular process, the need for a tool
support accessible to end-users and useful toriblysts, as well as the necessity to tailor
existing techniques. We indeed want to provide esels with adequate tools to draw and
specify by themselves the interfaces describing timelerlying key concepts of their
application domain, without having to worry aboutyaapplication logic. Provided a little
training and, as previously explained, involvinglarsers in such processes may have a very
positive impact. In this context, the computer gstd rather appear as guides, whose roles are
oriented towards the validation of requirements #redgeneration of complex code.

These principles are at the foundation of broadmr@aches, such as the ReQuest
framework (Vilz et al, 2006), which provides a cdetp methodology and a set of tools to
deal with the analysis, development and maintenanfeweb-based data-intensive
applications. The alternatii@AINBOW approach keeps the same overall philosophy while
focusing on the specification of static data reguients as part of a greater Requirements
Engineering process. The specificities of this apph led us to specialise and integrate
existing techniques into a semi-automatic sevep-ptecess (see Figure 1) that does not aim
to provide a ready-to-use application, but a setpefcification documents and tools, in order
to support the development of future applicationd avercome the previously mentioned

IADIS International Journal on Computer Science brfdrmation Systems

limitations while dealing with the cited challenges

hierarchised
user-drawn conceptual anq unified
form-based p
B schemas
interfaces schema data
- samples

i QRAINBOW

wander R W Objectity R Bind d E
: ' validated
database integrated constraints and
queries II schema dependencies
prototype

Figure 1. Overview of the RAINBOW approach.

Note that in the scope of this research, we worth e Generic Entity-Relationship
(GER) model (Hainaut, 1989), which is an extendetit{zRelationship model that includes,
among others, the concepts of schema, entity typeeralisation hierarchy, relationship type
of any degree, value domain, entity type and ratatiip type attribute (including compound
and/or multivalued attributes), key, as well asioas constraints. The GER is a wide-
spectrum model that encompasses several abstrdetiels (from conceptual to physical) and
most modelling paradigms (e.g., ER, object-relatiar XML)

Let us now present for each of the RAINBOW stepsoiterall objective, the issues it
handles, the existing solutions to manage thessssand why they are not suitable in this
context, as well as how they have been adaptedhtegtated for our purpose. More detail, as
well as the algorithms formalising the presentedtsgies, can be found in (Ramdoyal, 2010).

3.3 Represent: Enabling users to express Conceptsnc
Requirements by building themselves Form-Based Intéaces

In the first step of the approach, end-users arn¢eith to draw and specify a set of form-based
interfaces to perform usual tasks of their applicaidomain. Such interfaces are typically
entry forms to capture data on, say, a new custamarnew product. The end-users must at
least provide basic properties regarding the iatef elements (typically a label and
description). Advanced users may also provide gpheperties such as the size of a field, the
expected type of values, default or predefined emlexistence constraints, as well as links
between the concepts. Note that the objectiveotsto let end-users draw the interfaces of a
future application, but to capture requirementsuigh a medium they are familiar with.
Numerous User Interface Description Languages (Ul@kist to model form-based

interfaces, however, since they must express risth @omplex interfaces, layouts and
behaviours, their structure becomes complex arfitulif to read, and furthermore, end-users
may be overwhelmed by their superabundance ofabaiwidgets and compositions. In order

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

to focus on simple interface widgets that can allend-users to simply express concepts,
while casting away the technical aspects of layaetpropose a simplified form model based
on the most primitive and usual form widgets (F&@@), which can intuitively be mapped to

the GER model and through which any other widget ba expressed. These widgets are
either containers such &er s, t abl es andfi el dset s or simple widgets such asput s,

sel ecti ons andbut t ons.

Widget ER Counterpart Widget ER Counterpart
Fieldset
Monovalued
Compound
Attribute
Entity Type
Mandatory
Input e Monovalued
Simple Attribute
Table Selection (radiobuttons)) Optionl Option2 Option3 MOnO/MUIti'
Column1 | Column2 | Column3 Selection {checkboxes) || Optiont Option2 Option3 valued Simple
i Option2 - : .
Multivalued e otons Attribute Wlth
Compound Cptiond - Value Domain
Attribute
add Edit Delete Reset S —— Procedural Un|t

Figure 2. Widgets of the RAINBOW Simplified Form Mdde

A dedicated tool support has been developed topuéaie this model which is intended to
be transparently used by end-users to express gneand includes information for designers
and CASE developers that would like to instant@textend it. Figure 3 illustrates the type of
interfaces that could be produced during this plifaeee, for example, wanted to support the
management of a small company that offers sendodssales products. For instance, for each
customer, personal information including his maia alternative addresses is stored, as well
as the list of orders that he issued. Each of tbeders mentions information on the context of
its creation, and list the associated list of padduand so on.

3.4 Adapt: Inferring Data Schemas from Form-Based terfaces

Once the interfaces are drawn, database reverseeengg techniques are applied to recover
the underlying conceptual schema of the domain.iftegfaces are automatically analyzed to
extract data schemas using mapping rules, a sobsehich is presented in Figure 2. Then,
each individual entity type is transformed intoraritive conceptual schema by transforming
complex attributes into entity types. Figure 4 sthates the expected type of conceptual
schemas obtained from the translation of user-difawn-based interfaces.

IADIS International Journal on Computer Science brfdrmation Systems

Customer number
First name
Last name

Title
—address

Mrs

CUSTOMER

Miss Mr

Street
Number
Zip code
City

Telephone

—#Address (alkernative)
Street

Number
Zip code
City

—Orders

Mumber Date

Add Edit

|| Delete

[Resst

Mumber

ORDER

Date |01jo1{1900
First name
Last name

Shop
Products

Code Quantity

H Delete H

Reset

Mame

PROYIDER

Vat number
Street

Zip code
City
Telephone

Fax

x

PRODUCT
Code
Description
Brand
Price
Provider {primary)
Supplier (secondary)

Figure 3. Possible user-drawn form-based interfémethe management of a small company that offers

Address
Street[0-1]
Number[0-1]
Zip code[0-1]
City[0-1]
Telephone[0-1]

0-
O-N

Code
Description
Price

Conditions

SPECIAL GOOD

Mame

Location

Skreet
Zip code
Ciky

Code

Description

Hourly rate

Telephone

services and sales products

Customer Order Provider Product
Customer number| Number Name Code
First name Date[0-1] Vat number[0-1] Description[0-1]
Last name First name Street[0-1] Brand[0-1]
Title[0-1] Last name Zip code[0-1] Price[0-1]
I Shop[0-1] City[0-1] Provider (primary)
1 01 ON ! Telephone[0-1] Supplier (secondary)[0-1]
0-N
<> %% Fax[0-1]
oN <> Shop
o ON Senice Name
Address (alternative)| | Orders Products Code Telephone[0-1]
Street[0-1] Number Code Description[0-1] 0‘_1
Number[0-1] Date[0-1] Quantity Hourly rate[0-1]
Zip code[0-1] <>
Ciy[o-1] Seasonal good OTN
Code Location
Description[0-1] Street[0-1]
Price[0-1] Zip code[0-1]
Conditions[0-1] City[0-1]

Figure 4. The conceptual schemas correspondirtietinterfaces of Figure 3.

8

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

3.5 Investigate: Analysing Semantic and StructuraRedundancies to
Manage Commonality

Cross-analysing the set of individual schemas obthiby adapting the user-drawn forms
usually brings to light possible ambiguities as Iwad redundant information. Typically,
whereas we can observe that the constructs useal $iggle user are relatively consistent
among the interfaces he draws, when considerindipteiusers, we notice that variabilities,
ambiguities and redundancies may occur. These phem®d may concern the various
properties of the widgets, such as the label, dgmfmn, minimal cardinality, maximal
cardinality, value type, value size, or domain afues... In the scope of this paper, we focus
on the widgets labels to track down semantic angctral ambiguities, but the definitions
and strategies that we propose could intuitively ebgended to take in account other
properties.

3.5.1 Terminological Ambiguities

Terminological ambiguities occur when elementshef schema argemantically similar, i.e.
their names appear to be orthographically and/aologically similar, which respectively
concerns their spelling and meaning. In the exanple labels “Orders™ and “Order” are
orthographically similar, while the labels “Proviti@nd “Supplier” are ontologically similar.
Identifying orthographically similar strings is aoblem usually dealt with by usin§tring
Metrics (Cohen et al, 20030ntologies, Thesaurusand Dictionaries can also be useful to
track down similarities of meaning among a set ofdg, and may target specific domains,
e.g. UMLS for the medical field (Hersh et al, 2000)

In order to discover such similarities, we comptre labels of each interface using a
variant of Jaro-Winkler's distance (Winkler, 199ad WordNet (Fellbaum, 1998). The
former is one of the most popular string metriasdealing with word comparison, while the
latter is an English non domain-specific orthogieghreference system, handling nouns,
verbs, adjectives and adverbs, and providing dafimé, synonyms and hypernyms.

The discovered similarities are then highlightedhia interfaces and submitted to the end-
users for arbitration. This task consists in dexdwhich semantic similarities are actually
genuinesemantic equivalencesi.e. the similarities that are agreed upon byethé-users and
the analysts to represent the same concept. Faresadvalence, a unifying term is defined
and propagated to the schemas and the forms.

3.5.2 Structural Redundancy

The second type of similarity that may occur isstrectural redundancy. Typically, we can
observe that entity types can share componentgh(ats and roles) bearing the same names,
which suggests that these elements may inducedliffelegrees of similarity.

Given the tree-like structure of the conceptualesehs, the problem of mining structural
redundancies is actually alike the problemtafe mining (Chi et al, 2005), and more
preciselyfrequent embedded subtrees mining in rooted unordexd trees (Jimenezet al,
2008). Tree based approaches are suitable for eomapld deep graphs, however we observe
that the structure of user-drawn interfaces is Iisgaite simple (with rarely more that three
or four levels of imbrication), if only by concerd legibility and usability. Indeed, “most
forms have a shallow (i.e. few levels) and narréew(nodes per level) structure because of
human information processing limitations” (Chooltiret al, 1992).

IADIS International Journal on Computer Science brfdrmation Systems

Instead of putting in motion such heavy algorithme therefore propose to adopt a
simpler strategy that consists in comparing onefy the entity types to outline patterns, i.e.
bijections between two sets of components belontpndjfferent entity types. The similarity
between components from each set is measured ssirggal indicators (typically, the label).
The discovered patterns are highlighted in the fgramd the end-users are then invited to
arbitrate them by classifying the relation betw#®nconcepts sharing a pattern among one of
these most usual cases, as illustrated in Figufe)Stifference (the entity types fortuitously
share a set of components), @guality (the entity types represent the same concept), (c)
union (the entity types partially represent the samecepty which may translate into the
specialization of a higher-level concept non exghiexpressed), (dfomprehension(one of
the entity types is a specialization of the oth@¥) complementarity (one of the entity types
actually refers to the other). As for the termirgit@l arbitration, unifying terms are defined
and propagated to the schemas and the forms.

E12 El

E12 A A

E1 E2 A B B E1

A A B c A E2
B B c D B —0—1@1-1— E
c E D c F
D F E E1l E2 E2 D

F c E E

D F F

(a) (b) (c) (d) (e)
Figure 5. Most common cases of structural redunganc

At the end of this interactive process, we obtaprexintegrated schema resulting from the
terminological and structural analysis of the detahemas obtained through the Adapt phase.
In this schema, the terminology has been unifiethabevery element associated with a given
term now represents the same concept. Also, theschiimas originally associated with each
form are now connected through the relationshigeg¢ypnd 1S-A hierarchies of their entity
types, as illustrated in Figure 6.

3.6 Nurture: Eliciting Dependencies and Constraints

In order to enrich the pre-integrated schema, wen tfocus on uncovering additional
constraints and dependencies on its elements. Tholugse constraints can be provided
directly, it appears that the acquisition and usdata samples may also be useful and more
natural in this process. Indeed, not only do datapdes test the ability of the user-drawn
form-based interfaces to gather the necessarymdtion, but they also help to visualise the
implications of existing constraints. Moreover, ithanalysis may in turn reveal possible
unsuspected constraints. Using the interfaces tliew, end-users are therefore invited to
provide data examples that are analysed to infer abitrate possible constraints and
dependencies.

10

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

«Equals»
PROVIDER

Prowvider
Name
Vat number[0-1]

Provder (primary)| | Provider (secondary)| |Street[0-1] | 11 O»Nf «Equals»
Name Name Zip code[0-1] ADDRESS

City[0-1]
Telephone[0-1]
oN oN Fax(0-1] —
ress ;
«Unites with» Street[o-1] Address (alternative) Address
SOLUTION Street number[0-1] Street[0-1] Street[0-1]
<> f Street number[0-1])
- Zip code[0-1] Zip code[0-1] Zip code[0-1]
«Equals» Senice City[0-1] Ci't’ 0] City[0-1]
PRODUCT Code Telephone[0-1] Y
01 01 Description[0-1] e
Hourly rate[0-1] O-N ,

Product 01 0-1
Code Products Special good
Description[0-1] Code Code Customer
Brand[0-1] Quantity | | Description[0-1] Customer number|
Price[0-1] Price[0-1] («Refers 10> .\ First name —oN<_>

Conditions[0-1] Last name
Title[0-1]
«Equals» O-N
SHOP 11 «Equals» 11
ORDER
0-N
Order
Shop Order number
Sho
Shop name Sho n';me 0-N~<__>-0-1-{ Date[0-1] Orders
Telephone([0-1] P First name Order number
Last name Date[0-1]
0-1 ON

Figure 6. The pre-integrated schema of the exariple.newly created supertypes and relationshipstype
are marked with stereotypes expressing their mganin

There are numerous types of constraints and depeisdethat can be established for a
given schema, but in this research, we especiadlys on:

e Technical constraints: minimal and maximal cardinalities, value type, akize,
prerequisite optional components (for optional comts);

» Existence constraints which define how the optional components showhaide
for each entity type (coexistence, exclusive, asi@ne, at-most-one);

* Functional dependencies which define the implications between sets of
components;

» |dentifiers, which define the sets of components that uniquegntify a given
instance of a given entity type.

Analysing the content of a database or a subsdataf samples and usifgduction can
intuitively lead to make assumptions on possiblhmécal constraints, existence constraints
and identifiers. Consider for instance an optidaatual attribute A. If for all the data samples
provided so far, we observe that the widget assettiavith A is never empty and always

11

IADIS International Journal on Computer Science brfdrmation Systems

composed of a number, we could easily wonder ifsMot actually a mandatory numeric
attribute. Moreover, if all the values provided fhat widget are different, this could suggest
that A is in fact a primary or secondary identifier

As for discovering functional dependencies, thisbtem is usually dealt by using
dependency discovery problemapproaches, based on the analysis of a given aksab
content, such as DepMiner (Lopes et al, 2000) or Mibe (Yao & Hamilton, 2008).
Unfortunately, we observed that the existing apgea rely on massive pre-existing data
sets, which is here problematic. Indeed, givenammtext, there is possibly no available data
sample, or their re-encoding would be too expenshis anyway unrealistic to ask end-users
to willingly provide numerous data samples. Thiturally calls for new ways to discover and
suggest constraints and dependencies on-the-flsedb@an the incremental input of data
samples by end-users. We therefore propose araatite process inspired by the principles
of Armstrong relations (Lopes et al, 2000), and enabling end-users tovigeo such
constraints and dependencies as well as data ssimpiMhatever order.

An Armstrong relation is a relation that satisfeesch functional dependency implied by a
given set of functional dependencies, but no femeti dependency that is not implied by that
set. The ideal process should lead us to build @fséata samples and dependencies so that
each entity type of the underlying conceptual schdracomes such a relation. However,
reaching such a state is obviously not trivial g&rand these principles are here inapplicable
as a side effect of user involvement. However, @@ try to near it by progressively
narrowing the functional dependencies.

The process therefore starts with the initialigataf the constraints and dependencies
based on previously provided requirements, thelesan user input to gather data samples
and constraints. Since the number of possible fonat dependencies for each entity types
can be very high, we prefer to initialise a sehigh-level possible dependencies, which would
be the most general yet restrictive ones. Thesé-lbigel dependencies claim that any
component of a given entity type could determine tombined values of the other
components. Whenever a dependency is dismissedvalidated, we recursively generate
weaker functional dependencies to cover all thetexj ones, by progressively reducing the
right-hand sides and enlarging the left-hand siddse objective is to favour functional
dependencies with minimal left-hand sides and makight-hand sides.

When a new data sample is added, we analyse efidHfwactional dependency to check
if there is an existing data sample that is conflit, i.e. if an existing data sample has the
same left-hand side but a different right-hand sideen considering the components of the
functional dependency. If such a conflictual daeple exists, the functional dependency is
discarded and alternatives are recursively gerger&ied-users can also directly specify
enforced or discarded constraints and dependeneisn without looking at possible
suggestions. To be accepted as enforced, a givestramt or dependency must be satisfied
by the existing set of data samples associated théhconsidered entity type. On the other
hand, it can be discarded as long as it still diealias a constraint or dependency for the given
entity type.

Acquiring data samples hence enables us to genstajgestions for possibly valid
constraints and dependencies, while acknowledgimgtcaints and dependencies restricts the
data samples that the users may provide. Thisaictien enables to progressively narrow the
set of possible constraints and dependencies, Whilding a set of valid data samples that
will prove useful later on. Once this interactiyerocess ends (hopefully, with all the
constraints either validated or rejected), we aiogty proceed with the update of the pre-

12

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

integrated schema. During the overall processrdbeof the analyst is crucial to guide end-
users and ensure that no relevant constraint aeraimcey is ignored.

3.7 Bind: Completing the Integration of the Conceptial Schema

We subsequently address the final integration efd@lements of the pre-integrated schema
based on all the previously collected specificatioBifferent transformational techniques
exist to handle the integration of similar objeat® non-redundant structures (Spaccapietra et
al, 1992). Among these techniques, we choose td with n-ary integration for handling
upward inheritance and solving the constraintsabse of the potential multiple occurrences
of key concepts, and withinary integration for referential components and attributes that
need to be moved from entity types into relatiopgiipes.

In particular, we analyse and refine the IS-A hiehnées resulting from the Investigate step
in order to elicit components that can be integtadéad inherited upwardly. Referential
attributes are moved and integrated into the apfa@pentity types, as well as attributed
describing relationships rather than their cureatity type owner. Finally, the constraints and
dependencies from the Nurture step have been updatmrdingly. Since these tasks can be
led in any order, the role of the analyst is crutiamanage the process and guide end-users
appropriately. Besides, his skills may be needegfioe the structure of the schema once the
previous tasks are completed, in order to ens@ealdity of the schema.

At the end of this step, the integrated schemaethes crystallises all the requirements that
were expressed by end-users since the beginnitiiedRAINBOW process, as illustrated in
Figure 7. The schema should hence represent tHeatam domain as expressed though the
user-draw forms and the additional specificatiohat twere provided. The aim of the
remaining steps is to ultimately confirm these iegaents.

3.8 Objectify: Generating Applicative Components

A lightweight prototype application is then genechfrom the integrated conceptual schema.
It comprises a simple data manager that uses teddnes drawn by the end-users and allows
them to manipulate the concepts that have beeressgd, typically to inspect, create, modify
and remove data. Such a process is relativelygsttfarward (Elmasri & Navathe, 2006).

First of all, a database can be automatically geedrusing the transformational approach:
the integrated conceptual schema is sequentialystormed into a logical schema, then a
physical schema, and finally DDL code, from whiah @perational database can be created
using a compatible Database Management System (DBRISSE tools have proved very
effective in supporting such a process. Subsequeaticess keys, table spaces and clusters
can be generated. Afterwards, if judged relevantth®y participants, the database can be
populated with the data samples provided by theuseds. Once the database has been set up
in the DBMS, simple queries SQL to select, insgptjate and delete rows of each table can be
automatically generated. These queries can subsgyume connected to the form-based
interfaces drawn by the end-users in order to ntl&m reactive and report the messages of
the database.

The final step consists in grouping the user-draimterfaces in an operational
environment. This implies creating the mechanisras d central application granting
navigational access to the forms and between tfidwm.prototypical application thus created

13

IADIS International Journal on Computer Science brfdrmation Systems

makes it possible to perform simple consulting ediing actions on the database through the
form-based interfaces, which would qualify it agatweight data manager for the database.

Address

Street[0-1]

Street number[0-1]

Zip code[0-1]

0-N City[0-1] —o-N—<>
11 Telephone[0-1]
| Fax[0-1]
Provider at-Ist-1: Zip code
Vat number City
Name
id: Vat number ON O-N 11
ode
O-N— Description[0-1]
- ; 0-1 0-1
0 Code primary secondary
o1 o Customer
- Customer number Shop
First name Shop name
Senice BProgroctl ; _||__i|5t[giTe Telephone[0-1]
rand[O- itle[O- id: Shop name
Hourly rate[0-1 .
y [0-1] Price[0-1] id: Customer number
I
0-N
$ <> ox

Special good 1"1
Conditions[0-1] Order

i O-N Order number
Quantity Date[0-1]
id: Order number|

0-1

Figure 7. The final integrated schema of the exampl

3.9 Wander: Validating the Requirements through thegenerated
Prototype

Finally, the last stage consists in confronting éhd-users with the prototypical application to
check if the static data requirements that wereenaised meet their needs, which should
ultimately validate the integrated conceptual scheihe role of the analyst during this
process is therefore to assist the users in thdatan of the schema through the use of the
prototype, and to record their positive and negatemarks. The evaluation of the elicited
requirements through the manipulation of the asdedi lightweight data manager should
eventually lead to end the requirements elicitafiozcess or to loop back to the previous steps
to add, delete or modify the specifications thatenexpressed.

14

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

3.10 Tool Support

In order to assist the end-users and analysts giutia different steps of this interactive
approach, a dedicated tool support has been deactidhe RAINBOW Tool Kit is a user-
oriented development environment, intended to tiesid-users and analysts in the definition
and validation of database requirements througtopnoing.

It supports the first steps of the approach, stgrtvith the initial drawing step. For this
purpose, the tool kit provides ready-to-use impletagons of the widgets presented in Figure
2, in order to simplify the elaboration of form-kdsinterfaces. Figure 8 shows for instance
the edition of the forms presented in Figure 3.

File Edit Terminology Exsmples Finalize View Help

& Edit forms. B B B E ’_j. oK

‘ORDER

x

=

PROVIDER

Customer number | Mumber | |= Name Code

First name | Date ‘uu[)]_‘/‘-lgnn - | Vat number | Description

Last name | i Bsteamel Street Brand |]

Tjé :"m . iMiss Mr e | = Zpcode | Price
ddi ¥ Edit properties CtrieE i“ ‘ city f ekt) [=
Steet | .
& Cut Ctrl+X s Telephane | Supplier (secondary) |
Number | z |
[Copy Ctrl+C & Quantity Fae 1
Zipcode | N F—
[Paste Ctel+V
City |
Telephone | & Insert »
E—
T e B Delete el
sweet | |4y Undo CtrleZ
Hoxnier | # Redo CtrleY
Zip code |
% Finish Editin
ay | = .

& SPECIAL GOOD Meme [=

~Location
Street |
Zpeode| |
Gity |

—Orders

Code |

Number Date Description|
|]
Conditions |

Description | | Price

Hourly rate| | S—
Telephone | |

[e J[e [oo |[Remt

Figure 8. Editing of the forms of Figure 3, usihg RAINBOW Tool Kit.

Once the drawing is completed, the mapping ruleSeaafion 3.4 are automatically applied
to create the underlying data models. To procedk thie unification of the terminology and
structure, the forms are automatically analysedthacelicited ambiguities are highlighted in
the interfaces so that they can be arbitrated|ussrated in Figure 9.

Once the arbitration of these ambiguities has lpformed, the users proceed with the
interactive elicitation of constraints. For thisrpose, they can directly provide data samples
or constraints for each form, or validate candidsuggestions, as illustrated in Figure 10.
Each new data sample restricts the set of canditatstraints that have not been validated
yet, and conversely, each new validated constrasgtticts the values that can be provided for
subsequent data samples. Finally, mechanisms awédpd to handle the final integration of
the underlying data models.

15

IADIS International Journal on Computer Science brfdrmation Systems

Conflictual form list Associated forms
label ¥ Term Rtkid Dbmld #Conflicts Decided =] Decision label ¥ Term Ritkid Dbmld Shared pattern | Decide
3 |customer customer 1 93 1 1 = 1| Equals % |products product 30 944 [code] *
4 | location address 49 397—9 3 _3 Ll 2 @ service .servl.:e .54 969 .[:ode, description]
5 |order order B3 e 2 2 3 Is specialised by % | special . [speciatge: [42 |8 |[dode descriphion, o |
6 | orders order 20 1934 1 1 . o o . .
7 |product product 33 98 3 3 | o
View in context View in context

Description |]

Brand |

Price |
~Provider (primary] —————

Name|

- —Pravider (secondary) g
Mame | |+

coe |
Desu"nﬁonl-

Price [

Conditions |

Figure 9. Arbitrating the structural similarifyCode, Descri pti on, Pri ce} existing between the

jletinkal Cop et

formsPr oduct andSpeci al

Good, using the RAINBOW Tool Kit.

WView in context
= = T — [~ | DRDER = |[& =
| Wumber[15] | Date[t] Shop[19] | Products[20] | Customer[7a] |

Cardinality Exactly one (1-1) At mostore (0-1) | Atmostone (0-1) | Zeroto many (O-N) | At most one (0-1) Humber | 256 [
Cardinality could b I Exactly one (1-1) | Exactly one (1-1) | At least one (1-M) | Exactly one (1-1) Dete [o1/03/2011 v
Yalue Type is. inkeger date ket ! ! Customer
Value Type could be ! i [! { First name | Steve J#
Reduires ! i i ! ! Last name | smith J*
Could recuire. ! 118720, 79 116, 20, 73] [ie, 18, 7] 18, 1, 20] Click o > Chonse customsr

Shop | Central Shee
~Praduct:

Code ¥ | Quantity Click ko>

1|:ses 4 «(Chonse product>

z\earer 15 «Chaose productss

| aw [e || el || Ree |
iew | Edik data sampl
{ x Cancel ‘nk FlReset

| @ || ¥
Figure 10. Providing data samples and constraimtthe formCr der , using the RAINBOW Tool Kit.

The tool kit is written in Java, using QT Jambi fbe rendering of the interfaces, as well
existing libraries to manage Jaro-Winkler's distarand interact with WordNet. It also
interacts with the repository of DB-Main, a databasgineering CASE Tool providing all the
necessary functionalities to support a completalete design process (from conceptual
analysis to DDL code generation). More technicahil®n the implementation of the tool kit
can be found in (Ramdoyal, 2010).

16

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

4. SPECIFIC ASPECTS OF THE RAINBOW APPROACH

4.1 Integrating Different Disciplines

The RAINBOW approach is at the crossroad of diffiéidisciplines, each of which deals with
specific issues using dedicated methods and tegbsiqHowever, their concerns and
subsequent processing can concur for the purpobedtfing the gap between end-users and
analysts in order to elicit static data requirerser®@ne of the main achievements of this
research was therefore to identify, tailor andgrage principles and techniques coming from
the fields of Database Forward Engineering, Datt@sverse Engineering, Prototyping and
Participatory Design in order to provide this iatetive and user-oriented Database
Conceptual Analysis approach. The following spettifis naturally follow from the decisions
that were made to support this integration intmasestent and comprehensive approach, for
which the contributions, with respect to the littitas of existing approaches, are synthesized
in Table 1.

4.2 End-users as Major Stakeholders throughout theData
Requirements Process

In this research, the focus was specifically putsonplifying and improving the static data
requirements process, leading the interfaces teap@s a means rather than an end product.
In particular, we wanted form-based interfaces do/es as a basis for discussion and joint
development, hence using prototyping in an exptoyatashion, though it could also be used
in an evolutionary approach. Several challengesrenit to this user-centred approach had to
be therefore managed.

First of all, to make the development of the ifslees more accessible and to focus the
drawing on the substance rather than (ironicalig form, the available graphical elements
were restricted to the most commonly used onesclwimcidentally also simplifies the
mapping rules between the form model and the ERefnathd a dedicated tool was designed
to support this process. The possible lexical taria that could occur in such an interactive
process are taken in account, while simply igndrgather similar researches. We therefore
offer the possibility to detect and correct on-fyemany mistakes or deviations in the
terminology, or to deal with them later on.

Besides, the interfaces are systematically usedst@lise similarities, to input constraints
and data samples, so that they can be the reféoenend-users, and their favourite
communication means. The end-users therefore citerigh the form-based interfaces, while
the analyst can also access and edit the undertiamg schemas at any time, as long as he
ensures the maintenance of the mapping.

The will to involve intimately end-users into thaefinition of their needs and the
specification of the static data requirements, ahihanaging the satisfaction of all the
stakeholders, also places this approach as motabkuifor information systems projects in
small to medium size enterprises. Besides, theept®jshould be themselves small to medium
sized, in order to maintain a manageable set ofifoased interfaces.

17

IADIS International Journal on Computer Science brfdrmation Systems

Method FDS/EDDS FLUID / Click GUAVA AppForge RAINBOW
Authors Choobineh Kosters Rollinson Rode Terwilliger Yang Ramdoyal
et al, 1992 et al, 1996 & Roberts, 1998 et al, 2005 et al, 2006 et al, 2008 et al, 2010
Tool support Form Definition System DIWA + Extended| Xfig + Prolog .
(drawing + Expert Database PCTE object + GRL Click fr?a%é&ﬁrk AppForge ?gg}b@t’v
and analysis) Design System management system + XVCG
F_’rotptyplng Explor'atory, Evolutionary Explor_atory, Evolutionary Exploratory Evolutionary Explor'atory,
finality evolutionary evolutionary (evolutionary)
Prototype Analysts, Analysts, Analysts, Analysts,
designers end-users Analysts Analysts end-users Analysts end-users end-users
. User Interface
g / Analysis + Object| ' OENT HTMLPHP GUAVA-tree HTML RSFM
(UIA /UIO) models
Syntactic schema orthographic,
matching / / plurals / ! / ontological
equality,
f’nt;];t]ﬁ:al SIS equality equality equality / / equality | specialisation, union,
9 complementarity
Constraints and identifiers existence consraints
. ' identifiers identifiers identifiers identifiers idéfiers identifiers,
dependencies FDs FDs
Examples static, dynamic static,
anal SS user-provided us e)rl- rovi d ed / / / / user-provided
Y and/or generated P and/or generated
Relational Model| Relational model
Data model ER OOA ERC+ (EER) (MySQL) (Natural schema ER GER
Model life cyle linear linear linear linear linear linear cyclic
Target platform Unrestricted Unrestricted Unrestricted Web-oriented Unrestricted Web-oriented Unrestricted

Table 1 - Comparison of existing approaches ingbypical reverse engineering for forward enginegrithe symbol “/* means that no details were
explicitly provided for the given characteristic.

18

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

It is interesting to note that though the approaatriented towards end-users, the real corner-
stone of the RAINBOW processes is the analyst. éddéis social and technical skills and

knowledge are crucial to manage, assist and guideusers in order to perform an enjoyable
and effective elicitation process for all the pastinvolved.

4.3 Using Reverse Engineering for the Purpose of FReard
Engineering

Reverse engineering usually consists, among oltiegg, in recovering or reconstructing the
functional specifications from a piece of softwatgrting mainly from the source code of the
programs. However, using controlled artefacts anditored processes, the objective is here
to “build the truth” rather than “find the truthin particular, the form-based interfaces are
used as a well-defined specification language, @®sed to the usual reverse engineering
approach, where the existing screens are obsctefacts that need to be decrypted. This
requires to significantly adapt the usual DatalRReeerse Engineering (DBRE) methodology
(Hainaut2002).

DBRE typically comprises the following four sub-pesses: (1Physical extraction
which consists in parsing the DDL code in orderektract the raw physical schema of the
database; (2refinement, which enriches the raw physical schema with &t constructs
and constraints elicited through the analysis efapplication programs and other sources; (3)
Cleaning, which removes the physical constructs (such dexes) for producing the logical
schema; (4onceptualisation which aims at deriving the conceptual schematti@togical
schema implements. Such a methodology is obviousapplicable as is in the context of the
of RAINBOW approach.

Indeed, starting from a set of user interfaces ptigsical extraction does not allow one to
derive a complete physical schema, but a setadfial views of this schema. Similarly, the
refinement process may not rely on additional add artefacts such as application programs
or database contents. However, it can take befiefit data samples provided by the users
through the interfaces they have drawn, leadingh® identification, among others, of
candidate dependency constraints and attribute iemahe recovered constraints, once
validated, are used to enrich the physical scheémasder to obtain a set of logical schemas.
The cleaning phase, as defined above, does not selee in the absence of an initial DDL
code. Instead, the conceptualisation step allowes tonderive a set of partial conceptual
schemas from the logical schemas obtained so mapatticular, the logical schemas are
normalised in order to ease the identification iofilarities between them. This important
process relies on transformation techniques. Dutihg integration phase, the partial
conceptual schemas are merged, based on struahdademantic similarity criteria, in order
to produce a single complete conceptual schema.

4.4 A Modular and Non Standard View Integration Pracess

One of the key assets of this approach is itsHiétyi, especially regarding the enrichment of
the data schemas. As we have seen, proficient sad-can already provide constraints
during the drawing phase. Otherwise, such propetan be directly provided later on, or
discovered from a set of data samples providedndyusers. Similarly, the unification of the

terminology and structures can also be led dutegdrawing phase, or during further steps.

19

IADIS International Journal on Computer Science brfdrmation Systems

This modularity makes the approach suitable fofed#int types of users, ranging from the
layman end-user to the advanced Database Engigeeririrom the analyst to the developer.
The progressive gathering of elements of integnatar further resolution also differs from

the standard integration processes.

45 System Evolution Support through a Transformatnal
Approach

The RAINBOW approach also heavily relies on then¢farmational paradigm, according to
which most (if not all) Database Engineering preesscan be modelled as a chain of schema
transformations (Hick & Hainaut, 2006; Hainaut t2908). The transformations that we use
are incremental and preserve the semantics of saronstructs in their target counterpart,
which ensures the consistency, traceability andersbility of the specified elements
throughout the whole workflow. This also favours tkvolvability of the specifications
produced via the approach. Indeed, this approadfiesigned to loop if necessary, while
storing and propagating all the previously providgecifications and decisions. Combined
with the traceability of the elements, we can eagbe propagation of any modification in the
different steps of this approach.

4.6 A Rich and Relevant Part of Requirement Specitations

The output of this process is a set of annotatech-mased interfaces and their underlying
integrated conceptual schema, as well as theirceded playable prototype and ready-to-use
database. Compared to other existing approachegetulting conceptual schema is rather
rich, since it includes hierarchies, as well asst@ints and dependencies. It can also be
analysed to generate a thesaurus of the applicdtorain. Moreover, the elements produced
can effectively be used to share and validate reménts as part of the requirement
specifications for a complete information systerojget, built around the database. Indeed,
the RAINBOW approach ensures their validation aadection, and these artefacts can be
used for further evaluation and reference, whiletigbuting to the forecast of future design
and implementation, as well as contractibility.

Although this approach addresses a significant etubf data requirements, it does not
cover all of its aspects, typically the dynamic ®n€herefore, the RAINBOW approach does
not replace more traditional task and informatioalgsis approaches, but rather complements
them. For instance, the form-based graphical reptation of the underlying data schema can
be used during interviews to stimulate the dis@rssi

As for the generated prototype, it can be usedhdutie task analysis to capture real-time
use cases and define the expected behaviour adystem. In addition, analysing how the
tasks are performed using the prototype in comparte the legacy information system (if
any), can help to support the Reverse engineeffirxisting artefacts and even induce more
general considerations on the definition of thgeainformation system.

20

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

5. VALIDATION

To experiment and evaluate the approach, a vadidairotocol has been defined in order to
notably assess its ability to help end-users andlyats to communicate static data
requirements to each other, and the quality of dbeceptual schemas it produces. The
validation protocol relies on the Participant-Obserprinciples to monitor the use of the
RAINBOW approach and toolkit, and the Brainstorniif@rus group principles to analyse the
resulting conceptual schemas, as defined in (Siegat, 2008). This protocol was used for a
first series of experimentations where pairs of-esdrs and analysts were asked to jointly
define the conceptual schema of a future informmasigstem using the RAINBOW approach
and tool kit.

For each project, the first task consisted in priegathe experimentation by defining the
subject based on real-life concerns of the endsystren training the participants to
understand the method and use the tools. Secahéyend-users and analysts were asked to
apply the approach on their project and focus anfibe first steps, while observers took
notes. The third step consisted in analysing theenfations on the efficiency of the approach.
Finally, the quality of the produced schemas wdmatkl, taking in account schemas that were
designed by the analysts without seeing the outptiite approach.

The analysis of these experimentations, confirnedvalidation canvas to be valid and
relevant, as it notably highlighted that the RAINBGapproach and tool support did help end-
users and analysts to communicate static datarssgents to each other, while generating a
positive response from the participants. Thoughtal requirements could not be expressed
through the toolkit, the latter did serve as a $dsi discussion and modifications. On the
other hand, the quality of the conceptual schemmadyzed using the RAINBOW approach
were relevant, understandable and comparable tectiemas that an analyst could produce by
himself.

These early results are therefore encouraging,gth@pecial care should be given to
improve critical aspects such as the assignmergsgonsibilities, the drawing behaviours, the
customisation of the tools and the relevance ofeleenents they highlight. This preliminary
validation process also stressed several sensildeirsteresting phenomena, such as the
emergence of different design styles during thewdrg phase, for instance regarding the
grouping of elements in containers. Besides, gitle intrinsic difficulty of evaluating
methodologies for the development of large systehesRAINBOW approach deserves to be
tested through multiple settings over time and camag to other databases methodologies in
order to study its true effects and monitor thevionesly mentioned phenomena.

6. CONCLUSION

In this paper, we presented the tool-supported FBOM/ approach, designed to interactively
involve end-users in the database conceptual dsalycess of information systems
engineering and facilitate the communication betwesnalysts and end-users. This
comprehensive approach is based on the reversaesmigig of user-drawn form-based
interfaces to perform an interactive database qutoeé analysis, and proposes to elicit and
validate static database requirements based orusard- involvement through interactive

21

IADIS International Journal on Computer Science brfdrmation Systems

prototyping, as well as the integration and adaptaif techniques coming from various fields
of study.

This original and realistic contribution, aiming éticit static database requirements and
promote user involvement in the context of InforimatSystems Engineering, addresses the
necessity to actively involve end-users of a futlFesystem during its specification and
development, as notably advocated by the propordrarticipatory Design. Beyond the fact
that end-users know “how business is done” in theirenment for which an information
system is being developed, such practices cantbelpoid resentment and resistance towards
a new information system infrastructure, as wellt@sstimulate productivity. Besides, the
RAINBOW approach overcomes the main concerns raigesimilar researches, while being
interoperable with other approaches and extensibie further analysis and elicitation
processes.

In the approach, the expressiveness of form-basexifaces and prototypes, combined
with the specialisation and integration of stand#echnique to help acquire and validate
specifications from existing artefacts, enable 82 dorm-based interfaces as a two-way
communication channel to communicate static datpirements between end-users and
analysts. The current experimentations comfornuselieving that this approach is viable and
worthy. By pursuing these experiments with theatmdration of end-users over time, we will
be able to enrich and improve the approach, itegeees and its tool support based on the
feedback gathered and the analysis of the obsgtvedomena.

REFERENCES

Batini, C., et al, 1984. A methodology for conceptdasign of office databasdsformation Systems
Vol 9(3/4), pp 251-263.

Batini, C., et al, 1991Conceptual Database Design: An Entity-Relationshpprdach Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA.

Chi, Y., et al, 2005. Frequent subtree mining - garaew. Fundamenta Informaticavol 66(1-2), pp
161-198.

Chikofsky, E.J., and Cross, J.H., 1990. Reverse eedime and design recovery: A taxononiZEE
Software Vol 7(1), pp 13-17.

Choobineh, J., et al, 1992. A form-based approackldtabase analysis and desiGommunications of
the ACM Vol. 35 (2), pp 108-120.

Cohen, W.W., et al, 2003. A Comparison of String &ise Metrics for Name-Matching Tasksoc. of
IJCAI-03 / lIWeb’03 Acapulco, Mexico, pp 73-78.

Connell, J., and Shafer, L.I, 1996bject-oriented rapid prototypingYourdon Press, Upper Saddle
River, NJ, USA.

Davis, A.M., 1992. Operational prototyping: A neevelopment approaclEEE SoftwareVol 9(5), pp
70-78.

Elmasri, R., and Navathe, S., 2066ndamentals of Database SysteAddison Wesley.
Fellbaum, C., 1998NordNet: An Electronic Lexical Databadd|T Press.

Hainaut, J.L., 1989. A generic entity-relationsimmdel. Proc. of the IFIP WG 8.1 Conference on
Information System Concepts: an in-depth analyé@sth-Holland, pages 109-138.

Hainaut, J.L., 2002Iintroduction to database reverse engineeribtBD Publishing, FUNDP, Namur,
Belgium. Available from: http: //www.info.fundp.a@b-dbm/publication/2002/DBRE-2002.pdf

Hainaut, J.L., et al, 2008. Migration of Legacydmhation SystemsSoftware EvolutionSpringer, pp

22

INVOLVING END-USERS IN DATABASE DESIGN — THE RAINB&/ APPROACH

107-138.

Hall, P.A.V., 1992 Software Reuse and Reverse Engineering in Pex@icapman & Hall, Ltd.

Hersh, W., et al, 2000. Assessing thesaurus-basedy gxpansion using the UMLS Metathesaurus.
Proc. of the AMIA Symposiympp 344-348.

Hick, J.M., and Hainaut, J.L., 2006. Database apfibn evolution: A transformational approa€ata
Knowledge Engineering/ol 59(3), pp 534-558.

Jiménez, A., et al, 2008. Mining induced and emieedsubtrees in ordered, unordered, and partially-
ordered treesProc. of the 17th International Symposium on Fiations of Intelligent Systems
(ISMIS’08) pp 111-120

Kosters, G., et al, 1996. Combined analysis of urgerface and domain requiremer®soc. of the 2nd
International Conference on Requirements EngingetiBEE Computer Society, pp 199-207.

Lopes, S., et al, 2000. Efficient discovery of ftiocal dependencies and armstrong relatiétsc. of
Advances in Database Technology - EDBT 20Qihstanz, Germany, pp 350-364.

Nuseibeh, B., and Easterbrook, S.: Requirements eaginy: a roadmayProc. of the Conference on the
Future of Software EngineerindCM Press, pp 35—46.

Pomberger, G., et al, 1991. Prototyping-orienteitivese development - concepts and to&8suctured
Programming Vol 12(1), pp 43-60.

Ramdoyal, R., 201Reverse Engineering User-Drawn Form-Based Interfdoenteractive Database
Conceptual AnalysisPhd Thesis, Presses Universitaires de Namur,ddsity of Namur, Namur,
Belgium, 2010. Electronic version available frontpht/info.fundp.ac.be/libd/rainbow

Ramdoyal, R., et al, 2010. Reverse Engineering Uderfates for Interactive Database Conceptual
Analysis.Proc. of CAISE 201Hammamet, Tunisia, pp. 332-347.

Rode, J., et al, 2005. As easy as "click": End-ugeb engineeringProc. of the 5th International
Conference on Web Engineering (ICWE 200%)dney, Australia, Vol 3579 of LNCS, Springer,
pages 478-488.

Rollison, S.R., and Roberts, S.A., 1998. Formalizthg informational content of database user
interfacesProc. of the 17th International Conference on ComgapModeling (ER'98)pp 65-77.

Schewe, K.D., and Thalheim, B., 2005. Conceptual tfiadeof web information systemsData
Knowl.edge Engineering/ol 54(2), pp 147-188.

Schuler, D., and Namioka, A. (editors), 198articipatory Design: Principles and Practicelsawrence
Erlbaum Associates, Inc., Mahwah, NJ, USA.

Shoval, P., and Shiran, S, 1997. Entity-relatiopsind object-oriented data modelling - An experitaken
comparison of design qualitipata Knowledge Engineeriny/ol 21(3), pp 297-315.

Singer, J., et al, 2008. Software engineering datidection for field studiesGuide to Advanced
Empirical Software Engineerin@pringer, pp 9-34.

Spaccapietra, S., et al, 1992. Model independestrtisns for integration of heterogeneous schemas.
VLDB Journa) Vol 1(1) pp 81-126.

Terwilliger, J.F., et al, 2006. The user interfasethe conceptual modelRroc. of 25th International
Conference on Conceptual Modeling (ER'08p| 4215 of LNCS, Springer, pp.424—-436.

Vilz, J., et al, 2006. Data Conceptualisation forbABased Data-Centred Application Desi@moc. of
CAISE 2006Luxembourg, p205-219.

Winkler, W.E., 1990. String comparator metrics &mthanced decision rules in the Fellegi-Sunter model
of record linkageProc. of the Section on Survey Research Methuuald 72—-477.

Yang, F., 2008. WYSIWYG development of data drivereb applications.Proc. of the VLDB
EndowmentVol 1(1), pp 163-175.

23

