
IADIS International Journal on Computer Science and Information Systems
Vol. 6, No. 2, pp. 1-23
ISSN: 1646-3692

1

INVOLVING END-USERS IN DATABASE DESIGN
– THE RAINBOW APPROACH

Ravi Ramdoyal, Jean-Luc Hainaut
Laboratory of Database Application Engineering – PReCISE Research Center, Faculty of Computer
Science, University of Namur, Rue Grandgagnage 21 – B-5000 Namur, Belgium

ABSTRACT

The first step of most information systems design methodologies consists in eliciting part of the user
requirements from various sources such as user interviews and corporate documents. Regarding the core
of the information system, that is, the database, these requirements are formalised into a conceptual
schema of the application domain. Despite the intuitiveness and expressiveness qualities of conceptual
formalisms, conceptual schemas have proved difficult to validate due to understandability limitations
from the end-users standpoint. On the contrary, electronic forms are known to be a natural and intuitive
way to express data requirements for laymen. Besides, the necessity to associate end-users of a future
system with its specification and development steps has long been advocated. In this paper, we study
data requirements elicitation techniques relying on user-drawn electronic forms. We explore the reverse
engineering of form-based interfaces to perform an interactive database conceptual analysis, and
subsequently present the tool-supported RAINBOW approach resulting from this investigation. This
user-oriented approach relies on the adaptation and integration of principles and techniques coming from
various fields of study, ranging from database forward and reverse engineering to prototyping and
participatory design.

KEYWORDS

Information Systems, Requirements Engineering, Database Forward Engineering, Database Reverse
Engineering, Human-Computer Interfaces, Prototyping, Participatory Design.

1. INTRODUCTION

In the realm of information systems engineering, requirements engineering is a key step that
defines the necessary specifications for further analysis, design and development. Within this
process, database engineering focuses on data modelling, where data requirements are
typically expressed by means of a conceptual schema, which is an abstract view of the static
objects of the application domain. Since long, large conceptual schemas have proved to be

IADIS International Journal on Computer Science and Information Systems

2

difficult to validate by laymen. In addition, end-users are often considered passive information
sources, so that traditional database requirements elicitation techniques, such as the analysis of
corporate documents and interviews of stakeholders, usually do not actively and interactively
involve them in the overall specification and development process. Paradoxically, the
necessity to associate end-users of a future information system within those steps has long
been advocated. In particular, the process of eliciting static data requirements should make
end-users feel more involved and give them intuitive and expressive means to convey their
requirements to analysts. Conversely, analysts should also be able to capture and validate
these requirements by discussing them with end-users. Many users feel (and actually are) quite
able to deal with complex data structures provided they are expressed through more natural
and intuitive layouts, such as electronic forms.

This paper investigates the adaptation and integration of techniques coming from various
fields of study, such as the reverse engineering of user-drawn form-based interfaces, to
perform an interactive database conceptual analysis facilitating this communication and
allowing users to be more deeply involved. Section 2 presents the research context and
exposes the state of the art as well as the current limitations of available techniques. Section 3
presents the tool-supported RAINBOW approach for reverse engineering user-drawn form-
based interfaces and how it deals with the different challenges put in light in the previous
section. Section 4 discusses the specificities and contributions of this approach, while Section
5 addresses its validation. Finally, Section 6 concludes the discussion.

2. RESEARCH CONTEXT & STATE OF THE ART

Defining the application domain of an information system project and structuring the
information that needs to be manipulated are the first steps of Database Engineering. This
process of designing and implementing a database that has to meet specific user requirements
has been described extensively in the literature (Batini et al, 1992; Elmasri & Navathe, 2006)
and has been available for several decades in CASE tools. The most important and complex
step of Database Engineering is the Conceptual design which aims at expressing user
requirements into a conceptual schema, that is, a technology-independent abstract
specification of the future database, also known as a Platform-Independent Model (PIM).
From the conceptual schema, the transformational approach (Hainaut2006) allows database
engineers to automate the production of logical and physical counterparts, targeting specific
technology families and including performance-oriented aspects. Afterwards, from these
schemas, well-mastered (semi-)automated techniques, which have long been studied in the
database research community and applied in industry, allow artefacts of the final application
to be produced: typically interfaces, programs, database code, etc. (Schewe & Thalheim,
2005).

Various techniques exist to elicit static data requirements, such as the analysis of corporate
documents and interviews of stakeholders, and the Entity-Relationship (ER) model has long
been the most popular medium to express such conceptual requirements (Shoval & Shiran,
1997). However, these techniques usually do not actively and interactively involve end-users,
while the necessity to actively involve end-users of a future IT system during its specification
and development steps has proved to be one of the key success factors. Besides, the ER
formalism often fails to meet its objectives as an effective end-users communication medium,

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

3

though its simplicity, its graphical representation and its availability in numerous CASE tools
should make it the ideal communication medium between designers and users (Ramdoyal et
al, 2010).

On the other hand, most users are quite able to deal with complex data structures, provided
they are organized according to familiar layouts. In particular, electronic forms have proved to
be more natural and intuitive than usual conceptual formalisms to express data requirements
(Choobineh et al, 1992), while making the semantics of the underlying data understandable
(Terwilliger et al, 2006). This strong link existing between graphical interfaces and data
models is usually exploited in forward engineering, typically to produce artefacts such as
form-based interfaces from a conceptual schema. Conversely, a form contains data structures
that can be seen as a particular view of the conceptual schema.

The transition from one to another has been shown to be formally tractable (Rollison &
Roberts, 1998), so that Database Reverse Engineering (DBRE) techniques can be applied to
recover a fragment of the conceptual schema. Indeed, DBRE notably consists in recovering
the database requirements (i.e. the conceptual schema) from multiple system artefacts that are
usually obtained through schema transformation, such as documentation (when available),
DDL code of the database, data instances, forms and source code of application programs
(Chikofsky & Cross, 1990; Hall, 1992; Hainaut, 2002).

Such techniques can be combined with Prototyping, which usually acts as a basis for
interviews or group elicitation (Nuseibeh & Easterbrook, 2000), while providing early
feedback (Davis, 1992). A prototype can indeed by defined as a dynamic and interactive
visual working model of user requirements that can be used as a communication tool for
developers, customers and future end-users by providing the latter with a physical
representation of key parts of the system before implementation (Connell & Shafer, 1995;
Pomberger et al, 1991).

Deriving requirements from prototype artefacts has a long tradition. In 1984, Batini et al.
studied paper forms as a means to collect and communicate data in the office environment
(Batini et al, 1984). Later on, Choobineh et al. explored a form-based approach for database
analysis and design, and developed an analyst-oriented Form Definition System and an Expert
Database Design System that incrementally produced an ER diagram based on the analysis of
a set of forms (Choobineh et al, 1992). Kösters et al. introduced a requirements analysis
method combining user interface and domain analysis (Kösters et al, 1996), while Rollinson
and Roberts studied the problem of non-expert customization of database user interfaces and
developed a set of graph-oriented transformations to extract an Extended Entity-Relationship
schema describing an interface's information content (Rollinson & Roberts, 1998). More
recently, Terwilliger et al. defined the formal GUAVA (GUi As View) framework to use the
user interface directly as a conceptual model, by exploiting the hierarchical nature of forms-
based user interfaces to provide a simple representation of their informational content,
including the relationships between forms (Terwilliger et al, 2006). Rode et al. investigated
the feasibility of end-user web engineering for webmasters without programming experience
and developed a prototypical tool for the end-user development of web application involving
non professional programmers (Rode et al, 2005). Yang et al. also inquired about the
WYSIWYG user-driven development of Data Driven Web Applications, while transparently
generating their underlying application model on the fly (Yang et al, 2008).

We can observe that all these approaches rely on the same core principles: (1) build a set
of form-based interfaces; (2) extract the underlying form model; (3) translate the form model
into a working data schema; (4) progressively build an integrated data schema by looking for

IADIS International Journal on Computer Science and Information Systems

4

structural redundancies as well as constraints and dependencies. However, several limitations
must be underlined in most of these approaches. First of all, end-users are not involved
intimately in the overall process, and the tools provided for the drawing of the interfaces are
not dedicated to this purpose and/or not convenient for end-users. The underlying form model
of the interfaces must typically be constructed by analyzing the physical composition (layout)
before the informational composition (content) of the form, and in parallel, the prototypical
form-based interfaces do not use a generic language that would enable GUI generation of an
application on any target platform. Regarding the coherence of the interfaces, it is assumed
that the labels are used consistently through out the different forms, and little care is given to
possible lexical variation (paronymy, feminine, plural, spelling, mistakes, etc.) and ontological
ambiguity (polysemy, homography, synonymy). The use of examples (either through static
statements or dynamic interaction) is not systematically used to elicit constraints and
dependencies, and the final integrated schema often lacks refinement, such as specialisation
hierarchies, existence constraints or functional dependencies. Besides, this resulting schema is
not systematically submitted to end-users in a way enabling easy validation, and its possible
evolution through time is not considered. Lifting these limitations is clearly a necessity to
design comprehensive interactive database design methodologies.

3. PROPOSAL

3.1 Challenges

As we have seen, Prototyping has proved to be an efficient technique to elicit and validate
static data requirements. In particular, form-based interfaces appear to be a powerful means of
communication between all the stakeholders of an Information System project, since they can
be used to express formal data requirements and benefit from reverse engineering techniques
to derive valuable data user requirements. However, prototypes are still mainly used as a one-
way communication channel, since they are designed by analysts rather than end-users.
Moreover, the limitations exposed in existing approaches call for a special attention to notably
manage the unification of terminology and structure of the intended conceptual schema, its
enrichment to include hierarchies, constraints and dependencies, as well as the generation of
usable applicative components. Besides, since we also want to involve intimately end-users,
we must also provide them with adequate means to express requirements and map them to
their database engineering counterparts.

These challenges are dealt by specific disciplines, but their concerns and subsequent
processing overlay in the context of our inquiry. Database forward engineering notably
deals with the clarification of terminological and structural ambiguities, the elicitation of
constraints and dependencies, schema integration and the generation of applicative
components. For our purpose, Database reverse engineering can address the extraction of
data schemas from form-based interfaces, while Prototyping should allow users to express
and validate concepts and requirements through form-based interfaces. Finally, since we want
to emphasize user-involvement, we need to find ways to involve them and possibly tailor and
integrate existing techniques. From these observations, we can wonder if it could not be
possible to make prototyping accessible to any of the stakeholders, in order to let them

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

5

transparently express formal requirements on which could be applied transformational
techniques, and therefore aim at an approach inspired by the principles of Participatory
Design (Schuler & Namioka, 1993).

3.2 Overview

In order to bridge the gap between end-users and analysts to provide a better requirements
acquisition process for Database Engineering and overcome the understandability limitations
of the ER model, we propose to use user-drawn form-based interfaces as a two-way channel to
express, capture and validate static data requirements with end-users by taking advantage of
reverse engineering techniques.

More precisely, we consider an environment for which forms are a privileged way to
exchange information and stakeholders are familiar with form-based (computer) interaction
and the application domain. We claim that given such a context, we can exploit the
expressiveness of form-based user interfaces and prototypes, and specialise and integrate
standard techniques to help acquire and validate data specifications from existing artefacts in
order to use form-based user interfaces as a two-way channel to communicate static data
requirements between end-users and analysts. This interaction can produce a conceptual
schema that includes integrity constraints, existence constraints and functional dependencies,
and represents a major part of the application domain, which can be furthermore enriched in
cooperation with other elicitation techniques.

Indeed, since existing artefacts can be used to recover the underlying requirements through
well-mastered reverse engineering techniques, we advocate using such tailored techniques in
forward engineering by working with the virtual artefacts produced by end-users. This
approach benefits from the advantages of rapid prototyping, while making the user a central
actor of the process, and designing a set of simple semantic interfaces rather than a complete
application.

In order to formalise this approach, we need to take in account several specificities, among
which a high level of interaction with end-users, the possibility to involve different levels of
participants (ranging from laymen to experts) through a modular process, the need for a tool
support accessible to end-users and useful to the analysts, as well as the necessity to tailor
existing techniques. We indeed want to provide end-users with adequate tools to draw and
specify by themselves the interfaces describing the underlying key concepts of their
application domain, without having to worry about any application logic. Provided a little
training and, as previously explained, involving end-users in such processes may have a very
positive impact. In this context, the computer analysts rather appear as guides, whose roles are
oriented towards the validation of requirements and the generation of complex code.

These principles are at the foundation of broader approaches, such as the ReQuest
framework (Vilz et al, 2006), which provides a complete methodology and a set of tools to
deal with the analysis, development and maintenance of web-based data-intensive
applications. The alternative RAINBOW approach keeps the same overall philosophy while
focusing on the specification of static data requirements as part of a greater Requirements
Engineering process. The specificities of this approach led us to specialise and integrate
existing techniques into a semi-automatic seven-step process (see Figure 1) that does not aim
to provide a ready-to-use application, but a set of specification documents and tools, in order
to support the development of future applications and overcome the previously mentioned

IADIS International Journal on Computer Science and Information Systems

6

limitations while dealing with the cited challenges.

Represent Adapt

Wander Objectify Bind

Investigate

validated
constraints and
dependencies

Nurture

data
samples

user-drawn
form-based
interfaces

conceptual
schemas

hierarchised
and unified

pre-integrated
schema

database
queries

prototype

integrated
schema

Figure 1. Overview of the RAINBOW approach.

Note that in the scope of this research, we work with the Generic Entity-Relationship
(GER) model (Hainaut, 1989), which is an extended Entity-Relationship model that includes,
among others, the concepts of schema, entity type, generalisation hierarchy, relationship type
of any degree, value domain, entity type and relationship type attribute (including compound
and/or multivalued attributes), key, as well as various constraints. The GER is a wide-
spectrum model that encompasses several abstraction levels (from conceptual to physical) and
most modelling paradigms (e.g., ER, object-relational or XML)

Let us now present for each of the RAINBOW steps its overall objective, the issues it
handles, the existing solutions to manage these issues and why they are not suitable in this
context, as well as how they have been adapted and integrated for our purpose. More detail, as
well as the algorithms formalising the presented strategies, can be found in (Ramdoyal, 2010).

3.3 Represent: Enabling users to express Concepts and
Requirements by building themselves Form-Based Interfaces

In the first step of the approach, end-users are invited to draw and specify a set of form-based
interfaces to perform usual tasks of their application domain. Such interfaces are typically
entry forms to capture data on, say, a new customer or a new product. The end-users must at
least provide basic properties regarding the interface elements (typically a label and
description). Advanced users may also provide other properties such as the size of a field, the
expected type of values, default or predefined values, existence constraints, as well as links
between the concepts. Note that the objective is not to let end-users draw the interfaces of a
future application, but to capture requirements through a medium they are familiar with.

Numerous User Interface Description Languages (UIDL) exist to model form-based
interfaces, however, since they must express rich and complex interfaces, layouts and
behaviours, their structure becomes complex and difficult to read, and furthermore, end-users
may be overwhelmed by their superabundance of available widgets and compositions. In order

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

7

to focus on simple interface widgets that can allow end-users to simply express concepts,
while casting away the technical aspects of layout, we propose a simplified form model based
on the most primitive and usual form widgets (Figure 2), which can intuitively be mapped to
the GER model and through which any other widget can be expressed. These widgets are
either containers such as forms, tables and fieldsets or simple widgets such as inputs,
selections and buttons.

Widget ER Counterpart Widget ER Counterpart

Entity Type

Monovalued
Compound
Attribute

Mandatory
Monovalued

Simple Attribute

Multivalued
Compound
Attribute

Mono/Multi-
valued Simple
Attribute with
Value Domain

 Procedural Unit

Figure 2. Widgets of the RAINBOW Simplified Form Model

A dedicated tool support has been developed to manipulate this model which is intended to
be transparently used by end-users to express concepts, and includes information for designers
and CASE developers that would like to instantiate or extend it. Figure 3 illustrates the type of
interfaces that could be produced during this phase if one, for example, wanted to support the
management of a small company that offers services and sales products. For instance, for each
customer, personal information including his main and alternative addresses is stored, as well
as the list of orders that he issued. Each of these orders mentions information on the context of
its creation, and list the associated list of products, and so on.

3.4 Adapt: Inferring Data Schemas from Form-Based Interfaces

Once the interfaces are drawn, database reverse engineering techniques are applied to recover
the underlying conceptual schema of the domain. The interfaces are automatically analyzed to
extract data schemas using mapping rules, a subset of which is presented in Figure 2. Then,
each individual entity type is transformed into a primitive conceptual schema by transforming
complex attributes into entity types. Figure 4 illustrates the expected type of conceptual
schemas obtained from the translation of user-drawn form-based interfaces.

IADIS International Journal on Computer Science and Information Systems

8

Figure 3. Possible user-drawn form-based interfaces for the management of a small company that offers
services and sales products

0-N

0-1

0-N

0-N

0-N

0-N

0-N

0-1

0-N

0-1

Shop
Name
Telephone[0-1]

Service
Code
Description[0-1]
Hourly rate[0-1]

Seasonal good
Code
Description[0-1]
Price[0-1]
Conditions[0-1]

Provider
Name
Vat number[0-1]
Street[0-1]
Zip code[0-1]
City[0-1]
Telephone[0-1]
Fax[0-1]

Product
Code
Description[0-1]
Brand[0-1]
Price[0-1]
Provider (primary)
Supplier (secondary)[0-1]

Products
Code
Quantity

Order
Number
Date[0-1]
First name
Last name
Shop[0-1]

Orders
Number
Date[0-1]

Location
Street[0-1]
Zip code[0-1]
City[0-1]

Customer
Customer number
First name
Last name
Title[0-1]

Address
Street[0-1]
Number[0-1]
Zip code[0-1]
City[0-1]
Telephone[0-1]

Address (alternative)
Street[0-1]
Number[0-1]
Zip code[0-1]
City[0-1]

Figure 4. The conceptual schemas corresponding to the interfaces of Figure 3.

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

9

3.5 Investigate: Analysing Semantic and Structural Redundancies to
Manage Commonality

Cross-analysing the set of individual schemas obtained by adapting the user-drawn forms
usually brings to light possible ambiguities as well as redundant information. Typically,
whereas we can observe that the constructs used by a single user are relatively consistent
among the interfaces he draws, when considering multiple users, we notice that variabilities,
ambiguities and redundancies may occur. These phenomena may concern the various
properties of the widgets, such as the label, description, minimal cardinality, maximal
cardinality, value type, value size, or domain of values... In the scope of this paper, we focus
on the widgets labels to track down semantic and structural ambiguities, but the definitions
and strategies that we propose could intuitively be extended to take in account other
properties.

3.5.1 Terminological Ambiguities

Terminological ambiguities occur when elements of the schema are semantically similar, i.e.
their names appear to be orthographically and/or ontologically similar, which respectively
concerns their spelling and meaning. In the example, the labels “Orders”' and “Order” are
orthographically similar, while the labels “Provider” and “Supplier” are ontologically similar.
Identifying orthographically similar strings is a problem usually dealt with by using String
Metrics (Cohen et al, 2003). Ontologies, Thesaurus and Dictionaries can also be useful to
track down similarities of meaning among a set of words, and may target specific domains,
e.g. UMLS for the medical field (Hersh et al, 2000).

In order to discover such similarities, we compare the labels of each interface using a
variant of Jaro-Winkler's distance (Winkler, 1990) and WordNet (Fellbaum, 1998). The
former is one of the most popular string metrics for dealing with word comparison, while the
latter is an English non domain-specific orthographical reference system, handling nouns,
verbs, adjectives and adverbs, and providing definitions, synonyms and hypernyms.

The discovered similarities are then highlighted in the interfaces and submitted to the end-
users for arbitration. This task consists in deciding which semantic similarities are actually
genuine semantic equivalences, i.e. the similarities that are agreed upon by the end-users and
the analysts to represent the same concept. For each equivalence, a unifying term is defined
and propagated to the schemas and the forms.

3.5.2 Structural Redundancy

The second type of similarity that may occur is the structural redundancy. Typically, we can
observe that entity types can share components (attributes and roles) bearing the same names,
which suggests that these elements may induce different degrees of similarity.

Given the tree-like structure of the conceptual schemas, the problem of mining structural
redundancies is actually alike the problem of tree mining (Chi et al, 2005), and more
precisely frequent embedded subtrees mining in rooted unordered trees (Jimenezet al,
2008). Tree based approaches are suitable for complex and deep graphs, however we observe
that the structure of user-drawn interfaces is usually quite simple (with rarely more that three
or four levels of imbrication), if only by concerns of legibility and usability. Indeed, “most
forms have a shallow (i.e. few levels) and narrow (few nodes per level) structure because of
human information processing limitations” (Choobineh et al, 1992).

IADIS International Journal on Computer Science and Information Systems

10

Instead of putting in motion such heavy algorithms, we therefore propose to adopt a
simpler strategy that consists in comparing one by one the entity types to outline patterns, i.e.
bijections between two sets of components belonging to different entity types. The similarity
between components from each set is measured using several indicators (typically, the label).
The discovered patterns are highlighted in the forms, and the end-users are then invited to
arbitrate them by classifying the relation between the concepts sharing a pattern among one of
these most usual cases, as illustrated in Figure 5: (a) difference (the entity types fortuitously
share a set of components), (b) equality (the entity types represent the same concept), (c)
union (the entity types partially represent the same concept, which may translate into the
specialization of a higher-level concept non explicitly expressed), (d) comprehension (one of
the entity types is a specialization of the other), (e) complementarity (one of the entity types
actually refers to the other). As for the terminological arbitration, unifying terms are defined
and propagated to the schemas and the forms.

E2
A
B
E
F

E1
A
B
C
D

E12
A
B
C
D
E
F

E2
E
F

E1
C
D

E12
A
B

 E2
E
F

E1
A
B
C
D

1-10-1 R
E2

E
F

E1
A
B
C
D

(a) (b) (c) (d) (e)

Figure 5. Most common cases of structural redundancy

At the end of this interactive process, we obtain a pre-integrated schema resulting from the
terminological and structural analysis of the set of schemas obtained through the Adapt phase.
In this schema, the terminology has been unified so that every element associated with a given
term now represents the same concept. Also, the sub-schemas originally associated with each
form are now connected through the relationship types and IS-A hierarchies of their entity
types, as illustrated in Figure 6.

3.6 Nurture: Eliciting Dependencies and Constraints

In order to enrich the pre-integrated schema, we then focus on uncovering additional
constraints and dependencies on its elements. Though these constraints can be provided
directly, it appears that the acquisition and use of data samples may also be useful and more
natural in this process. Indeed, not only do data samples test the ability of the user-drawn
form-based interfaces to gather the necessary information, but they also help to visualise the
implications of existing constraints. Moreover, their analysis may in turn reveal possible
unsuspected constraints. Using the interfaces they drew, end-users are therefore invited to
provide data examples that are analysed to infer and arbitrate possible constraints and
dependencies.

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

11

0-N0-1

0-N1-1 «Refers to»

0-N

0-1

0-N

0-1

0-N 0-1

0-N

0-N

0-N

1-1

«Refers to»

1-1

0-N

0-N

0-1

0-N

0-1

Special good
Code
Description[0-1]
Price[0-1]
Conditions[0-1]

«Unites with»
SOLUTION

«Equals»
SHOP

Shop
Shop name
Telephone[0-1]

Shop
Shop name

Service
Code
Description[0-1]
Hourly rate[0-1]

«Equals»
PROVIDER

Provider
Name
Vat number[0-1]
Street[0-1]
Zip code[0-1]
City[0-1]
Telephone[0-1]
Fax[0-1]

Provider (secondary)
Name

Provider (primary)
Name

«Equals»
PRODUCT

Product
Code
Description[0-1]
Brand[0-1]
Price[0-1]

Products
Code
Quantity

«Equals»
ORDER

Order
Order number
Date[0-1]
First name
Last name

Orders
Order number
Date[0-1]

Customer
Customer number
First name
Last name
Title[0-1]

«Equals»
ADDRESS

Address
Street[0-1]
Street number[0-1]
Zip code[0-1]
City[0-1]
Telephone[0-1]

Address
Street[0-1]
Zip code[0-1]
City[0-1]

Address (alternative)
Street[0-1]
Street number[0-1]
Zip code[0-1]
City[0-1]

Figure 6. The pre-integrated schema of the example. The newly created supertypes and relationship types
are marked with stereotypes expressing their meaning.

There are numerous types of constraints and dependencies that can be established for a
given schema, but in this research, we especially focus on:

• Technical constraints: minimal and maximal cardinalities, value type, value size,
prerequisite optional components (for optional components);

• Existence constraints, which define how the optional components should coincide
for each entity type (coexistence, exclusive, at-least-one, at-most-one);

• Functional dependencies, which define the implications between sets of
components;

• Identifiers , which define the sets of components that uniquely identify a given
instance of a given entity type.

Analysing the content of a database or a subset of data samples and using induction can
intuitively lead to make assumptions on possible technical constraints, existence constraints
and identifiers. Consider for instance an optional textual attribute A. If for all the data samples
provided so far, we observe that the widget associated with A is never empty and always

IADIS International Journal on Computer Science and Information Systems

12

composed of a number, we could easily wonder if A is not actually a mandatory numeric
attribute. Moreover, if all the values provided for that widget are different, this could suggest
that A is in fact a primary or secondary identifier.

As for discovering functional dependencies, this problem is usually dealt by using
dependency discovery problem approaches, based on the analysis of a given database
content, such as DepMiner (Lopes et al, 2000) or FD_Mine (Yao & Hamilton, 2008).
Unfortunately, we observed that the existing approaches rely on massive pre-existing data
sets, which is here problematic. Indeed, given our context, there is possibly no available data
sample, or their re-encoding would be too expensive. It is anyway unrealistic to ask end-users
to willingly provide numerous data samples. This naturally calls for new ways to discover and
suggest constraints and dependencies on-the-fly, based on the incremental input of data
samples by end-users. We therefore propose an interactive process inspired by the principles
of Armstrong relations (Lopes et al, 2000), and enabling end-users to provide such
constraints and dependencies as well as data samples in whatever order.

An Armstrong relation is a relation that satisfies each functional dependency implied by a
given set of functional dependencies, but no functional dependency that is not implied by that
set. The ideal process should lead us to build a set of data samples and dependencies so that
each entity type of the underlying conceptual schema becomes such a relation. However,
reaching such a state is obviously not trivial per se, and these principles are here inapplicable
as a side effect of user involvement. However, we can try to near it by progressively
narrowing the functional dependencies.

The process therefore starts with the initialisation of the constraints and dependencies
based on previously provided requirements, then relies on user input to gather data samples
and constraints. Since the number of possible functional dependencies for each entity types
can be very high, we prefer to initialise a set of high-level possible dependencies, which would
be the most general yet restrictive ones. These high-level dependencies claim that any
component of a given entity type could determine the combined values of the other
components. Whenever a dependency is dismissed or invalidated, we recursively generate
weaker functional dependencies to cover all the existing ones, by progressively reducing the
right-hand sides and enlarging the left-hand sides. The objective is to favour functional
dependencies with minimal left-hand sides and maximal right-hand sides.

When a new data sample is added, we analyse each valid functional dependency to check
if there is an existing data sample that is conflictual, i.e. if an existing data sample has the
same left-hand side but a different right-hand side when considering the components of the
functional dependency. If such a conflictual data sample exists, the functional dependency is
discarded and alternatives are recursively generated. End-users can also directly specify
enforced or discarded constraints and dependencies, even without looking at possible
suggestions. To be accepted as enforced, a given constraint or dependency must be satisfied
by the existing set of data samples associated with the considered entity type. On the other
hand, it can be discarded as long as it still qualifies as a constraint or dependency for the given
entity type.

Acquiring data samples hence enables us to generate suggestions for possibly valid
constraints and dependencies, while acknowledging constraints and dependencies restricts the
data samples that the users may provide. This interaction enables to progressively narrow the
set of possible constraints and dependencies, while building a set of valid data samples that
will prove useful later on. Once this interactive process ends (hopefully, with all the
constraints either validated or rejected), we accordingly proceed with the update of the pre-

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

13

integrated schema. During the overall process, the role of the analyst is crucial to guide end-
users and ensure that no relevant constraint or dependency is ignored.

3.7 Bind: Completing the Integration of the Conceptual Schema

We subsequently address the final integration of the elements of the pre-integrated schema
based on all the previously collected specifications. Different transformational techniques
exist to handle the integration of similar objects into non-redundant structures (Spaccapietra et
al, 1992). Among these techniques, we choose to work with n-ary integration for handling
upward inheritance and solving the constraints, because of the potential multiple occurrences
of key concepts, and with binary integration for referential components and attributes that
need to be moved from entity types into relationship types.

In particular, we analyse and refine the IS-A hierarchies resulting from the Investigate step
in order to elicit components that can be integrated and inherited upwardly. Referential
attributes are moved and integrated into the appropriate entity types, as well as attributed
describing relationships rather than their current entity type owner. Finally, the constraints and
dependencies from the Nurture step have been updated accordingly. Since these tasks can be
led in any order, the role of the analyst is crucial to manage the process and guide end-users
appropriately. Besides, his skills may be needed to refine the structure of the schema once the
previous tasks are completed, in order to ensure the validity of the schema.

At the end of this step, the integrated schema therefore crystallises all the requirements that
were expressed by end-users since the beginning of the RAINBOW process, as illustrated in
Figure 7. The schema should hence represent the application domain as expressed though the
user-draw forms and the additional specifications that were provided. The aim of the
remaining steps is to ultimately confirm these requirements.

3.8 Objectify: Generating Applicative Components

A lightweight prototype application is then generated from the integrated conceptual schema.
It comprises a simple data manager that uses the interfaces drawn by the end-users and allows
them to manipulate the concepts that have been expressed, typically to inspect, create, modify
and remove data. Such a process is relatively straightforward (Elmasri & Navathe, 2006).

First of all, a database can be automatically generated using the transformational approach:
the integrated conceptual schema is sequentially transformed into a logical schema, then a
physical schema, and finally DDL code, from which an operational database can be created
using a compatible Database Management System (DBMS). CASE tools have proved very
effective in supporting such a process. Subsequently, access keys, table spaces and clusters
can be generated. Afterwards, if judged relevant by the participants, the database can be
populated with the data samples provided by the end-users. Once the database has been set up
in the DBMS, simple queries SQL to select, insert, update and delete rows of each table can be
automatically generated. These queries can subsequently be connected to the form-based
interfaces drawn by the end-users in order to make them reactive and report the messages of
the database.

The final step consists in grouping the user-drawn interfaces in an operational
environment. This implies creating the mechanisms for a central application granting
navigational access to the forms and between them. The prototypical application thus created

IADIS International Journal on Computer Science and Information Systems

14

makes it possible to perform simple consulting and editing actions on the database through the
form-based interfaces, which would qualify it as a lightweight data manager for the database.

0-N

1-1

0-N

1-1

0-N

0-1

0-N

0-NQuantity

0-N

1-1

0-N

0-1

secondary

0-N

0-1

primary

0-N

0-1

main

0-N

0-1

alternative

P

Special good
Conditions[0-1]

Solution
Code
Description[0-1]
id: Code

Shop
Shop name
Telephone[0-1]
id: Shop name

Service
Hourly rate[0-1]

Provider
Vat number
Name
id: Vat number

Product
Brand[0-1]
Price[0-1]

Order
Order number
Date[0-1]
id: Order number

Customer
Customer number
First name
Last name
Title[0-1]
id: Customer number

Address
Street[0-1]
Street number[0-1]
Zip code[0-1]
City[0-1]
Telephone[0-1]
Fax[0-1]
at-lst-1: Zip code

City

Figure 7. The final integrated schema of the example.

3.9 Wander: Validating the Requirements through the generated
Prototype

Finally, the last stage consists in confronting the end-users with the prototypical application to
check if the static data requirements that were materialised meet their needs, which should
ultimately validate the integrated conceptual schema. The role of the analyst during this
process is therefore to assist the users in the validation of the schema through the use of the
prototype, and to record their positive and negative remarks. The evaluation of the elicited
requirements through the manipulation of the associated lightweight data manager should
eventually lead to end the requirements elicitation process or to loop back to the previous steps
to add, delete or modify the specifications that were expressed.

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

15

3.10 Tool Support

In order to assist the end-users and analysts during the different steps of this interactive
approach, a dedicated tool support has been developed. The RAINBOW Tool Kit is a user-
oriented development environment, intended to assist end-users and analysts in the definition
and validation of database requirements through prototyping.

It supports the first steps of the approach, starting with the initial drawing step. For this
purpose, the tool kit provides ready-to-use implementations of the widgets presented in Figure
2, in order to simplify the elaboration of form-based interfaces. Figure 8 shows for instance
the edition of the forms presented in Figure 3.

Figure 8. Editing of the forms of Figure 3, using the RAINBOW Tool Kit.

Once the drawing is completed, the mapping rules of Section 3.4 are automatically applied
to create the underlying data models. To proceed with the unification of the terminology and
structure, the forms are automatically analysed and the elicited ambiguities are highlighted in
the interfaces so that they can be arbitrated, as illustrated in Figure 9.

Once the arbitration of these ambiguities has been performed, the users proceed with the
interactive elicitation of constraints. For this purpose, they can directly provide data samples
or constraints for each form, or validate candidate suggestions, as illustrated in Figure 10.
Each new data sample restricts the set of candidate constraints that have not been validated
yet, and conversely, each new validated constraint restricts the values that can be provided for
subsequent data samples. Finally, mechanisms are provided to handle the final integration of
the underlying data models.

IADIS International Journal on Computer Science and Information Systems

16

Figure 9. Arbitrating the structural similarity {Code,Description,Price} existing between the
forms Product and Special Good, using the RAINBOW Tool Kit.

Figure 10. Providing data samples and constraints for the form Order, using the RAINBOW Tool Kit.

The tool kit is written in Java, using QT Jambi for the rendering of the interfaces, as well
existing libraries to manage Jaro-Winkler's distance and interact with WordNet. It also
interacts with the repository of DB-Main, a database engineering CASE Tool providing all the
necessary functionalities to support a complete database design process (from conceptual
analysis to DDL code generation). More technical detail on the implementation of the tool kit
can be found in (Ramdoyal, 2010).

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

17

4. SPECIFIC ASPECTS OF THE RAINBOW APPROACH

4.1 Integrating Different Disciplines

The RAINBOW approach is at the crossroad of different disciplines, each of which deals with
specific issues using dedicated methods and techniques. However, their concerns and
subsequent processing can concur for the purpose of bridging the gap between end-users and
analysts in order to elicit static data requirements. One of the main achievements of this
research was therefore to identify, tailor and integrate principles and techniques coming from
the fields of Database Forward Engineering, Database Reverse Engineering, Prototyping and
Participatory Design in order to provide this interactive and user-oriented Database
Conceptual Analysis approach. The following specificities naturally follow from the decisions
that were made to support this integration into a consistent and comprehensive approach, for
which the contributions, with respect to the limitations of existing approaches, are synthesized
in Table 1.

4.2 End-users as Major Stakeholders throughout the Data
Requirements Process

In this research, the focus was specifically put on simplifying and improving the static data
requirements process, leading the interfaces to appear as a means rather than an end product.
In particular, we wanted form-based interfaces to serve as a basis for discussion and joint
development, hence using prototyping in an exploratory fashion, though it could also be used
in an evolutionary approach. Several challenges inherent to this user-centred approach had to
be therefore managed.
 First of all, to make the development of the interfaces more accessible and to focus the
drawing on the substance rather than (ironically) the form, the available graphical elements
were restricted to the most commonly used ones, which incidentally also simplifies the
mapping rules between the form model and the ER model, and a dedicated tool was designed
to support this process. The possible lexical variations that could occur in such an interactive
process are taken in account, while simply ignored by other similar researches. We therefore
offer the possibility to detect and correct on-the-fly many mistakes or deviations in the
terminology, or to deal with them later on.
 Besides, the interfaces are systematically used to visualise similarities, to input constraints
and data samples, so that they can be the referent for end-users, and their favourite
communication means. The end-users therefore interact with the form-based interfaces, while
the analyst can also access and edit the underlying data schemas at any time, as long as he
ensures the maintenance of the mapping.
 The will to involve intimately end-users into the definition of their needs and the
specification of the static data requirements, while managing the satisfaction of all the
stakeholders, also places this approach as more suitable for information systems projects in
small to medium size enterprises. Besides, the projects should be themselves small to medium
sized, in order to maintain a manageable set of form-based interfaces.

IADIS International Journal on Computer Science and Information Systems

18

Method FDS/EDDS FLUID / Click GUAVA AppForge RAINBOW

Authors
Choobineh
et al, 1992

Kösters
et al, 1996

Rollinson
& Roberts, 1998

Rode
et al, 2005

Terwilliger
et al, 2006

Yang
et al, 2008

Ramdoyal
et al, 2010

Tool support
(drawing
and analysis)

Form Definition System
+ Expert Database

Design System

DIWA + Extended
PCTE object

management system

Xfig + Prolog
+ GRL

+ XVCG
Click

GUAVA
framework

AppForge
Rainbow
Tool Kit

Prototyping
finality

Exploratory,
evolutionary

Evolutionary
Exploratory,
evolutionary

Evolutionary Exploratory Evolutionary
Exploratory,

(evolutionary)

Prototype
designers

Analysts,
end-users

Analysts Analysts
Analysts,
end-users

Analysts
Analysts,
end-users

Analysts,
end-users

Underlying
form model

/
User Interface

Analysis + Object
 (UIA /UIO) models

TRIDENT
variant

HTML/PHP GUAVA-tree HTML RSFM

Syntactic schema
matching

/ / plurals / / /
orthographic,
ontological

Structural schema
matching

equality equality equality / / equality
equality,

specialisation, union,
complementarity

Constraints and
dependencies

identifiers,
FDs

identifiers identifiers identifiers identifiers identifiers
existence constraints,

identifiers,
FDs

Examples
analysis

static,
user-provided

and/or generated

dynamic,
user-provided

/ / / /
static,

 user-provided
and/or generated

Data model ER OOA ERC+ (EER)
Relational Model

(MySQL)
Relational model
(Natural schema)

ER GER

Model life cyle linear linear linear linear linear linear cyclic

Target platform Unrestricted Unrestricted Unrestricted Web-oriented Unrestricted Web-oriented Unrestricted

Table 1 - Comparison of existing approaches in prototypical reverse engineering for forward engineering. The symbol “/" means that no details were
explicitly provided for the given characteristic.

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

19

It is interesting to note that though the approach is oriented towards end-users, the real corner-
stone of the RAINBOW processes is the analyst. Indeed, his social and technical skills and
knowledge are crucial to manage, assist and guide end-users in order to perform an enjoyable
and effective elicitation process for all the parties involved.

4.3 Using Reverse Engineering for the Purpose of Forward
Engineering

Reverse engineering usually consists, among other things, in recovering or reconstructing the
functional specifications from a piece of software, starting mainly from the source code of the
programs. However, using controlled artefacts and monitored processes, the objective is here
to “build the truth” rather than “find the truth”. In particular, the form-based interfaces are
used as a well-defined specification language, as opposed to the usual reverse engineering
approach, where the existing screens are obscure artefacts that need to be decrypted. This
requires to significantly adapt the usual Database Reverse Engineering (DBRE) methodology
(Hainaut2002).

DBRE typically comprises the following four sub-processes: (1) Physical extraction,
which consists in parsing the DDL code in order to extract the raw physical schema of the
database; (2) Refinement, which enriches the raw physical schema with additional constructs
and constraints elicited through the analysis of the application programs and other sources; (3)
Cleaning, which removes the physical constructs (such as indexes) for producing the logical
schema; (4) Conceptualisation, which aims at deriving the conceptual schema that the logical
schema implements. Such a methodology is obviously not applicable as is in the context of the
of RAINBOW approach.

Indeed, starting from a set of user interfaces, the physical extraction does not allow one to
derive a complete physical schema, but a set of partial views of this schema. Similarly, the
refinement process may not rely on additional available artefacts such as application programs
or database contents. However, it can take benefit from data samples provided by the users
through the interfaces they have drawn, leading to the identification, among others, of
candidate dependency constraints and attribute domains. The recovered constraints, once
validated, are used to enrich the physical schemas in order to obtain a set of logical schemas.
The cleaning phase, as defined above, does not make sense in the absence of an initial DDL
code. Instead, the conceptualisation step allows one to derive a set of partial conceptual
schemas from the logical schemas obtained so far. In particular, the logical schemas are
normalised in order to ease the identification of similarities between them. This important
process relies on transformation techniques. During the integration phase, the partial
conceptual schemas are merged, based on structural and semantic similarity criteria, in order
to produce a single complete conceptual schema.

4.4 A Modular and Non Standard View Integration Process

One of the key assets of this approach is its flexibility, especially regarding the enrichment of
the data schemas. As we have seen, proficient end-users can already provide constraints
during the drawing phase. Otherwise, such properties can be directly provided later on, or
discovered from a set of data samples provided by end-users. Similarly, the unification of the
terminology and structures can also be led during the drawing phase, or during further steps.

IADIS International Journal on Computer Science and Information Systems

20

This modularity makes the approach suitable for different types of users, ranging from the
layman end-user to the advanced Database Engineering, or from the analyst to the developer.
The progressive gathering of elements of integration for further resolution also differs from
the standard integration processes.

4.5 System Evolution Support through a Transformational
Approach

The RAINBOW approach also heavily relies on the transformational paradigm, according to
which most (if not all) Database Engineering processes can be modelled as a chain of schema
transformations (Hick & Hainaut, 2006; Hainaut et al, 2008). The transformations that we use
are incremental and preserve the semantics of source constructs in their target counterpart,
which ensures the consistency, traceability and reversibility of the specified elements
throughout the whole workflow. This also favours the evolvability of the specifications
produced via the approach. Indeed, this approach is designed to loop if necessary, while
storing and propagating all the previously provided specifications and decisions. Combined
with the traceability of the elements, we can ensure the propagation of any modification in the
different steps of this approach.

4.6 A Rich and Relevant Part of Requirement Specifications

The output of this process is a set of annotated form-based interfaces and their underlying
integrated conceptual schema, as well as their associated playable prototype and ready-to-use
database. Compared to other existing approaches, the resulting conceptual schema is rather
rich, since it includes hierarchies, as well as constraints and dependencies. It can also be
analysed to generate a thesaurus of the application domain. Moreover, the elements produced
can effectively be used to share and validate requirements as part of the requirement
specifications for a complete information system project, built around the database. Indeed,
the RAINBOW approach ensures their validation and correction, and these artefacts can be
used for further evaluation and reference, while contributing to the forecast of future design
and implementation, as well as contractibility.

Although this approach addresses a significant subset of data requirements, it does not
cover all of its aspects, typically the dynamic ones. Therefore, the RAINBOW approach does
not replace more traditional task and information analysis approaches, but rather complements
them. For instance, the form-based graphical representation of the underlying data schema can
be used during interviews to stimulate the discussion.

As for the generated prototype, it can be used during the task analysis to capture real-time
use cases and define the expected behaviour of the system. In addition, analysing how the
tasks are performed using the prototype in comparison to the legacy information system (if
any), can help to support the Reverse engineering of existing artefacts and even induce more
general considerations on the definition of the target information system.

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

21

5. VALIDATION

To experiment and evaluate the approach, a validation protocol has been defined in order to
notably assess its ability to help end-users and analysts to communicate static data
requirements to each other, and the quality of the conceptual schemas it produces. The
validation protocol relies on the Participant-Observer principles to monitor the use of the
RAINBOW approach and toolkit, and the Brainstorming/Focus group principles to analyse the
resulting conceptual schemas, as defined in (Singer et al, 2008). This protocol was used for a
first series of experimentations where pairs of end-users and analysts were asked to jointly
define the conceptual schema of a future information system using the RAINBOW approach
and tool kit.

For each project, the first task consisted in preparing the experimentation by defining the
subject based on real-life concerns of the end-users, then training the participants to
understand the method and use the tools. Secondly, the end-users and analysts were asked to
apply the approach on their project and focus on the five first steps, while observers took
notes. The third step consisted in analysing the observations on the efficiency of the approach.
Finally, the quality of the produced schemas was debated, taking in account schemas that were
designed by the analysts without seeing the output of the approach.

The analysis of these experimentations, confirmed the validation canvas to be valid and
relevant, as it notably highlighted that the RAINBOW approach and tool support did help end-
users and analysts to communicate static data requirements to each other, while generating a
positive response from the participants. Though all the requirements could not be expressed
through the toolkit, the latter did serve as a basis for discussion and modifications. On the
other hand, the quality of the conceptual schemas produced using the RAINBOW approach
were relevant, understandable and comparable to the schemas that an analyst could produce by
himself.

These early results are therefore encouraging, though special care should be given to
improve critical aspects such as the assignment of responsibilities, the drawing behaviours, the
customisation of the tools and the relevance of the elements they highlight. This preliminary
validation process also stressed several sensible and interesting phenomena, such as the
emergence of different design styles during the drawing phase, for instance regarding the
grouping of elements in containers. Besides, given the intrinsic difficulty of evaluating
methodologies for the development of large systems, the RAINBOW approach deserves to be
tested through multiple settings over time and compared to other databases methodologies in
order to study its true effects and monitor the previously mentioned phenomena.

6. CONCLUSION

In this paper, we presented the tool-supported RAINBOW approach, designed to interactively
involve end-users in the database conceptual analysis process of information systems
engineering and facilitate the communication between analysts and end-users. This
comprehensive approach is based on the reverse engineering of user-drawn form-based
interfaces to perform an interactive database conceptual analysis, and proposes to elicit and
validate static database requirements based on end-users involvement through interactive

IADIS International Journal on Computer Science and Information Systems

22

prototyping, as well as the integration and adaptation of techniques coming from various fields
of study.

This original and realistic contribution, aiming to elicit static database requirements and
promote user involvement in the context of Information Systems Engineering, addresses the
necessity to actively involve end-users of a future IT system during its specification and
development, as notably advocated by the proponents of Participatory Design. Beyond the fact
that end-users know “how business is done” in the environment for which an information
system is being developed, such practices can help to avoid resentment and resistance towards
a new information system infrastructure, as well as to stimulate productivity. Besides, the
RAINBOW approach overcomes the main concerns raised by similar researches, while being
interoperable with other approaches and extensible for further analysis and elicitation
processes.

In the approach, the expressiveness of form-based interfaces and prototypes, combined
with the specialisation and integration of standard technique to help acquire and validate
specifications from existing artefacts, enable to use form-based interfaces as a two-way
communication channel to communicate static data requirements between end-users and
analysts. The current experimentations comfort us in believing that this approach is viable and
worthy. By pursuing these experiments with the collaboration of end-users over time, we will
be able to enrich and improve the approach, its processes and its tool support based on the
feedback gathered and the analysis of the observed phenomena.

REFERENCES

Batini, C., et al, 1984. A methodology for conceptual design of office databases. Information Systems,
Vol 9(3/4), pp 251-263.

Batini, C., et al, 1991. Conceptual Database Design: An Entity-Relationship Approach. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA.

Chi, Y., et al, 2005. Frequent subtree mining - an overview. Fundamenta Informatica, Vol 66(1-2), pp
161-198.

Chikofsky, E.J., and Cross, J.H., 1990. Reverse engineering and design recovery: A taxonomy. IEEE
Software, Vol 7(1), pp 13-17.

Choobineh, J., et al, 1992. A form-based approach for database analysis and design. Communications of
the ACM, Vol. 35 (2), pp 108-120.

Cohen, W.W., et al, 2003. A Comparison of String Distance Metrics for Name-Matching Tasks. Proc. of
IJCAI-03 / IIWeb’03, Acapulco, Mexico, pp 73-78.

Connell, J., and Shafer, L.I, 1995. Object-oriented rapid prototyping. Yourdon Press, Upper Saddle
River, NJ, USA.

Davis, A.M., 1992. Operational prototyping: A new development approach. IEEE Software, Vol 9(5), pp
70–78.

Elmasri, R., and Navathe, S., 2006. Fundamentals of Database Systems. Addison Wesley.
Fellbaum, C., 1998. WordNet: An Electronic Lexical Database. MIT Press.
Hainaut, J.L., 1989. A generic entity-relationship model. Proc. of the IFIP WG 8.1 Conference on

Information System Concepts: an in-depth analysis, North-Holland, pages 109-138.
Hainaut, J.L., 2002. Introduction to database reverse engineering. LIBD Publishing, FUNDP, Namur,

Belgium. Available from: http: //www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf
Hainaut, J.L., et al, 2008. Migration of Legacy Information Systems. Software Evolution, Springer, pp

INVOLVING END-USERS IN DATABASE DESIGN – THE RAINBOW APPROACH

23

107-138.
Hall, P.A.V., 1992. Software Reuse and Reverse Engineering in Practice. Chapman & Hall, Ltd.
Hersh, W., et al, 2000. Assessing thesaurus-based query expansion using the UMLS Metathesaurus.

Proc. of the AMIA Symposium, pp 344-348.
Hick, J.M., and Hainaut, J.L., 2006. Database application evolution: A transformational approach. Data

Knowledge Engineering, Vol 59(3), pp 534-558.
Jiménez, A., et al, 2008. Mining induced and embedded subtrees in ordered, unordered, and partially-

ordered trees. Proc. of the 17th International Symposium on Foundations of Intelligent Systems
(ISMIS’08), pp 111–120

Kösters, G., et al, 1996. Combined analysis of user interface and domain requirements. Proc. of the 2nd
International Conference on Requirements Engineering, IEEE Computer Society, pp 199–207.

Lopes, S., et al, 2000. Efficient discovery of functional dependencies and armstrong relations. Proc. of
Advances in Database Technology - EDBT 2000, Konstanz, Germany, pp 350-364.

Nuseibeh, B., and Easterbrook, S.: Requirements engineering: a roadmap. Proc. of the Conference on the
Future of Software Engineering, ACM Press, pp 35–46.

Pomberger, G., et al, 1991. Prototyping-oriented software development - concepts and tools. Structured
Programming, Vol 12(1), pp 43-60.

Ramdoyal, R., 2010. Reverse Engineering User-Drawn Form-Based Interfaces for Interactive Database
Conceptual Analysis. Phd Thesis, Presses Universitaires de Namur, University of Namur, Namur,
Belgium, 2010. Electronic version available from: http: //info.fundp.ac.be/libd/rainbow

Ramdoyal, R., et al, 2010. Reverse Engineering User Interfaces for Interactive Database Conceptual
Analysis. Proc. of CAiSE 2010, Hammamet, Tunisia, pp. 332-347.

Rode, J., et al, 2005. As easy as "click": End-user web engineering. Proc. of the 5th International
Conference on Web Engineering (ICWE 2005), Sydney, Australia, Vol 3579 of LNCS, Springer,
pages 478-488.

Rollison, S.R., and Roberts, S.A., 1998. Formalizing the informational content of database user
interfaces. Proc. of the 17th International Conference on Conceptual Modeling (ER’98), pp 65-77.

Schewe, K.D., and Thalheim, B., 2005. Conceptual modelling of web information systems. Data
Knowl.edge Engineering, Vol 54(2), pp 147-188.

Schuler, D., and Namioka, A. (editors), 1993. Participatory Design: Principles and Practices. Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, USA.

Shoval, P., and Shiran, S, 1997. Entity-relationship and object-oriented data modelling - An experimental
comparison of design quality. Data Knowledge Engineering, Vol 21(3), pp 297–315.

Singer, J., et al, 2008. Software engineering data collection for field studies. Guide to Advanced
Empirical Software Engineering, Springer, pp 9-34.

Spaccapietra, S., et al, 1992. Model independent assertions for integration of heterogeneous schemas.
VLDB Journal, Vol 1(1) pp 81-126.

Terwilliger, J.F., et al, 2006. The user interface is the conceptual model. Proc. of 25th International
Conference on Conceptual Modeling (ER’06). Vol 4215 of LNCS, Springer, pp.424–436.

Vilz, J., et al, 2006. Data Conceptualisation for Web-Based Data-Centred Application Design. Proc. of
CAiSE 2006, Luxembourg, p205-219.

Winkler, W.E., 1990. String comparator metrics and enhanced decision rules in the Fellegi-Sunter model
of record linkage. Proc. of the Section on Survey Research Methods, pp 472–477.

Yang, F., 2008. WYSIWYG development of data driven web applications. Proc. of the VLDB
Endowment, Vol 1(1), pp 163–175.

