IADIS International Journal on Computer Science brfdrmation Systems
Vol. 6, No.1, pp. 58-75
ISSN: 1646-3692

FEATUREOUS: AN INTEGRATED ENVIRONMENT
FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED
SOFTWARE

Andrzej Olszak and Bo Ngrregaard Jgrgensen

The Maersk Mc-Kinney Moller Ingtitute, University of Southern Denmark, Campusvej 55, 5230 Odense
M, Denmark

{a0, bnj}@mmmi.sdu.dk

ABSTRACT

The decentralized nature of collaborations betwagacts in object-oriented software makes it diffic

to understand the implementations of user-obsesvaplogram features and their respective
interdependencies. As feature-centric program wstdeding and modification are essential during
software maintenance and evolution, this situatieeds to change. In this paper, we present Featireo
an integrated development environment built ondbthe NetBeans IDE that facilitates feature-centric
analysis of object-oriented software. Our integtatdevelopment environment encompasses a
lightweight feature location mechanism, a numbereafsable analytical views, and necessary APIs for
supporting future extensions. The base of the iateg development environment is a conceptual
framework comprising of three complementary dimensiof comprehension: perspective, abstraction
and granularity. Together, these dimensions allesvanalyst to focus the analysis at the right mafde
comprehension during software evolution. We dematestapplicability of our integrated development
environment by conducting a case study of changetazh using the JHotDraw SVG.

KEYWORDS

Features, feature-centric analysis, software eiarlut

1. INTRODUCTION

Feature-centric analysis (Greevy, 2007) helps @pezk to perceive object-oriented software
in terms of its user-observable behavior (Turnealet1999). The need for feature-centric
analysis is constantly encountered during softwarelution and maintenance, since users
formulate their functional requirements, changeuestis and error reports in terms of features

58

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

(Turner et al, 1999)(Mehta and Heineman, 2002). abidity to relate these descriptions to
relevant fragments of object-oriented source code ai prerequisite to feature-wise
modification (Greevy et al, 2007), error correcti@ornelissen et al, 2009)(Rdéthlisberger et
al, 2007), change impact assessment (Ryder and20ipl) and derivation of new features
from existing ones.

Relating features to their implementations is, heave a difficult task, since object-
oriented programming languages provide no meangdpresenting features explicitly. In
object-oriented programs, features are implemeateihter-class collaborations crosscutting
multiple classes as well as multiple architectunaits (Murphy et al, 2001). This physical
tangling and scattering of features over severdlswf code makes their implementations
difficult to identify and understand (Turner et 8§99)(Shaft and Vessey, 2006).

The complexity and size of feature-code mappingsatess a need for a tool-supported
analysis approaches. The role of tools is to gtldeanalysis process in a systematic fashion.
Secondly, tool support is needed to automate ametand error-prone calculations, and
thereby to ensure reproducibility and scalabilifyanalytical activities. Finally, we deem it
necessary to integrate tools for feature-centri@lyamis with contemporary software
development environments, so that feature-centn@lysis can be assimilated as part of
standard activities during software evolution araintenance.

In this paper, we present Featureous, our integjrdéeelopment environment for feature-
centric analysis of object-oriented programs. Quinment extends the NetBeans Java IDE
(http://netbeans.org), and provides a lightweight dynamic feature l@ramechanism together
with a set of APIs exposing the basic building Bbdor supporting new feature-centric
analytical views. In order to impose a concepttiaicsuring on possible views developed on
top of our integrated development environment, wappse three dimensions for categorizing
feature-centric views. Thus, each view can be smed as a point in the three-dimensional
space of: perspectives, abstractions and granulafd motivate the need for proposed
conceptual framework during software evolution, discuss the applicability of concrete
configuration of views during individual phases the change mini-cycle (Bennett and
Rajlich, 2000).

In order to demonstrate applicability of featurevcie analysis using Featureous, we have
implemented a selection of state-of-the-art featanetric views. We show how these views
can be applied in practice to gain insights intauafamiliar mid-sized codebase. This is done
in the context of a case study of feature-centrialygsis and modification of the SVG
application built on top of the JHotDraw framewdhitp://jhotdraw.org). Since Featureous is
publically available from our websiteht{p://featureous.org), the analytical views and
procedures described in the case study can be irataBdapplied in third-party contexts.

The remainder of this paper is as follows. In Sert?, we present state-of-the-art on
which we base our integrated development environmbn Section 3, we discuss our
conceptual framework for feature-centric analysisl glace it in the context of software
evolution. Section 4 describes the design and AfPIEeatureous. In Section 5, we apply
feature-centric analysis in a case study of featerdgric modification. Finally, Section 6
concludes the paper.

59

IADIS International Journal on Computer Science brfdrmation Systems

2. STATE OF THE ART

Feature-centric analysis supports the understarafiogject-oriented software by considering
features as first-class analysis entities (Gre2097). One of the basic elements of feature-
centric analysis is the bi-directional traceabilityks between features and object-oriented
source code. Tools that explicitly visualize thigrrespondence were shown to simplify
discovering classes implementing a given featu fantures implemented by a given class
(Rothlisberger et al, 2007)(Kastner et al, 2008Kikard and Murphy, 2002).

By analyzing the established traceability linksjsitpossible to characterize features in
terms of classes and characterize classes in @fimogram features (Greevy and Ducasse,
2005). These characterizations can be used totigaés inter-feature relations in terms of
implementation overlap. Furthermore, the staticrati@rization based on classes can be
complemented by views based on usage of objectsexmcuting features (Salah and
Mancoridis, 2004). This allows for examining rum#é inter-feature dependencies.

The information contained in feature-code tracégblinks can be summarized by usage
of software metrics. The approaches described neirfB and Riebisch, 2008)(Wong et al,
2000) have recognized applicability of the mettieslitionally associated with the separation
of concerns to analyzing features. The two mepicgposed in (Brcina and Riebisch, 2008) -
scattering and tangling - assess quantitatively cim@plexity of the relationships between
features and computational units.

Finally yet importantly, feature location procedurare used by feature-centric analysis
approaches for identification of source code fragi:¢hat contribute to implementations of
program features (Wilde and Scully, 1995). The major types of existing approaches based
on static analysis (Chen and Rajlich, 2000), andadyic analysis (Wilde and Scully,
1995)(Eisenberg and De Volder, 2005)(Olszak andelsen, 2010) differ with respect to
level of automation, accuracy, and repeatabilitye Tocation approach that we adopt in this
paper is a dynamic, semi-automated technique akfim€Olszak and Jargensen, 2010). Since
it relies on tracing of program execution, it alvor resolving polymorphic invocations,
detecting common usages of objects among multiplecuging features, and takes into
account the effect of branch instructions on cdritoav.

Summing up, the existing approaches define a sdivefse methods for feature-centric
analysis. Nevertheless, there is no common conakffamework and technical platform for
integrating them and exploring their mutual advgata Moreover, for some of the mentioned
approaches there remain questions about theirigahapplicability during software evolution
and maintenance, both because of the lack of aeptumal framework for doing so and
because of the lack of publically available toolpiementing them.

3. CONCEPTUAL FRAMEWORK FOR FEATURE-CENTRIC
ANALYSIS OF SOFTWARE

Feature-centric analysis is the process of analyzing programs by considdieatures as first-
class analysis entities. What distinguishes featfre@m other types of source code concerns is
their inherent relationships to concepts in thebfgm domain. As the structure of object-
oriented software rarely modularizes and represtratures explicitly, any task related to
change of program functionality is likely to crogsenultiple units of source code. Thus, a

60

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

modification to one feature is likely to affect therrectness of other features which use the
code fragments being modified.

Feature-centric analysis can be thought of as eiapgastance of a more general problem
of cross-decomposition analysis. Software can be decomposed according to varidteyia
and thus made to modularize different dimensionsasicerns in source code. However, the
majority of modern programming languages only allesvto modularize one dimension of
concerns at a time, called tlieminant dimension (Tarr et al, 1999). The correspondence
between modules of the dominant decomposition afofiware program and one of its
alternative decompositions is in general many-townda his is due to the phenomena of
scattering, where a single module of an alternative decontiposis dislocated over a number
of modules of the dominant decomposition, aadgling, where multiple modules of an
alternative decomposition are interwoven in a ngbdule of the dominant decomposition.
This lack of isomorphic correspondence betweerdtrainant and alternative decompositions
affects changeability of programs, since differkimds of changes require different units of
change. If the required change unit is modularicethe dominant decomposition, then the
change can be performed in a localized manner. Mexvé the change unit is scattered over
multiple modules, each of them will have to be nfiedito implement the change. It may also
happen that change made to one of such under-espees concerns will result in an
unforeseen modification of another one due to thaingling in terms of the same
computational unit.

The mentioned situations occur for
object-oriented legacy software, if
tried to be perceived in terms of
feature-oriented decomposition
criteria. Example of such a situation is
shown in Figure 1.

The correspondences between
object-oriented and feature-oriented

Computational unit perspective

'
'
'
'
'
'
'
»
>

aAioadsiad suoneal ainjea

A K .
Login

5 3 decompositions of software can be
investigated from fourperspectives,

______ based on the concrete needs of a

S v programmer. For instance, a

— programmer who is given a report

- Feature perspective about an error in a particular feature

Figure 1. Perspectives on feature-code tracealiikg, Would be interested in inspecting the

based on (Greevy and Ducasse, 2005). classes that implement this feature,

hence she would use the feature
perspective. After the error is corrected the pmogner could use the computational
perspective to reason if her modifications willeaff the correctness of any other features in
the program. The feature relations perspective lmarused by programmers to assess the
overlap of implementations of two features. In starynthe three perspectives are defined as
follows:
1. Computational unit perspective shows how computational units like packages and
classes participate in implementing features (Greex Ducasse, 2005).
2. Feature perspective focuses on how features are implemented. In paatic it
describes features in terms of their usage of avaoé program’s computational units
(Greevy and Ducasse, 2005).

61

IADIS International Journal on Computer Science brfdrmation Systems

3. Feature relations perspective focuses on inter-feature relations that can beuckedl
from the feature-code mapping (Greevy, 2007).

We reckon that one of the major benefits of sepagdhe analytical concerns by means of
multiple perspectives, apart from imposing a striteon the analysis process, is reducing the
complexity of analysis. This is because having ipldtperspectives on the many-to-many
correspondence between features and computatiaitalallows us to avoid investigating this
complex mapping directly. Instead, analysis is embteld on a number of one-to-many
mappings, which are considerably easier to undeista

Within our framework, the perspectives are one loé three dimensions used for
categorizing feature-centric analytical views. Tdteer two dimensions arabstraction and
granularity, as visualized in Figure 2.

The purpose of providing stratified levels of

Abstraction . . . e
abstraction is to focus the analysis process biifigithe
amount of information simultaneously presented e t
& analyst. Furthermore, stratified abstraction levalew
£ the complexity of a program’s features to be ingaded
in an incremental fashion. We define three levels o
& PR R abstraction:
1 » 1. Characterization level shows high-level
g Perspective diagrams that summarize the overall complexity
g of feature-code mappings.
@ 2. Correlation level provides correlations between
Granularity individual features and computational units.
3. Traceability level provides navigable traceability
Figure 2. Three-dimensional links between features and source code.
conceptualiramework Correspondence between features and different

granularities of computational units is supportedtiiree levels of granularity: Package
granularity; 2. Class granularity; 3. Method granularity.

These three dimensions define a common categaizatheme that allows Featureous to
be extended with a multitude of analytical viewssing this scheme it is possible to
characterize feature-centric analytical views im of three coordinates. For instance, view
{p2, &, &} could be a feature-class characterization in farfva plot, whereas view {p &,

01} could provide a correlation view of features gratkages in a program in form of a graph
or a table. The need for concrete types of featardric views during software evolution is

discussed in Section 3.1, whereas the set of therduviews implemented by Featureous is
described in Section 3.2.

3.1 Feature-centric Modification of Evolving Programs

In this subsection, we analyze the change miniegybking a detailed model of stages of
change adoption during software evolution (Benaett Rajlich, 2000), and describe how the
concepts of feature-centric analysis can be usedufiport evolutionary modification of
programs. We do so by focusing on a situation icivia feature-centric change occurs in a
software’s problem domain, thus causing the satutiomain artifacts (the source code of an
object-oriented program) to be modified accordioghe feature as theunit of change. The
presence of the discussed earlier mismatch bettieemnit of change and the unit of program

62

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

decomposition contributes to cognitive overhead g hinders change adoption activities.
In this context, we discuss how concrete elements the three dimensions of our conceptual
framework, i.e. perspectives, abstraction leveld granularities, can be used to support
individual phases of the change mini-cycle, herebtablishing a model for a feature-centric
change mini-cycle. This model serves as basis ésigthing concrete feature-centric views,
which we present in Section 3.2, and as the unierlynethodology for the case study of
evolutionary modification presented in Section 6.

Table 1. Applicability of feature-centric techniguauring change mini-cycle

Planning phase Change implementation
Reques Chang Verificatio Re-
t for corirorgert?gsio imeact Restructurin %hzng‘:‘io nand documentatio
change pn anglysi g for change P png validation n
S
Perspectiv p. P2
. n/a R Dy PP P1 P2, Py n/a
Abstractio
n n/a a,& &.%8 @& &% & n/a
Granularit
y n/a 9.0 01,02 01,9 & %, G %, G n/a

Table 1 shows the correlation between the indiighhases of the change mini-cycle and
the levels of perspective, abstraction and graitylapplicable for them. The general trends
suggest that more abstract and more coarse-graieed are appropriate at earlier stages of
change adoption, whereas the later stages require concrete and fine-grained analysis. In
the following, we discuss and motivate the preskntarelation.

Request for change.Software’s users initiate the change mini-cycledeynmunicating
their changed expectations in the form of a reqfeesthange. During this process, they often
use vocabulary related to features of softwarecesinsers perceive software through its
identifiable functionality (Turner et al, 1999). hteeforth, such a feature-centric request for
adding new features, enhancing existing featuresoorecting errors in existing features
becomes a basis for feature-centric modification.

Planning phase.The goal of the planning phase is to evaluateilféiag of a requested
change by understanding its technical propertias inpotential impact on the rest of the
software. This is not only a prerequisite for lateplementation of the change, but can also be
used to informed prioritization and scheduling dfange implementation during multi-
objective release planning (Saliu and Ruhe, 2007).

During the process ofrogram comprehension one investigates a program in order to
locate and understand the computational unitsqigating in a feature of interest. In order to
focus the comprehension process within the bouesani the feature of interest, and thereby
to reduce the search space, one can uséethg@e perspective on feature-code traceability
links. The narrowed-down search space granted étyrfe-centric analysis allows for easier
discovery of relevaninitial focus points that can also be feature-wisebyilt upon by
navigating along static relations between featntgrisic code units to gain understanding of a
whole featuresub-graph (Sillito et al, 2006). The concrete levels abstraction (i.e.
characterization or correlation) agcanularity (i.e. package or class) should be chosen based
on the precision of understanding required forqrenfng change impact analysis.

63

IADIS International Journal on Computer Science brfdrmation Systems

After gaining sufficient understanding of the implentation of a feature, one performs
change impact analysis in order to estimate the set of code units th#itneied to be modified
during change implementation. This is performed ibyestigating how changes in the
specification of a feature manifest themselvesoimgutational units (feature perspective) and
how other features can be affected by modifyingethaomputational units (computational
unit perspective). Furthermore, it is necessarygdosider both the logical and syntactical
relations between features (feature relations petsge) in order to determine if modification
of pre or post-conditions of a feature can affé¢stdependent features. Based on the desired
precision of the estimated change impact the aizabgn be performed on various levels of
abstraction (i.e. characterization, correlationtraceability) and granularity (i.e. package or
class). Ultimately, the thereby obtained resultsttdnge impact analysis should form a basis
for an organizational-level estimation of the cosivolved in a planned change
implementation.

Change implementation. During change implementation, one modifies a poUs
computational units according to a correspondimgiest for change. This phase first prepares
for accommodating a change by restructuring thepedational units, and then propagates the
change by modifying them respectively.

Restructuring involves reducing the scattering of feature-centnadifications by applying
behavior-preserving transformations to source déodeder to localize and isolate code units
implementing a particular feature. Doing so deasdhe number of computational units that
have to be visited and modified, and reduces thEahon implementations of other features,
so that features can evolve independently from edbbr. During restructuring the feature
perspective is used to identify boundaries of aufeaimplementation under restructuring and
the computational units perspective to identifytjpms of code shared by features that are
candidates to splitting. Since restructuring inesivmodification of the source code, one
should apply analytical views operating on the towest levels of abstraction (i.e. correlation
and traceability). Moreover, the feature-code magei have to be investigated at all
granularities (i.e. package, class, method) in e identify and address all tangling-
introducing computational units.

Change propagation deals with implementing a change and with ensusggtactical
consistency of a resulting program. In order tolenent a change, a programmer needs to
use the feature perspective to identify the comcrate-grained (i.e. class and method
granularity) parts of a feature’s implementatioattheed to be modified as well as the parts
that can be readily reused. This involves applyiiegvs at the levels of abstraction closest to
source code — correlation and traceability. On dileer hand, the computational units
perspective is essential to facilitate feature-wiaeigation over source code, to make feature-
boundaries explicit and to give early indication mbdifying feature-shared code (causes
inter-feature change propagation) and of reusinglsifeature code (increases evolutionary
coupling of features and can be a sign of desigsien).

Verification and validation. The goal of verification and validation phasedhsure that
a newly modified feature is consistent with itsaggion and that the remaining features of a
program were not negatively affected by the chamyeinvestigating the fine-grained (i.e.
class and method granularity) changes made inabecs code from the computational unit
perspective it is possible to precisely determirnéctv features were altered in the course of
change implementation. This is done at the tratigalevel of abstraction, where detailed
traceability links from code to features are avdda Each of the features whose
implementation was modified needs to be consida®dandidates for validation. Such a

64

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

derivation of a minimal set of features to be teéstan result in significant savings of project
resources in situations where the validation preceeffort-intensive and time-consuming by
its nature (e.g. manual testing, field-testing afitcol or monitoring systems).

Re-documentation. The re-documentation effort aims at updating théstimg user-
documentation of a program as well as developetithentation. The goal of updating the
latter is to capture information that can reduce fimogram comprehension effort during
forthcoming evolutionary modifications. Tool suppdor feature-centric analysis can help
developers to map features to existing use-casedbdscumentation (Olszak and Jgrgensen,
2010). However, the real strength of supportingtuieacentric analysis in an integrated
development environment is that it practically efiates any need for maintaining such
mappings manually, as a feature-code mapping cagemerated on-demand. Hence, the
burden of maintaining textual documents that descthe implementations of a program’s
features in parallel with maintaining the sourcdec@anishes.

3.2 Feature-centric Views

In its current version, Featureous is equipped sétben views that address the most important
areas of our conceptual framework. An overviewhaf views in the user interface of the tool
is presented in Figure 3.

W NetBeans Platform 7.0 Beta 201011152355 Q@

File Edit Wiew Mavigate Source Refactoe Run Debug Team Took ‘Window Help

PEE ¢ o T b 186G e

Featuree.. 41 x |:Projects 1 | Feature-code characterization view x| [« /[=)[@)] _; Feature-code comelation graph x| « |[=E)[- Feature relations characterization s [

@ -
|6 Lo L U 8]
[traces 2010.3.26.13.41.10 poc poc |&4] navigate_map

Feature

4| init_program
4] modify_backgraund

| code | O
Feature-code 3d characterization 11| open_map 1 s
e = LSt |
7 (. Nodetorsl i it _svogram <~ LE] edimap

(" EdgeMode! 58] edit_map

(s \12] open_map
e e
S f T '

(i) init_program

] =
]
3
—r——a | Feature coarch o [[iF] Fecmindaonirclr Poputteny
ﬁ @l L 21| reamind. controler Menubar
I . Ol reemind.controller, TopLevelkeyListener
: © |2 edgeModeljava x| <] . controler, ToplevlKer st
= =T === Freemind.controler.MainToolBar
Executions: o5 BER-E- AR FRFeR G & = reemind, main. FreeMind S
Tracelnspector Window ax| 87 this.target = target; B8 reeiiod main:Taok: SIS
T Emmm— {1 3 reemind, contraller NodelMouseListener | &
; Sl reemind, contraller NodeKeyListener 3
ik gy reemind. contraller Font ToolBar ¥
B[] ublic Color getColor TR
Freemind.controller gg H E 0 reemind, view. mindmapview. Edaeview | R | & | #
| Freemind.model. simplemods! reenind.model,simplemodel EdgeModel =
(%) EdgeModel ? (6l | publie void setColor (Color color] [{-..)] d Mol siml g I |
& Maptiodel 103 [4. Feawrecalgragh x| EE

@ public 3cring getStyle() { @l
Mindy Quector i g S Omindmapvien EddeVisn(..) !
) Nog 106 if {getSource().isReot()) { i o8
freemin e e 107 recurn STANDARDSTYLE; ‘wmindmapview.ForkhadeView(..)

() BeaisrEdgevien 108 3 (ModeView setMap(..)
(8 Edostiew 109 return getdource () .gecEdge () . geceyle(); G Gel NG BN A
8 Forkblodetiew 110) ! f NodeView, getParentvient.)

B Mapiiew "H 11 return style; = (UMapView.getFocusListener(..)
i é\, MindiapL ayout gl = s - SRS [j
104 | 24 | INS.

Figure 3. User interface of Featureous.

Feature explorer (marked as\ in Figure 3) is the main window of Featureoudi#iplays
features of a program, allows adding and removéragures under analysis and grouping them

65

IADIS International Journal on Computer Science brfdrmation Systems

into arbitrary hierarchies. From withifieature explorer one can open the analytical feature-
centric views of Featureous by selecting a seargfet features and clicking on a view’s icon.

Feature inspector (B) {p,, &, 0123 provides navigable traceability links from featsrto
concrete fragments of a program’s source code.f&atire inspector’s window contains a
hierarchy of nodes symbolizing the packages, ctaasel methods that implement a feature.
The nodes symbolizing classes and methods can dxk fos automatic navigation to their
corresponding source-code fragments in the NetBeditsr view (G).

Feature-code 3D characterization (C) {p12 &, 012} Serves as a coarse-grained summary
of the complexity of feature-code relations. Deprgdn the chosen rotation angle of the 3D
chart, the view gives either a summary of the iistion of feature implementations over
computational units, or a characterization of cotaponal units with respect to their
participation in feature implementations. This vieworporates the feature-characterization
and computational units characterization views @8yeand Ducasse, 2005) as well as the
metrics ofscattering of feature implementations among a program’s cdatfmnal units and
tangling of features in terms of computational units (Bacand Riebisch, 2008).

Feature-code correlation graph (D;) andfeature-correlation grid (D) {p1.2, &, 01,2} enable
a detailed investigation of the correspondence éetmcomputational units and features. The
graph view is equipped with selection-driven reslatyfunctionality, so that it is possible to
switch between the computational unit and featweesgectives by focusing the graph on a
given node. These views incorporate the featurdamentation graph and the feature-class
correlation (Greevy and Ducasse, 2005).

Feature relations characterization (E) {ps, &, @} relates features to each other based on
the dynamic dependencies between them, i.e. inatiomt of classes and common usage of
objects. This is done through a graph-based reptatsen, where nodes represent features and
edges represent dynamic relations between featpreducing objects, features using
produced objects and features co-using common Bbj&bis view is based on the feature-
interaction graph (Salah and Mancoridis, 2004).

Feature call graph (F) {p,, &, &3} displays the call hierarchy of methods implemeagta
given feature. By visualizing the call-relationgween methods and their containing classes,
this view aims at enabling inspection of featurg@lementations according to their run-time
execution flow. Nodes of the view, representing patational units, are automatically folded
to visualize only the currently investigated pathhe call hierarchy.

Feature-aware source code editor (G) {p1, &, %3 extends the default source code editor
of the NetBeans IDE with a sidebar visualizing j#vation of computational units in
implementing features. This gives a programmer ipeedine-grained information about
relevance of a fragment of source code to a featfirmterest and the degree of feature
tangling involved. Furthermore, we have modified trefault folding mechanism of the editor
to provide automatic folding of methods that do oontribute to a given feature of interest.
Thereby, it is possible to hide irrelevant codeimyrcomprehension of code subject to
modification when changing a concrete feature.

4. DESIGNING FEATUREOUS

Featureous is implemented on top of the NetBeanb-Rlient Platform (RCP) and tightly
integrated with Java IDE capabilities of the platfio The usage of the module system and the

66

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

lookup mechanism of the NetBeans RCP allowed uactoeve extensibility of Featureous
with respect to adding new analytical views with@uty need for re-compilation. Tight
integration with the IDE makes it possible to sesssly combine Featureous with other
programming tools commonly used in contemporarywse development.

The infrastructure provided by Featureous is cedtearound a feature location
mechanism, an extension API that exposes the désedvfeature-code traceability links and a
set of other APIs that can be exploited by feat@etric views.

4.1 Feature-location Infrastructure

Feature-centric analysis operates on the tracgaliiiks between features and object-oriented
source code. For establishing this traceability; approach relies on the feature location
mechanism defined in (Olszak and Jgrgensen, 200§ approach requires annotating
feature entry points in the source code of an investigated programtureantry points are the
methods through which the execution flow entersitiyglementations of features. In case of
GUI programs, in which features are triggered tigfoGUI elements, feature entry points will
most often be thectionPerformed methods of event-handling classes. Feature erinyt p
annotations placed on method declarations have eoparameterized by string-based
identifiers of their corresponding features. Basadannotations inserted by a programmer in
the source code, Featureous locates feature imptatiens by tracing the program’s
execution flow while a user interact with it. Dugirprogram execution a tracing agent
registers any object innovations encountered witéncontrol context of feature entry points.
The tracing process is transparent for the user iambes not introduce any significant
performance or memory overhead, since the tradyegitadoes not register information about
timing and ordering of captured method
TraceModel invocations. The feature location capability of
—@»| featurelD: String ’—‘ Featureous is provided in the NetBeans IDE by
parent

two execution buttons placed on the main toolbar
of the IDE: “Run traced project” and “Test traced
Type project”. Hence, it is possible to perform user-
signature: String driven triggering of features for arbitrary legacy
package: String programs regardless of the presence of appropriate

Invocation instances: Set<String> > 1 _ ap|
feature-triggering test suites, and similar to
caller ? gradually implement such test suites in order to
* incorporate feature location as a part of a team’s
Execution development practices.
callee fsiqnaturEe: StFrjn_g - The feature location mechanism produces a set
L———————=>| featureEntryPoint: boolean H H
construcior: boolean of feature traces that contain a mapping between
executionCount: int features and source code of a program. The model

that we use to represent a trace of a single featur
Figure 4. Feature trace model of Featureous. shown in Figure 4. Feature trace models, being

inputs to the feature-centric analysis, contain the
information about packages, methods, constructol@sses, instances, and inter-method
invocations that occurred at run-time in impleméotes of features. This data, as well as
some additional utilities are then exposed throagket of APIs to feature-centric views
created on top of our infrastructure.

67

IADIS International Journal on Computer Science brfdrmation Systems

4.2 Extension API

The most important API of Featureous is the APt #ikows for accessing feature traces and
for registering third-party feature-centric views illustrative example of using this API is
shown in Figure 5.

@ser vi ceProvi der (servi ce=Abstract TraceVi ew. cl ass)
public class Exanpl eVi ew extends Abstract TraceVi ew {

publ i c Exanpl eView() {
setupAttribs("Exanpl eView', "", "pkg/icon.png");
}

publ i ¢ TopConponent createl nstance() {
return new Exanpl eView);
}

public void createView) {
Controller ¢ = Controller.getlnstance();
Set <TraceModel > ftns = c.get TraceSet().getAl |l Traces();
String msg = "No. of traces |oaded: " + ftns.size();
JLabel status = new JLabel (nsg);
thi s. add(status, BorderlLayout.CENTER);

}
public void closeViem) { ... }

Figure 5. Extending Featureous with a new featergrc view.

The access to feature trace models is obtainedughrdhe Controller singleton class
contained in thecore module of Featureous. Apart from providing theesscto trace set,
Controller exposes a number of helper methods, such as:npaid unloading of traces,
splitting and merging traces and accessingaffieity categorization of computational units
discussed in the next section.

In the example view implemented in Figure 5 MiistractTraceMiew abstract class defined
in Featureous’ core is being extended to creanaview that displays the number of feature
traces currently loaded in the tool. The threerabsimethods (i.ecreatel nstance, createView,
closeView) are used as a part of template method pattdireibase class and will be called by
it upon the creation, opening and closure of tlewiA class implemented in the presented
way can be enclosed in a separate NetBeans modulee tdynamically looked-up by
Featureous at run-time thanks to the registratisna@rovider of the AbstractTraceView
service. Each of the found views is then represented ltéon in the main toolbar of the
feature explorer window of Featureous. In the provided example,née service is registered
by annotating th&xampleView class with theserviceProvider annotation.

4.3 Affinity API

All the feature-centric analytical views bundlediwieatureous make use of the affinity API
that defines a common coloring scheme for comprati units. The purpose of the affinity

scheme is to be an indicator of tteeise type of participation of a computational unit among
features of a program. We propose our affinity seh@s an alternative to the affinity scheme

68

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

proposed by Greevy and Ducasse, in order to digshgdifferent categories of reuse of code

between features more precisely than by usingrarpitthreshold values, as it is done in

(Greevy and Ducasse, 2005).

Our affinity scheme is based on finding the soezhltanonical features in the feature set
of a program (Kothari et al, 2006). Then, the festuare grouped around their canonical
centroids thus forming groups of implementationeljssimilar features. Based on this
grouping, we distinguish four categories of compatel units with respect to their usage
among features and canonical groups:

e Sngle-feature units are the computational units that participate iplamenting only one
feature. We visualize them in green.

« Core units are computational units reused by all canonicaligs. The high degree of
reuse of such units among diverse feature-groupansehat they are a part of the
reusable core of the software. We visualize theds in blue.

* Single-group units are computational units used exclusively withisiragle feature-group.
Such units form a local core reused within a grofiunctionally related features, as
opposed to the global core builtaire units. We visualize these units in light green.

* Inter-group units are computational units reused among multiple, rimit all, feature-
groups. This reuse category is half-step betweendte andsingle-group categories, and
hence includes classes that in the future can relibepromoted to beingore or be
confined to single feature-groups by correctingesasf inappropriate inter-group reuse.
We visualize these units in light blue.

The affinity information can be accessed througl @ontroller object by getting its
aggregatediffinityProvider object. AffinityProvider interface exposes the information about
the affinity characterization and affinity colorimd concrete packages, classes and methods in
a program. By hiding the concrete affinity provisiéehind a common interface, it is possible
for third parties to easily replace the defaultvider and thereby extend Featureous with
customized domain-specific affinity schemes.

4.4 Selection API

As a part of the Featureous, we provide a globaksen API. On the technical side, this API
allows feature-centric views for listening and téag to changes in selection of features and
computational units in other views. On the concabside, the selection API enables context-
sensitivity of feature-centric views, so that thegn dynamically re-adjust themselves
according to the features and units that a usessinyates.

The API is provided byselectionManager class and is to be used by implementing the
provided SelectionChangelistener interface and registering created listeners within
SelectionManager. Each of the registered listeners will get notifiwhenever there occurs a
change in the set of selected features or compugltunits. In addition, it is possible for any
view to useSelectionManager to alter the sets of selected entities and thasi@h the current
focus of other feature-centric views.

In the current version of Featureous focus in #wure dimension is driven by selecting
features in théeature explorer view, whereas focus in computational units dimemss driven
by either selecting computational units in feature inspector view or moving the caret of the
feature-aware source code editor to classes and methods of interest. Most of thevsiare

69

IADIS International Journal on Computer Science brfdrmation Systems

made to dynamically react to such events by higtiligy the selected entities or, in the case of
graph-based views, dynamically re-layouting th&uslizations.

5. FEATURE-CENTRIC ANALYSIS AND MODIFICATION —A
CASE STUDY

In this section, we present a case study of featengric analysis performed during a change
adoption task in an evolving object-oriented prograhe methodology applied in this study
followed the feature-centric change mini-cycle preed in Section 3.1.

The program under investigation was a vector gaghawing editor for Java called SVG,
which is an instantiation of the JHotDraw 7.2 fravoek (http://jhotdraw.org). The program
consists of 62K lines of code and contains sigaiftty many features for the case study to be
considered a realistic application scenario.

The request for change that we chose as a starting point of our investiga was to
modify theexport feature of SVG so thatwwatermark text is added to any drawing file being
exported.

To creating a basis for adopting the request fangk, we had to establish traceability
links between features and source code of SVGchewe this, we needed to recover the list
of features of SVG, since no requirement specificatiocuments were available. In order to
identify features of SVG, we have inspected thecetirg application. We have performed this
by investigating user-triggerable functionality gnaphical user interface elements like the
main menu, contextual menus, and toolbars. We luerdified 28 features, whose 91 feature
entry point methods we have annotated in the pmgraource code. By manually triggering
each identified feature at run-time in the instruted SVG program, we obtained a set of
feature traces that became the input to featur&icemalysis.

In the planning phase, we wanted to get an impression of the effort edei perform the
intended modification task. This was done by inigaging our targeexport feature, which is
responsible for exporting drawings from the progsacanvas to various file formats, through
the feature-code 3D characterization view {p;,, &, 01 2}. Feature-code 3D characterization
view, through its feature perspective,
visualizes the scattering of a feature’s
-—}1oo04 implementation over computational units
of a program while revealing the
-—0.003 complexity of the contributing
computational units it the terms of
0002 tangling that they exhibit. This is done in
three-dimensional bar chart, where each
feature is represented by a number of
bars corresponding to its computational
units. The number of bars displayed for
each feature depicts the scattering of its
implementation, which corresponds to
the size of the search space during a
feature-centric change task. The height
of the individual bars represents their

-—0.0m

export

text tool 00040 Seattering

Feature tool palette

Figure 6. Feature characterization of SVG.

70

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

degree of tangling, thereby indicating the compiexdf an occurring feature overlap.
Furthermore, the affinity-based coloring of thesbelaracterizes the individual computational
units with respect to the way they are reused anfieaiyires. This shows tipetential impact

of modifying a part of the implementation of a givieature on the remaining features. l.e.
modifying a single-feature, green-colored unit witla feature’s implementation will only
affect the feature itself, whereas changing a bhiered core unit might affect, and possibly
break, multiple other features.

The resulting feature-code 3D characterizationiobthfor some of the features of interest
in SVG at the granularity of classes is shown iguké 6. It can be seen that #agort feature
is scattered over a fairly low number of classésinltotal, which is the maximum number of
classes that we will have to investigate and unidedsin order to introduce a watermark text
to exported files. However, this feature contaimdyoone feature-specific class, which
indicates a high chance for our modification togagate to implementations of other features
in unanticipated ways, hence increasing the ovesffdirt of change propagation. Another
feature of interest shown in Figure 6 is thet tool feature. Since this feature is responsible
for drawing the text-based shapes on the edit@rs/as, we hypothesized that it contained
classes that we needed to reuse to programmatidadly a watermark in an exported
drawing. The relatively low extent of scatteringtbfs feature indicated that we would not
have to visit many classes in order to find thesathat we will reuse.

During change implementation we investigated the implementationsegiort andtext tool
features in a greater detail in order to identifg toncrete classes that we needed to modify
and reuse to implement the change request.

To analyze the implementations of both featuresapglied the fine-grained traceability
from features to computational units offered by fésture call tree view {p,, &, & 3. The
feature call tree view, depicted in Figure 7, iggraph containing a hierarchy of nodes
symbolizing class-name-qualified methods. The edgetveen method-nodes stand for
feature-wise inter-methodall-relations recorded at run-time. Such a designwallone to
follow the control flow of a feature incrementaflpm the point it was triggered in its feature
entry points by selectively navigating relevant-celations. If requested, it is also possible to
automatic navigate in the NetBeans code editongécsburce code fragments corresponding to
a concrete node being investigated. In the coméxiur case study, we found the control
flow-based method of browsing of feature implemegate to let us understand features faster,
as compared to the alternative structure-baseddingvstrategy offered by theace inspector
view. Nevertheless, we reckon that the structusetaapproach can be more appropriate in
situations where the design of software has t@kert into account, e.g. during refactorings or
migrations of monolithic programs to component #ectures.

pe— ExportAction.actionPerformed(..) SVGDrawingPanel.getDrawing(..)
o SVGView.export(..) ImageOutputFormat.getFileExtension(..)
ImageOutputFormat.write(..) ImageOutputFormat.write(..)

Figure 7. Navigable feature call tree view

We used the feature call tree view on txport feature to find the class that saves a
drawing to a file on the disk, in order to modifyetdrawing before it is being saved. We
discovered that the export feature consists ofanchf invocations involving many classes,
most of which could be a possible point of equigpandrawing with a watermark. In order to

71

IADIS International Journal on Computer Science brfdrmation Systems

confine the impact of our change, we chose to motlie SYGView class. This class
implements a visual rendition over a domain modeh &VG drawing and contairexport
method that saves the underlying model to a filendé,export is a good candidate for
implementing our change by inserting a watermats the model before the drawing is being
saved and removing the watermark afterwards. Kvasth mentioning that the usage of
feature-centric analysis was of significant helpimly localization of theSVGView class and
the export method, not only because it narrowed down theckegpace, but also because it
helped us to decipher the polymorphism-based osistbetween the JHotDraw framework
and the SVG application built on top of it. We renkthat without the support of Featureous
the indirection created by polymorphism-based viamapoints of the framework would be a
significant obstacle to finding the concrete frarnekclasses that carry out the export-related
functionality in SVG.

After locating the to-be-modified method in teeport feature, we investigated thext
tool feature in order to identify a domain class sugatolr representing a programmatically-
insertable watermark text. By traversing the aaétof the feature and analyzing the roles of
classes and methods, we have located the candil#ae name®VGTextFigure, which is a
domain class for representing textual figures intDHaw.

Based on the gained understanding, we have impleaéhne change request. As shown in
Figure 8, we have done this by modifying thgort method, so that the state of a drawing
being exported is modified prior to saving. We atlédesimple watermark to the drawing’s
model (lines 359, 360) before it is written to thatput file byformat.write(...) and removed
the watermark afterwards (line 362), so that ingerof a watermark is completely transparent
to a user of SVG. The change implementation wapauigd by thdeature-aware source code
editor {p1, &, .3, which enhances the standard NetBeans IDE’s ediith fine-grained
traceability from individual fragments of sourcedeoto features they implement. Figure 8
demonstrates the three feature-centric capabilitfethe editor: color bars annotating source
code with affinities, tooltips providing traceabjlifrom source code to concrete features and
code-folding focusing the editor on code units vald to a given feature. All these
enhancements aim at narrowing the search spabe implementation of a feature of interest
during feature-centric comprehension and modifazatif source code.

345 L return exportChooser;
349 |_| ¥
350
@ _ [FeatureEntryPoint (JHotDrawFeatures. EXTORT)
352 = public wvoid export (File £, javax.swing.filechooser.FileFilter filter,
353
354 CutputFormat format = fileFilterOutputFormatMap.get (£ilter):
355
356 ‘Feature:: if ('f.getName () .endsWith("." + format.getFileExtension())) |
357 IEXpOTE f = new File(f.getPath() + "." + format.getFileExtensioni()):;
355 i
359 SVGTextFigure watermark = new SWGTextFigure ("Exported from ZVET):
360 avgPanel.getdraving () .add (vatermark) !
361 format.write(f, svgPanel.getDrawingi()):
362 svgPanel.getDrawing () . remove (matermark) ;

Figure 8. The performed modification in colored eadlitor.

After implementing the change, we needed/dbdate that our modification was correct
and that it did not affect the correctness of ofeatures in the program. Firstly, we verify that

72

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

a watermark is added when exporting images by simpining the new version of the SVG
program and then triggering tlegport feature again. Secondly, we investigated whether th
correctness of some of the remaining features d® $Wuld have been affected by the change
(e.g. thedrawing persistence feature, which could in principle reuse tbgort method in
some way). This was done by inspecting the affioitythe modifiedexport method in the
affinity-coloring facility of the feature-aware ceckditor. We have observed that even though
four other features are reusing the method'’s eimdd®/GView class, the modified method is
solely used by thexport feature. This indicates that no other featureslccdiave been
affected by the implemented change.

6. CONCLUSION

As mentioned previously, there exists a lack ofriegphic correspondence between the users’
and the programmers’ perception of object-orienpedgrams. This becomes problematic
during software maintenance and evolution, asntmementations of the features users want
to have changed are not evident from the objeerted source code. Hence, there is an
urgent need for tool-supported analysis approackibich can help developers to understand
the correspondence between features and code.

In this paper, we have presented Featureous a inttegirated development environment
that provides a conceptual framework for implemmamntfeature-centric analytical views of
legacy object-oriented programs. Featureous isdmphted as a plug-in to the NetBeans IDE.
Featureous provides a lightweight mechanism fooverdng the feature-code traceability links
and APIs for implementing third-party extensioriise ladditional analytical views and affinity
coloring schemes. Currently, Featureous comes imifementations of a number of state-of-
the-art feature-centric views, three of which weéhapplied in our case study. The case study
performed on JHotDraw SVG demonstrates how to es¢ufe-centric analysis to support
source code modification during software mainteeaand evolution. It was our experience
that the usage of feature-centric analysis durirgpgresented modification task reduced the
extent of required investigations of unfamiliar szsmicode and allowed us to reason about the
impact of the performed modification for the ovérarrectness of the program.

We hope that the integrated development environrtieaitFeatureous provides will help
researchers to experiment with new ideas for featentric analysis of software. Motivated
by our experiences reported in this paper, we belibat usage of feature-centric analysis
tools such as Featureous can improve the perfornaficadopting functionality-related
changes during software evolution. In a long perSpe, we hope that improved
understanding of feature-code relations may imptbeepractices of implementing features in
object-oriented programs.

REFERENCES

Bennett, H.K. and Rajlich, V., 2000. Software maiatere and evolution: a roadmap. In Proceedings of
the Conference on The Future of Software Enginedi@§E '00). ACM, New York, NY, USA, 73-
87.

73

IADIS International Journal on Computer Science brfdrmation Systems

Brcina, R. and Riebisch, M., 2008. Architecting foolkability by means of traceability and features.
Automated Software Engineering - Workshops. ASE R&bops 2008. 23rd IEEE/ACM
International Conference on. pp. 72-81.

Chen, K. and Rajlich, V., 2000. Case Study of Featweation Using Dependence Graph. IWPC '00:
Proceedings of the 8th International Workshop asgRrm Comprehension. p. 241 IEEE Computer
Society, Washington, DC, USA.

Cornelissen, B. et al, 2009. Trace VisualizationHoogram Comprehension: A Controlled Experiment.
In: Marcus, A. and Koschke, R. (eds.) Proceedingh®flL7th International Conference on Program
Comprehension (ICPC'09). pp. 100-109 IEEE Computeie§p Washington, DC, USA.

Eisenberg, A.D. and De Volder, K., 2005. Dynamiatieee Traces: Finding Features in Unfamiliar Code.
ICSM '05: Proceedings of the 21st IEEE InternatioBahference on Software Maintenance. pp.
337-346 IEEE Computer Society, Washington, DC, USA.

Greevy, O. and Ducasse, S., 2005. Correlating Fesatmmd Code Using a Compact Two-Sided Trace
Analysis Approach. CSMR '05: Proceedings of the Nimlropean Conference on Software
Maintenance and Reengineering. pp. 314-323 IEEEpQten Society, Washington, DC, USA.

Greevy, O. et al, 2007. How Developers Develop treat CSMR '07: Proceedings of the 11th European
Conference on Software Maintenance and Reenginegmg265-274 IEEE Computer Society,
Washington, DC, USA.

Greevy, 0., 2007. Enriching Reverse Engineering wéhture Analysis. PhD thesis. University of Bern.

Kastner, C. et al, 2008. Granularity in Softwared®igi Lines. Proceedings of the 30th International
Conference on Software Engineering (ICSE). pp. 320-ACM, New York, NY, USA.

Kothari et al,, 2006. On Computing the Canonical test of Software Systems, Proceedings of the 13th
Working Conference on Reverse Engineering, pp. 93-102

Mehta, A. and Heineman, G.T., 2002. Evolving legaggtem features into fine-grained components.
ICSE '02: Proceedings of the 24th International €mfce on Software Engineering. pp. 417—427
ACM, New York, USA.

Murphy, G.C. et al, 2001. Separating Features inr@oode: An Exploratory Study. ICSE 2001:
International Conference on Software Engineering, 0275.

Olszak, A. and Jgrgensen B.N., 2010, Remodularizavg programs for improved locality of feature
implementations in source code, Science of CompRtegramming, In Press, Available online 6
November 2010, ISSN 0167-6423.

Robillard, M.P. and Murphy, G.C., 2002. Concern ggpfinding and describing concerns using
structural program dependencies. ICSE '02: Procgsdif the 24th International Conference on
Software Engineering. pp. 406-416 ACM, New York, WGA.

Rothlisberger, D. et al, 2007. Feature driven bragisICDL '07: Proceedings of the 2007 international
conference on Dynamic languages. pp. 79—100 ACM, Xak, NY, USA.

Ryder, B.G. and Tip, F., 2001. Change impact amalfgsi object-oriented programs. Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on Program analysi software tools and engineering.
pp. 46-53 ACM, New York, USA.

Salah, M. and Mancoridis, S., 2004. A Hierarchypghamic Software Views: From Object-Interactions
to Feature-Interactions. ICSM '04: Proceedings & 20th IEEE International Conference on
Software Maintenance. pp. 72—-81 IEEE Computer $gdiéashington, DC, USA.

Saliu, M.O. and Ruhe, G, 2007. Bi-objective relegd@nning for evolving software systems. In
Proceedings of the the 6th joint meeting of theopean software engineering conference and the
ACM SIGSOFT symposium on The foundations of softwangineering (ESEC-FSE '07). ACM,
New York, NY, USA, 105-114.

Shaft, T. and Vessey, |, 2006. The Role of Cognititie in the Relationship Between Software
Comprehension and Modification. MIS Quarterly, 30(). 29-55.

74

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIENALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

Sillito, J. et al, 2006. Questions programmersdisling software evolution tasks. In Proceedingthef
14th ACM SIGSOFT international symposium on Fourafetiof software engineering (SIGSOFT
'06/FSE-14). ACM, New York, NY, USA, 23-34.

Tarr, P. et al, 1999. N degrees of separation: ifditiensional separation of concerns. ICSE '99:
Proceedings of the 21st international conferenc&aftware engineering. New York, NY, USA:
ACM, pp. 107-119.

Turner, C.R. et al, 1999. A conceptual basis foruieaengineering. Idournal of Systems and Soft., vol.

49, pp. 3-15.

Wilde, N. and Scully, M.C. 1995. Software reconnaig®: mapping program features to code, Journal
of Software Maintenance, vol. 7, pp. 49-62.

Wong, W.E. et al, 2000. Quantifying the closenessvben program components and features, J. Syst.
Softw., vol. 54, pp. 87-98.

75

