
IADIS International Journal on Computer Science and Information Systems
Vol. 6, No.1, pp. 58-75
ISSN: 1646-3692

58

FEATUREOUS: AN INTEGRATED ENVIRONMENT
FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED
SOFTWARE

Andrzej Olszak and Bo Nørregaard Jørgensen
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, 5230 Odense
M, Denmark
{ao, bnj}@mmmi.sdu.dk

ABSTRACT

The decentralized nature of collaborations between objects in object-oriented software makes it difficult
to understand the implementations of user-observable program features and their respective
interdependencies. As feature-centric program understanding and modification are essential during
software maintenance and evolution, this situation needs to change. In this paper, we present Featureous,
an integrated development environment built on top of the NetBeans IDE that facilitates feature-centric
analysis of object-oriented software. Our integrated development environment encompasses a
lightweight feature location mechanism, a number of reusable analytical views, and necessary APIs for
supporting future extensions. The base of the integrated development environment is a conceptual
framework comprising of three complementary dimensions of comprehension: perspective, abstraction
and granularity. Together, these dimensions allow the analyst to focus the analysis at the right mode of
comprehension during software evolution. We demonstrate applicability of our integrated development
environment by conducting a case study of change adoption using the JHotDraw SVG.

KEYWORDS

Features, feature-centric analysis, software evolution

1. INTRODUCTION

Feature-centric analysis (Greevy, 2007) helps developers to perceive object-oriented software
in terms of its user-observable behavior (Turner et al, 1999). The need for feature-centric
analysis is constantly encountered during software evolution and maintenance, since users
formulate their functional requirements, change requests and error reports in terms of features

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

59

(Turner et al, 1999)(Mehta and Heineman, 2002). The ability to relate these descriptions to
relevant fragments of object-oriented source code is a prerequisite to feature-wise
modification (Greevy et al, 2007), error correction (Cornelissen et al, 2009)(Röthlisberger et
al, 2007), change impact assessment (Ryder and Tip, 2001) and derivation of new features
from existing ones.

Relating features to their implementations is, however, a difficult task, since object-
oriented programming languages provide no means for representing features explicitly. In
object-oriented programs, features are implemented as inter-class collaborations crosscutting
multiple classes as well as multiple architectural units (Murphy et al, 2001). This physical
tangling and scattering of features over several units of code makes their implementations
difficult to identify and understand (Turner et al, 1999)(Shaft and Vessey, 2006).

The complexity and size of feature-code mappings creates a need for a tool-supported
analysis approaches. The role of tools is to guide the analysis process in a systematic fashion.
Secondly, tool support is needed to automate repetitive and error-prone calculations, and
thereby to ensure reproducibility and scalability of analytical activities. Finally, we deem it
necessary to integrate tools for feature-centric analysis with contemporary software
development environments, so that feature-centric analysis can be assimilated as part of
standard activities during software evolution and maintenance.

In this paper, we present Featureous, our integrated development environment for feature-
centric analysis of object-oriented programs. Our environment extends the NetBeans Java IDE
(http://netbeans.org), and provides a lightweight dynamic feature location mechanism together
with a set of APIs exposing the basic building blocks for supporting new feature-centric
analytical views. In order to impose a conceptual structuring on possible views developed on
top of our integrated development environment, we propose three dimensions for categorizing
feature-centric views. Thus, each view can be represented as a point in the three-dimensional
space of: perspectives, abstractions and granularity. To motivate the need for proposed
conceptual framework during software evolution, we discuss the applicability of concrete
configuration of views during individual phases of the change mini-cycle (Bennett and
Rajlich, 2000).

In order to demonstrate applicability of feature-centric analysis using Featureous, we have
implemented a selection of state-of-the-art feature-centric views. We show how these views
can be applied in practice to gain insights into an unfamiliar mid-sized codebase. This is done
in the context of a case study of feature-centric analysis and modification of the SVG
application built on top of the JHotDraw framework (http://jhotdraw.org). Since Featureous is
publically available from our website (http://featureous.org), the analytical views and
procedures described in the case study can be immediately applied in third-party contexts.

The remainder of this paper is as follows. In Section 2, we present state-of-the-art on
which we base our integrated development environment. In Section 3, we discuss our
conceptual framework for feature-centric analysis and place it in the context of software
evolution. Section 4 describes the design and APIs of Featureous. In Section 5, we apply
feature-centric analysis in a case study of feature-centric modification. Finally, Section 6
concludes the paper.

IADIS International Journal on Computer Science and Information Systems

60

2. STATE OF THE ART

Feature-centric analysis supports the understanding of object-oriented software by considering
features as first-class analysis entities (Greevy, 2007). One of the basic elements of feature-
centric analysis is the bi-directional traceability links between features and object-oriented
source code. Tools that explicitly visualize this correspondence were shown to simplify
discovering classes implementing a given feature and features implemented by a given class
(Röthlisberger et al, 2007)(Kästner et al, 2008)(Robillard and Murphy, 2002).

By analyzing the established traceability links, it is possible to characterize features in
terms of classes and characterize classes in terms of program features (Greevy and Ducasse,
2005). These characterizations can be used to investigate inter-feature relations in terms of
implementation overlap. Furthermore, the static characterization based on classes can be
complemented by views based on usage of objects by executing features (Salah and
Mancoridis, 2004). This allows for examining run-time inter-feature dependencies.

The information contained in feature-code traceability links can be summarized by usage
of software metrics. The approaches described in (Brcina and Riebisch, 2008)(Wong et al,
2000) have recognized applicability of the metrics traditionally associated with the separation
of concerns to analyzing features. The two metrics proposed in (Brcina and Riebisch, 2008) -
scattering and tangling - assess quantitatively the complexity of the relationships between
features and computational units.

Finally yet importantly, feature location procedures are used by feature-centric analysis
approaches for identification of source code fragments that contribute to implementations of
program features (Wilde and Scully, 1995). The two major types of existing approaches based
on static analysis (Chen and Rajlich, 2000), and dynamic analysis (Wilde and Scully,
1995)(Eisenberg and De Volder, 2005)(Olszak and Jørgensen, 2010) differ with respect to
level of automation, accuracy, and repeatability. The location approach that we adopt in this
paper is a dynamic, semi-automated technique defined in (Olszak and Jørgensen, 2010). Since
it relies on tracing of program execution, it allows for resolving polymorphic invocations,
detecting common usages of objects among multiple executing features, and takes into
account the effect of branch instructions on control flow.

Summing up, the existing approaches define a set of diverse methods for feature-centric
analysis. Nevertheless, there is no common conceptual framework and technical platform for
integrating them and exploring their mutual advantages. Moreover, for some of the mentioned
approaches there remain questions about their practical applicability during software evolution
and maintenance, both because of the lack of a conceptual framework for doing so and
because of the lack of publically available tools implementing them.

3. CONCEPTUAL FRAMEWORK FOR FEATURE-CENTRIC
ANALYSIS OF SOFTWARE

Feature-centric analysis is the process of analyzing programs by considering features as first-
class analysis entities. What distinguishes features from other types of source code concerns is
their inherent relationships to concepts in the problem domain. As the structure of object-
oriented software rarely modularizes and represents features explicitly, any task related to
change of program functionality is likely to crosscut multiple units of source code. Thus, a

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

61

modification to one feature is likely to affect the correctness of other features which use the
code fragments being modified.

Feature-centric analysis can be thought of as a special instance of a more general problem
of cross-decomposition analysis. Software can be decomposed according to various criteria
and thus made to modularize different dimensions of concerns in source code. However, the
majority of modern programming languages only allow us to modularize one dimension of
concerns at a time, called the dominant dimension (Tarr et al, 1999). The correspondence
between modules of the dominant decomposition of a software program and one of its
alternative decompositions is in general many-to-many. This is due to the phenomena of
scattering, where a single module of an alternative decomposition is dislocated over a number
of modules of the dominant decomposition, and tangling, where multiple modules of an
alternative decomposition are interwoven in a single module of the dominant decomposition.
This lack of isomorphic correspondence between the dominant and alternative decompositions
affects changeability of programs, since different kinds of changes require different units of
change. If the required change unit is modularized in the dominant decomposition, then the
change can be performed in a localized manner. However, if the change unit is scattered over
multiple modules, each of them will have to be modified to implement the change. It may also
happen that change made to one of such under-represented concerns will result in an
unforeseen modification of another one due to their tangling in terms of the same
computational unit.

The mentioned situations occur for
object-oriented legacy software, if
tried to be perceived in terms of
feature-oriented decomposition
criteria. Example of such a situation is
shown in Figure 1.

The correspondences between
object-oriented and feature-oriented
decompositions of software can be
investigated from four perspectives,
based on the concrete needs of a
programmer. For instance, a
programmer who is given a report
about an error in a particular feature
would be interested in inspecting the
classes that implement this feature,
hence she would use the feature

perspective. After the error is corrected the programmer could use the computational
perspective to reason if her modifications will affect the correctness of any other features in
the program. The feature relations perspective can be used by programmers to assess the
overlap of implementations of two features. In summary, the three perspectives are defined as
follows:

1. Computational unit perspective shows how computational units like packages and
classes participate in implementing features (Greevy and Ducasse, 2005).

2. Feature perspective focuses on how features are implemented. In particular, it
describes features in terms of their usage of a software program’s computational units
(Greevy and Ducasse, 2005).

A

B

Login

Computational unit perspective

Feature perspective

Edit

F
eatu

re relatio
n

s p
ersp

ective

Figure 1. Perspectives on feature-code traceability links ,
based on (Greevy and Ducasse, 2005).

IADIS International Journal on Computer Science and Information Systems

62

3. Feature relations perspective focuses on inter-feature relations that can be deduced
from the feature-code mapping (Greevy, 2007).

We reckon that one of the major benefits of separating the analytical concerns by means of
multiple perspectives, apart from imposing a structure on the analysis process, is reducing the
complexity of analysis. This is because having multiple perspectives on the many-to-many
correspondence between features and computational units allows us to avoid investigating this
complex mapping directly. Instead, analysis is conducted on a number of one-to-many
mappings, which are considerably easier to understand.

Within our framework, the perspectives are one of the three dimensions used for
categorizing feature-centric analytical views. The other two dimensions are abstraction and
granularity, as visualized in Figure 2.

The purpose of providing stratified levels of
abstraction is to focus the analysis process by limiting the
amount of information simultaneously presented to the
analyst. Furthermore, stratified abstraction levels allow
the complexity of a program’s features to be investigated
in an incremental fashion. We define three levels of
abstraction:

1. Characterization level shows high-level
diagrams that summarize the overall complexity
of feature-code mappings.

2. Correlation level provides correlations between
individual features and computational units.

3. Traceability level provides navigable traceability
links between features and source code.

Correspondence between features and different
granularities of computational units is supported by three levels of granularity: 1. Package
granularity; 2. Class granularity; 3. Method granularity.

These three dimensions define a common categorization scheme that allows Featureous to
be extended with a multitude of analytical views. Using this scheme it is possible to
characterize feature-centric analytical views in terms of three coordinates. For instance, view
{p2, a1, g2} could be a feature-class characterization in form of a plot, whereas view {p1, a2,
g1} could provide a correlation view of features and packages in a program in form of a graph
or a table. The need for concrete types of feature-centric views during software evolution is
discussed in Section 3.1, whereas the set of the current views implemented by Featureous is
described in Section 3.2.

3.1 Feature-centric Modification of Evolving Programs

In this subsection, we analyze the change mini-cycle, being a detailed model of stages of
change adoption during software evolution (Bennett and Rajlich, 2000), and describe how the
concepts of feature-centric analysis can be used to support evolutionary modification of
programs. We do so by focusing on a situation in which a feature-centric change occurs in a
software’s problem domain, thus causing the solution domain artifacts (the source code of an
object-oriented program) to be modified according to the feature as the unit of change. The
presence of the discussed earlier mismatch between the unit of change and the unit of program

a3

a2

a1 p1 p2 p3

 g1
 g2
 g3

Perspective

Abstraction

Granularity

Figure 2. Three-dimensional
conceptual framework.

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

63

decomposition contributes to cognitive overhead and thus hinders change adoption activities.
In this context, we discuss how concrete elements from the three dimensions of our conceptual
framework, i.e. perspectives, abstraction levels and granularities, can be used to support
individual phases of the change mini-cycle, hereby establishing a model for a feature-centric
change mini-cycle. This model serves as basis for designing concrete feature-centric views,
which we present in Section 3.2, and as the underlying methodology for the case study of
evolutionary modification presented in Section 6.

Table 1. Applicability of feature-centric techniques during change mini-cycle

Reques

t for
change

Planning phase Change implementation

Verificatio
n and

validation

Re-
documentatio

n

Program
comprehensio

n

Chang
e

impact
analysi

s

Restructurin
g for change

Change
propagatio

n

Perspectiv
e

n/a p2
p1, p2,

p3
p1, p2 p1, p2, p1 n/a

Abstractio
n

n/a a1, a2 a1, a2, a3 a2, a3 a2, a3 a3 n/a

Granularit
y

n/a g1, g2 g1, g2 g1, g2, g3 g2, g3 g2, g3 n/a

Table 1 shows the correlation between the individual phases of the change mini-cycle and

the levels of perspective, abstraction and granularity applicable for them. The general trends
suggest that more abstract and more coarse-grained views are appropriate at earlier stages of
change adoption, whereas the later stages require more concrete and fine-grained analysis. In
the following, we discuss and motivate the presented correlation.

Request for change. Software’s users initiate the change mini-cycle by communicating
their changed expectations in the form of a request for change. During this process, they often
use vocabulary related to features of software, since users perceive software through its
identifiable functionality (Turner et al, 1999). Henceforth, such a feature-centric request for
adding new features, enhancing existing features or correcting errors in existing features
becomes a basis for feature-centric modification.

Planning phase. The goal of the planning phase is to evaluate feasibility of a requested
change by understanding its technical properties and its potential impact on the rest of the
software. This is not only a prerequisite for later implementation of the change, but can also be
used to informed prioritization and scheduling of change implementation during multi-
objective release planning (Saliu and Ruhe, 2007).

During the process of program comprehension one investigates a program in order to
locate and understand the computational units participating in a feature of interest. In order to
focus the comprehension process within the boundaries of the feature of interest, and thereby
to reduce the search space, one can use the feature perspective on feature-code traceability
links. The narrowed-down search space granted by feature-centric analysis allows for easier
discovery of relevant initial focus points that can also be feature-wisely built upon by
navigating along static relations between feature-intrinsic code units to gain understanding of a
whole feature-sub-graph (Sillito et al, 2006). The concrete levels of abstraction (i.e.
characterization or correlation) and granularity (i.e. package or class) should be chosen based
on the precision of understanding required for performing change impact analysis.

IADIS International Journal on Computer Science and Information Systems

64

After gaining sufficient understanding of the implementation of a feature, one performs
change impact analysis in order to estimate the set of code units that will need to be modified
during change implementation. This is performed by investigating how changes in the
specification of a feature manifest themselves in computational units (feature perspective) and
how other features can be affected by modifying shared computational units (computational
unit perspective). Furthermore, it is necessary to consider both the logical and syntactical
relations between features (feature relations perspective) in order to determine if modification
of pre or post-conditions of a feature can affect its dependent features. Based on the desired
precision of the estimated change impact the analysis can be performed on various levels of
abstraction (i.e. characterization, correlation or traceability) and granularity (i.e. package or
class). Ultimately, the thereby obtained results of change impact analysis should form a basis
for an organizational-level estimation of the cost involved in a planned change
implementation.

Change implementation. During change implementation, one modifies a program’s
computational units according to a corresponding request for change. This phase first prepares
for accommodating a change by restructuring the computational units, and then propagates the
change by modifying them respectively.

Restructuring involves reducing the scattering of feature-centric modifications by applying
behavior-preserving transformations to source code in order to localize and isolate code units
implementing a particular feature. Doing so decreases the number of computational units that
have to be visited and modified, and reduces the impact on implementations of other features,
so that features can evolve independently from each other. During restructuring the feature
perspective is used to identify boundaries of a feature implementation under restructuring and
the computational units perspective to identify portions of code shared by features that are
candidates to splitting. Since restructuring involves modification of the source code, one
should apply analytical views operating on the two lowest levels of abstraction (i.e. correlation
and traceability). Moreover, the feature-code mappings have to be investigated at all
granularities (i.e. package, class, method) in order to identify and address all tangling-
introducing computational units.

Change propagation deals with implementing a change and with ensuring syntactical
consistency of a resulting program. In order to implement a change, a programmer needs to
use the feature perspective to identify the concrete fine-grained (i.e. class and method
granularity) parts of a feature’s implementation that need to be modified as well as the parts
that can be readily reused. This involves applying views at the levels of abstraction closest to
source code – correlation and traceability. On the other hand, the computational units
perspective is essential to facilitate feature-wise navigation over source code, to make feature-
boundaries explicit and to give early indication of modifying feature-shared code (causes
inter-feature change propagation) and of reusing single-feature code (increases evolutionary
coupling of features and can be a sign of design erosion).

Verification and validation. The goal of verification and validation phase is to ensure that
a newly modified feature is consistent with its description and that the remaining features of a
program were not negatively affected by the change. By investigating the fine-grained (i.e.
class and method granularity) changes made in the source code from the computational unit
perspective it is possible to precisely determine which features were altered in the course of
change implementation. This is done at the traceability level of abstraction, where detailed
traceability links from code to features are available. Each of the features whose
implementation was modified needs to be considered as candidates for validation. Such a

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

65

derivation of a minimal set of features to be tested can result in significant savings of project
resources in situations where the validation process is effort-intensive and time-consuming by
its nature (e.g. manual testing, field-testing of control or monitoring systems).

Re-documentation. The re-documentation effort aims at updating the existing user-
documentation of a program as well as developer-documentation. The goal of updating the
latter is to capture information that can reduce the program comprehension effort during
forthcoming evolutionary modifications. Tool support for feature-centric analysis can help
developers to map features to existing use-case-based documentation (Olszak and Jørgensen,
2010). However, the real strength of supporting feature-centric analysis in an integrated
development environment is that it practically eliminates any need for maintaining such
mappings manually, as a feature-code mapping can be generated on-demand. Hence, the
burden of maintaining textual documents that describe the implementations of a program’s
features in parallel with maintaining the source code vanishes.

3.2 Feature-centric Views

In its current version, Featureous is equipped with seven views that address the most important
areas of our conceptual framework. An overview of the views in the user interface of the tool
is presented in Figure 3.

Figure 3. User interface of Featureous.

Feature explorer (marked as A in Figure 3) is the main window of Featureous. It displays
features of a program, allows adding and removing features under analysis and grouping them

A

B

C D1

E

F
G

D2

IADIS International Journal on Computer Science and Information Systems

66

into arbitrary hierarchies. From within feature explorer one can open the analytical feature-
centric views of Featureous by selecting a set of target features and clicking on a view’s icon.

Feature inspector (B) {p2, a3, g1,2,3} provides navigable traceability links from features to
concrete fragments of a program’s source code. The feature inspector’s window contains a
hierarchy of nodes symbolizing the packages, classes and methods that implement a feature.
The nodes symbolizing classes and methods can be used for automatic navigation to their
corresponding source-code fragments in the NetBeans editor view (G).

Feature-code 3D characterization (C) {p1,2, a1, g1,2} serves as a coarse-grained summary
of the complexity of feature-code relations. Depending on the chosen rotation angle of the 3D
chart, the view gives either a summary of the distribution of feature implementations over
computational units, or a characterization of computational units with respect to their
participation in feature implementations. This view incorporates the feature-characterization
and computational units characterization views (Greevy and Ducasse, 2005) as well as the
metrics of scattering of feature implementations among a program’s computational units and
tangling of features in terms of computational units (Brcina and Riebisch, 2008).

Feature-code correlation graph (D1) and feature-correlation grid (D2) {p1,2, a2, g1,2} enable
a detailed investigation of the correspondence between computational units and features. The
graph view is equipped with selection-driven re-layout functionality, so that it is possible to
switch between the computational unit and feature perspectives by focusing the graph on a
given node. These views incorporate the feature-implementation graph and the feature-class
correlation (Greevy and Ducasse, 2005).

Feature relations characterization (E) {p3, a1, g2} relates features to each other based on
the dynamic dependencies between them, i.e. instantiation of classes and common usage of
objects. This is done through a graph-based representation, where nodes represent features and
edges represent dynamic relations between features producing objects, features using
produced objects and features co-using common objects. This view is based on the feature-
interaction graph (Salah and Mancoridis, 2004).

Feature call graph (F) {p2, a3, g2,3} displays the call hierarchy of methods implementing a
given feature. By visualizing the call-relations between methods and their containing classes,
this view aims at enabling inspection of feature implementations according to their run-time
execution flow. Nodes of the view, representing computational units, are automatically folded
to visualize only the currently investigated path in the call hierarchy.

Feature-aware source code editor (G) {p1, a3, g2,3} extends the default source code editor
of the NetBeans IDE with a sidebar visualizing participation of computational units in
implementing features. This gives a programmer precise fine-grained information about
relevance of a fragment of source code to a feature of interest and the degree of feature
tangling involved. Furthermore, we have modified the default folding mechanism of the editor
to provide automatic folding of methods that do not contribute to a given feature of interest.
Thereby, it is possible to hide irrelevant code during comprehension of code subject to
modification when changing a concrete feature.

4. DESIGNING FEATUREOUS

Featureous is implemented on top of the NetBeans Rich-Client Platform (RCP) and tightly
integrated with Java IDE capabilities of the platform. The usage of the module system and the

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

67

lookup mechanism of the NetBeans RCP allowed us to achieve extensibility of Featureous
with respect to adding new analytical views without any need for re-compilation. Tight
integration with the IDE makes it possible to seamlessly combine Featureous with other
programming tools commonly used in contemporary software development.

The infrastructure provided by Featureous is centered around a feature location
mechanism, an extension API that exposes the discovered feature-code traceability links and a
set of other APIs that can be exploited by feature-centric views.

4.1 Feature-location Infrastructure

Feature-centric analysis operates on the traceability links between features and object-oriented
source code. For establishing this traceability, our approach relies on the feature location
mechanism defined in (Olszak and Jørgensen, 2010). This approach requires annotating
feature entry points in the source code of an investigated program. Feature entry points are the
methods through which the execution flow enters the implementations of features. In case of
GUI programs, in which features are triggered through GUI elements, feature entry points will
most often be the actionPerformed methods of event-handling classes. Feature entry point
annotations placed on method declarations have to be parameterized by string-based
identifiers of their corresponding features. Based on annotations inserted by a programmer in
the source code, Featureous locates feature implementations by tracing the program’s
execution flow while a user interact with it. During program execution a tracing agent
registers any object innovations encountered within the control context of feature entry points.
The tracing process is transparent for the user and it does not introduce any significant
performance or memory overhead, since the tracing agent does not register information about

timing and ordering of captured method
invocations. The feature location capability of
Featureous is provided in the NetBeans IDE by
two execution buttons placed on the main toolbar
of the IDE: “Run traced project” and “Test traced
project”. Hence, it is possible to perform user-
driven triggering of features for arbitrary legacy
programs regardless of the presence of appropriate
feature-triggering test suites, and similar to
gradually implement such test suites in order to
incorporate feature location as a part of a team’s
development practices.

The feature location mechanism produces a set
of feature traces that contain a mapping between
features and source code of a program. The model
that we use to represent a trace of a single feature
is shown in Figure 4. Feature trace models, being
inputs to the feature-centric analysis, contain the

information about packages, methods, constructors, classes, instances, and inter-method
invocations that occurred at run-time in implementations of features. This data, as well as
some additional utilities are then exposed through a set of APIs to feature-centric views
created on top of our infrastructure.

TraceModel

 featureID: String

Type

 signature: String
 package: String
 instances: Set<String>

*

Execution

 signature: String
 featureEntryPoint: boolean
 constructor: boolean
 executionCount: int

Invocation

*

*

callee

parent

caller

Figure 4. Feature trace model of Featureous.

IADIS International Journal on Computer Science and Information Systems

68

4.2 Extension API

The most important API of Featureous is the API that allows for accessing feature traces and
for registering third-party feature-centric views. An illustrative example of using this API is
shown in Figure 5.

The access to feature trace models is obtained through the Controller singleton class
contained in the core module of Featureous. Apart from providing the access to trace set,
Controller exposes a number of helper methods, such as: loading and unloading of traces,
splitting and merging traces and accessing the affinity categorization of computational units
discussed in the next section.

In the example view implemented in Figure 5 the AbstractTraceView abstract class defined
in Featureous’ core is being extended to create a new view that displays the number of feature
traces currently loaded in the tool. The three abstract methods (i.e. createInstance, createView,
closeView) are used as a part of template method pattern in the base class and will be called by
it upon the creation, opening and closure of the view. A class implemented in the presented
way can be enclosed in a separate NetBeans module to be dynamically looked-up by
Featureous at run-time thanks to the registration as a provider of the AbstractTraceView
service. Each of the found views is then represented by a button in the main toolbar of the
feature explorer window of Featureous. In the provided example, the new service is registered
by annotating the ExampleView class with the ServiceProvider annotation.

4.3 Affinity API

All the feature-centric analytical views bundled with Featureous make use of the affinity API
that defines a common coloring scheme for computational units. The purpose of the affinity
scheme is to be an indicator of the reuse type of participation of a computational unit among
features of a program. We propose our affinity scheme as an alternative to the affinity scheme

@ServiceProvider(service=AbstractTraceView.class)
public class ExampleView extends AbstractTraceView {

 public ExampleView() {
 setupAttribs("ExampleView", "", "pkg/icon.png");
 }

 public TopComponent createInstance() {
 return new ExampleView();
 }

 public void createView() {
 Controller c = Controller.getInstance();
 Set<TraceModel> ftms = c.getTraceSet().getAllTraces();
 String msg = "No. of traces loaded: " + ftms.size();
 JLabel status = new JLabel(msg);
 this.add(status, BorderLayout.CENTER);
 }

 public void closeView() { ... }
}

Figure 5. Extending Featureous with a new feature-centric view.

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

69

proposed by Greevy and Ducasse, in order to distinguish different categories of reuse of code
between features more precisely than by using arbitrary threshold values, as it is done in
(Greevy and Ducasse, 2005).

Our affinity scheme is based on finding the so-called canonical features in the feature set
of a program (Kothari et al, 2006). Then, the features are grouped around their canonical
centroids thus forming groups of implementation-wisely similar features. Based on this
grouping, we distinguish four categories of computational units with respect to their usage
among features and canonical groups:
• Single-feature units are the computational units that participate in implementing only one

feature. We visualize them in green.
• Core units are computational units reused by all canonical groups. The high degree of

reuse of such units among diverse feature-groups means that they are a part of the
reusable core of the software. We visualize these units in blue.

• Single-group units are computational units used exclusively within a single feature-group.
Such units form a local core reused within a group of functionally related features, as
opposed to the global core built of core units. We visualize these units in light green.

• Inter-group units are computational units reused among multiple, but not all, feature-
groups. This reuse category is half-step between the core and single-group categories, and
hence includes classes that in the future can either be promoted to being core or be
confined to single feature-groups by correcting cases of inappropriate inter-group reuse.
We visualize these units in light blue.

The affinity information can be accessed through the Controller object by getting its
aggregated AffinityProvider object. AffinityProvider interface exposes the information about
the affinity characterization and affinity coloring of concrete packages, classes and methods in
a program. By hiding the concrete affinity providers behind a common interface, it is possible
for third parties to easily replace the default provider and thereby extend Featureous with
customized domain-specific affinity schemes.

4.4 Selection API

As a part of the Featureous, we provide a global selection API. On the technical side, this API
allows feature-centric views for listening and reacting to changes in selection of features and
computational units in other views. On the conceptual side, the selection API enables context-
sensitivity of feature-centric views, so that they can dynamically re-adjust themselves
according to the features and units that a user investigates.

The API is provided by SelectionManager class and is to be used by implementing the
provided SelectionChangeListener interface and registering created listeners within
SelectionManager. Each of the registered listeners will get notified whenever there occurs a
change in the set of selected features or computational units. In addition, it is possible for any
view to use SelectionManager to alter the sets of selected entities and thus change the current
focus of other feature-centric views.

In the current version of Featureous focus in the feature dimension is driven by selecting
features in the feature explorer view, whereas focus in computational units dimension is driven
by either selecting computational units in the feature inspector view or moving the caret of the
feature-aware source code editor to classes and methods of interest. Most of the views are

IADIS International Journal on Computer Science and Information Systems

70

made to dynamically react to such events by highlighting the selected entities or, in the case of
graph-based views, dynamically re-layouting their visualizations.

5. FEATURE-CENTRIC ANALYSIS AND MODIFICATION – A
CASE STUDY

In this section, we present a case study of feature-centric analysis performed during a change
adoption task in an evolving object-oriented program. The methodology applied in this study
followed the feature-centric change mini-cycle presented in Section 3.1.

The program under investigation was a vector graphic-drawing editor for Java called SVG,
which is an instantiation of the JHotDraw 7.2 framework (http://jhotdraw.org). The program
consists of 62K lines of code and contains significantly many features for the case study to be
considered a realistic application scenario.

The request for change that we chose as a starting point of our investigations was to
modify the export feature of SVG so that a watermark text is added to any drawing file being
exported.

To creating a basis for adopting the request for change, we had to establish traceability
links between features and source code of SVG. To achieve this, we needed to recover the list
of features of SVG, since no requirement specification documents were available. In order to
identify features of SVG, we have inspected the executing application. We have performed this
by investigating user-triggerable functionality in graphical user interface elements like the
main menu, contextual menus, and toolbars. We have identified 28 features, whose 91 feature
entry point methods we have annotated in the program’s source code. By manually triggering
each identified feature at run-time in the instrumented SVG program, we obtained a set of
feature traces that became the input to feature-centric analysis.

In the planning phase, we wanted to get an impression of the effort needed to perform the
intended modification task. This was done by investigating our target export feature, which is
responsible for exporting drawings from the program’s canvas to various file formats, through
the feature-code 3D characterization view {p1,2, a1, g1,2}. Feature-code 3D characterization

view, through its feature perspective,
visualizes the scattering of a feature’s
implementation over computational units
of a program while revealing the
complexity of the contributing
computational units it the terms of
tangling that they exhibit. This is done in
three-dimensional bar chart, where each
feature is represented by a number of
bars corresponding to its computational
units. The number of bars displayed for
each feature depicts the scattering of its
implementation, which corresponds to
the size of the search space during a
feature-centric change task. The height
of the individual bars represents their Figure 6. Feature characterization of SVG.

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

71

degree of tangling, thereby indicating the complexity of an occurring feature overlap.
Furthermore, the affinity-based coloring of the bars characterizes the individual computational
units with respect to the way they are reused among features. This shows the potential impact
of modifying a part of the implementation of a given feature on the remaining features. I.e.
modifying a single-feature, green-colored unit within a feature’s implementation will only
affect the feature itself, whereas changing a blue-colored core unit might affect, and possibly
break, multiple other features.

The resulting feature-code 3D characterization obtained for some of the features of interest
in SVG at the granularity of classes is shown in Figure 6. It can be seen that the export feature
is scattered over a fairly low number of classes, 15 in total, which is the maximum number of
classes that we will have to investigate and understand in order to introduce a watermark text
to exported files. However, this feature contains only one feature-specific class, which
indicates a high chance for our modification to propagate to implementations of other features
in unanticipated ways, hence increasing the overall effort of change propagation. Another
feature of interest shown in Figure 6 is the text tool feature. Since this feature is responsible
for drawing the text-based shapes on the editor’s canvas, we hypothesized that it contained
classes that we needed to reuse to programmatically draw a watermark in an exported
drawing. The relatively low extent of scattering of this feature indicated that we would not
have to visit many classes in order to find the ones that we will reuse.

During change implementation we investigated the implementations of export and text tool
features in a greater detail in order to identify the concrete classes that we needed to modify
and reuse to implement the change request.

To analyze the implementations of both features we applied the fine-grained traceability
from features to computational units offered by the feature call tree view {p2, a3, g2,3}. The
feature call tree view, depicted in Figure 7, is a graph containing a hierarchy of nodes
symbolizing class-name-qualified methods. The edges between method-nodes stand for
feature-wise inter-method call-relations recorded at run-time. Such a design allows one to
follow the control flow of a feature incrementally from the point it was triggered in its feature
entry points by selectively navigating relevant call-relations. If requested, it is also possible to
automatic navigate in the NetBeans code editor to the source code fragments corresponding to
a concrete node being investigated. In the context of our case study, we found the control
flow-based method of browsing of feature implementations to let us understand features faster,
as compared to the alternative structure-based browsing strategy offered by the trace inspector
view. Nevertheless, we reckon that the structure-based approach can be more appropriate in
situations where the design of software has to be taken into account, e.g. during refactorings or
migrations of monolithic programs to component architectures.

Figure 7. Navigable feature call tree view

We used the feature call tree view on the export feature to find the class that saves a
drawing to a file on the disk, in order to modify the drawing before it is being saved. We
discovered that the export feature consists of a chain of invocations involving many classes,
most of which could be a possible point of equipping a drawing with a watermark. In order to

IADIS International Journal on Computer Science and Information Systems

72

confine the impact of our change, we chose to modify the SVGView class. This class
implements a visual rendition over a domain model of a SVG drawing and contains export
method that saves the underlying model to a file. Hence, export is a good candidate for
implementing our change by inserting a watermark into the model before the drawing is being
saved and removing the watermark afterwards. It is worth mentioning that the usage of
feature-centric analysis was of significant help during localization of the SVGView class and
the export method, not only because it narrowed down the search space, but also because it
helped us to decipher the polymorphism-based relations between the JHotDraw framework
and the SVG application built on top of it. We reckon that without the support of Featureous
the indirection created by polymorphism-based variation points of the framework would be a
significant obstacle to finding the concrete framework classes that carry out the export-related
functionality in SVG.

After locating the to-be-modified method in the export feature, we investigated the text
tool feature in order to identify a domain class suitable for representing a programmatically-
insertable watermark text. By traversing the call tree of the feature and analyzing the roles of
classes and methods, we have located the candidate class named SVGTextFigure, which is a
domain class for representing textual figures in JHotDraw.

Based on the gained understanding, we have implemented the change request. As shown in
Figure 8, we have done this by modifying the export method, so that the state of a drawing
being exported is modified prior to saving. We added a simple watermark to the drawing’s
model (lines 359, 360) before it is written to the output file by format.write(...) and removed
the watermark afterwards (line 362), so that insertion of a watermark is completely transparent
to a user of SVG. The change implementation was supported by the feature-aware source code
editor {p1, a3, g2,3}, which enhances the standard NetBeans IDE’s editor with fine-grained
traceability from individual fragments of source code to features they implement. Figure 8
demonstrates the three feature-centric capabilities of the editor: color bars annotating source
code with affinities, tooltips providing traceability from source code to concrete features and
code-folding focusing the editor on code units relevant to a given feature. All these
enhancements aim at narrowing the search space to the implementation of a feature of interest
during feature-centric comprehension and modification of source code.

Figure 8. The performed modification in colored code editor.

After implementing the change, we needed to validate that our modification was correct
and that it did not affect the correctness of other features in the program. Firstly, we verify that

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

73

a watermark is added when exporting images by simply running the new version of the SVG
program and then triggering the export feature again. Secondly, we investigated whether the
correctness of some of the remaining features of SVG could have been affected by the change
(e.g. the drawing persistence feature, which could in principle reuse the export method in
some way). This was done by inspecting the affinity of the modified export method in the
affinity-coloring facility of the feature-aware code editor. We have observed that even though
four other features are reusing the method’s enclosing SVGView class, the modified method is
solely used by the export feature. This indicates that no other features could have been
affected by the implemented change.

6. CONCLUSION

As mentioned previously, there exists a lack of isomorphic correspondence between the users’
and the programmers’ perception of object-oriented programs. This becomes problematic
during software maintenance and evolution, as the implementations of the features users want
to have changed are not evident from the object-oriented source code. Hence, there is an
urgent need for tool-supported analysis approaches, which can help developers to understand
the correspondence between features and code.

In this paper, we have presented Featureous a novel integrated development environment
that provides a conceptual framework for implementing feature-centric analytical views of
legacy object-oriented programs. Featureous is implemented as a plug-in to the NetBeans IDE.
Featureous provides a lightweight mechanism for recovering the feature-code traceability links
and APIs for implementing third-party extensions, like additional analytical views and affinity
coloring schemes. Currently, Featureous comes with implementations of a number of state-of-
the-art feature-centric views, three of which we have applied in our case study. The case study
performed on JHotDraw SVG demonstrates how to use feature-centric analysis to support
source code modification during software maintenance and evolution. It was our experience
that the usage of feature-centric analysis during the presented modification task reduced the
extent of required investigations of unfamiliar source code and allowed us to reason about the
impact of the performed modification for the overall correctness of the program.

We hope that the integrated development environment that Featureous provides will help
researchers to experiment with new ideas for feature-centric analysis of software. Motivated
by our experiences reported in this paper, we believe that usage of feature-centric analysis
tools such as Featureous can improve the performance of adopting functionality-related
changes during software evolution. In a long perspective, we hope that improved
understanding of feature-code relations may improve the practices of implementing features in
object-oriented programs.

REFERENCES

Bennett, H.K. and Rajlich, V., 2000. Software maintenance and evolution: a roadmap. In Proceedings of
the Conference on The Future of Software Engineering (ICSE '00). ACM, New York, NY, USA, 73-
87.

IADIS International Journal on Computer Science and Information Systems

74

Brcina, R. and Riebisch, M., 2008. Architecting for evolvability by means of traceability and features.
Automated Software Engineering - Workshops. ASE Workshops 2008. 23rd IEEE/ACM
International Conference on. pp. 72-81.

Chen, K. and Rajlich, V., 2000. Case Study of Feature Location Using Dependence Graph. IWPC '00:
Proceedings of the 8th International Workshop on Program Comprehension. p. 241 IEEE Computer
Society, Washington, DC, USA.

Cornelissen, B. et al, 2009. Trace Visualization for Program Comprehension: A Controlled Experiment.
In: Marcus, A. and Koschke, R. (eds.) Proceedings of the 17th International Conference on Program
Comprehension (ICPC'09). pp. 100–109 IEEE Computer Society, Washington, DC, USA.

Eisenberg, A.D. and De Volder, K., 2005. Dynamic Feature Traces: Finding Features in Unfamiliar Code.
ICSM '05: Proceedings of the 21st IEEE International Conference on Software Maintenance. pp.
337–346 IEEE Computer Society, Washington, DC, USA.

Greevy, O. and Ducasse, S., 2005. Correlating Features and Code Using a Compact Two-Sided Trace
Analysis Approach. CSMR '05: Proceedings of the Ninth European Conference on Software
Maintenance and Reengineering. pp. 314–323 IEEE Computer Society, Washington, DC, USA.

Greevy, O. et al, 2007. How Developers Develop Features. CSMR '07: Proceedings of the 11th European
Conference on Software Maintenance and Reengineering. pp. 265–274 IEEE Computer Society,
Washington, DC, USA.

Greevy, O., 2007. Enriching Reverse Engineering with Feature Analysis. PhD thesis. University of Bern.
Kästner, C. et al, 2008. Granularity in Software Product Lines. Proceedings of the 30th International

Conference on Software Engineering (ICSE). pp. 311–320 ACM, New York, NY, USA.
Kothari et al,, 2006. On Computing the Canonical Features of Software Systems, Proceedings of the 13th

Working Conference on Reverse Engineering, pp. 93–102.
Mehta, A. and Heineman, G.T., 2002. Evolving legacy system features into fine-grained components.

ICSE '02: Proceedings of the 24th International Conference on Software Engineering. pp. 417–427
ACM, New York, USA.

Murphy, G.C. et al, 2001. Separating Features in Source Code: An Exploratory Study. ICSE 2001:
International Conference on Software Engineering, , p. 0275.

Olszak, A. and Jørgensen B.N., 2010, Remodularizing Java programs for improved locality of feature
implementations in source code, Science of Computer Programming, In Press, Available online 6
November 2010, ISSN 0167-6423.

Robillard, M.P. and Murphy, G.C., 2002. Concern graphs: finding and describing concerns using
structural program dependencies. ICSE '02: Proceedings of the 24th International Conference on
Software Engineering. pp. 406–416 ACM, New York, NY, USA.

Röthlisberger, D. et al, 2007. Feature driven browsing. ICDL '07: Proceedings of the 2007 international
conference on Dynamic languages. pp. 79–100 ACM, New York, NY, USA.

Ryder, B.G. and Tip, F., 2001. Change impact analysis for object-oriented programs. Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering.
pp. 46–53 ACM, New York, USA.

Salah, M. and Mancoridis, S., 2004. A Hierarchy of Dynamic Software Views: From Object-Interactions
to Feature-Interactions. ICSM '04: Proceedings of the 20th IEEE International Conference on
Software Maintenance. pp. 72–81 IEEE Computer Society, Washington, DC, USA.

Saliu, M.O. and Ruhe, G., 2007. Bi-objective release planning for evolving software systems. In
Proceedings of the the 6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering (ESEC-FSE '07). ACM,
New York, NY, USA, 105-114.

Shaft, T. and Vessey, I., 2006. The Role of Cognitive Fit in the Relationship Between Software
Comprehension and Modification. MIS Quarterly, 30(1). pp. 29-55.

FEATUREOUS: AN INTEGRATED ENVIRONMENT FOR FEATURE-CENTRIC ANALYSIS AND
MODIFICATION OF OBJECT-ORIENTED SOFTWARE

75

Sillito, J. et al, 2006. Questions programmers ask during software evolution tasks. In Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of software engineering (SIGSOFT
'06/FSE-14). ACM, New York, NY, USA, 23-34.

Tarr, P. et al, 1999. N degrees of separation: multi-dimensional separation of concerns. ICSE '99:
Proceedings of the 21st international conference on Software engineering. New York, NY, USA:
ACM, pp. 107-119.

Turner, C.R. et al, 1999. A conceptual basis for feature engineering. In Journal of Systems and Soft., vol.
49, pp. 3–15.

Wilde, N. and Scully, M.C. 1995. Software reconnaissance: mapping program features to code, Journal
of Software Maintenance, vol. 7, pp. 49–62.

Wong, W.E. et al, 2000. Quantifying the closeness between program components and features, J. Syst.
Softw., vol. 54, pp. 87–98.

