
IADIS International Journal on Computer Science and Information Systems
Vol. 6, No.1, pp. 14-29
ISSN: 1646-3692

14

COLLABORATIVE KNOWLEDGE SHARING AND
EDITING

Philippe Martin, Université de La Réunion (and adjunct researcher of Griffith University, Australia),
EA2525 LIM, Saint-Denis de la Réunion, F-97490, France.
pmji@phmartin.info

ABSTRACT

This article first lists reasons why - in the long term or when creating a new knowledge base (KB) for
general knowledge sharing purposes - collaboratively building a well-organized KB does/can provide
more possibilities, with on the whole no more costs, than the mainstream approach where knowledge
creation and re-use involves searching, merging and creating (semi-)independent (relatively small)
ontologies or semi-formal documents. The article lists elements required to achieve this and describes the
main one: a KB editing protocol that keeps the KB free of automatically/manually detected inconsistencies
while not forcing them to discuss or agree on terminology and beliefs nor requiring a selection committee.

KEYWORDS

Knowledge sharing, integration, retrieval and evaluation.

1. INTRODUCTION

Ontology repositories - and, more generally, the Semantic Web - are most often envisaged as
composed of many small static (semi-)formal files (e.g., RDF or RDFa documents) more or less
independently developed, hence loosely interconnected and with many implicit redundancies
and inconsistencies between them (in this article, “implicit” means “not represented in formal
or semi-formal way”). For example, this mainstream approach is advocated by Shadbolt et al.
(2006) and Casanovas et al. (2007). The missing interconnections are difficult to recover
manually and automatically. As Section 2 shows, due to these missing semantic relations, this
mainstream “static file based approach” - as opposed to an approach based on one (distributed
or not) “collaboratively-built well-organized large knowledge base (cbwoKB)” - makes
knowledge re-use tasks complex to support and do correctly or efficiently, especially in a
collaborative way. Most Semantic Web related research works are intended to support such
tasks (ontology creation, retrieval, comparison and merging). However, most often, they lead

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

15

people to create new files - thus contributing to the problems of knowledge re-use - instead of
inserting their knowledge into one cbwoKB. Such a KB may be on a single machine or may be
a global virtual cbwoKB (gv-cbwoKB) distributed into various correlated cbwoKBs on several
Web servers and/or people's machines of a peer-to-peer network. To avoid implicit
redundancies and inconsistencies within a gv-cbwoKB, there should be direct/indirect cross-
references and knowledge assertion+query forwarding between the cbwoKBs. This point is not
detailed in this article. Martin (2009) introduces a protocol to support this, based on having
each cbwoKB i) defining and advertising the kinds of knowledge objects it stores, ii)
committing to store all objects fulfilling this advertised definition, and for other objects, iii)
pointing/redirecting to a relevant cbwoKB. This protocol is not detailed in this article.

Except for WebKB-2 (www.webkb.org; Martin and Eboueya, 2008) - the tool implementing
the new techniques described in this article - no other ontology/KB server has an ontology-based
protocol permitting and enforcing or encouraging people to interconnect their knowledge into a
cbwoKB, while keeping it at-least-minimally-well-organized (this means that manually or
automatically detected partial redundancies or inconsistencies are prevented or made explicit
via relations of specialization, identity and/or correction) and without forcing people to agree
on terminology nor beliefs (knowledge integration is loss-less). Indeed, i) achieving these two
requirements for scalable cooperative ontology building is often but wrongly assumed to be
impossible or to involve centralization or domain restrictions, ii) it requires the users to see and
write (semi-)formal knowledge representations, iii) it does not permit to directly re-use already
existing ontologies, iv) it requires proposing and managing a large general ontology (WebKB-2
does so), and iv) it is useful for general repositories but then only indirectly for applications. In
general repositories, as we shall see, choices between contradictory beliefs need not and should
not be made. Thus, for each application performing problem-solving, its developers should make
selections and perform choices based on the requirements of the application.

Other KB servers/editors (e.g., Ontolingua, OntoWeb, Ontosaurus, Freebase, CYC and
semantic wiki servers) have no such protocols and i) let all/some users modify what other ones
have entered (this discourages information entering or leads to edit wars), or ii) require
all/some users to approve or not changes made in the KB, possibly via a workflow system (this
is bothersome for the evaluators, may force them to make arbitrary selections, and this is a
bottleneck in information sharing that often discourages information providers). By avoiding
these two governance problems and leading to a well organized KBs, such kinds of cbwoKB
protocol form a basis for a scalable knowledge sharing, even when multiple communities are
involved. Actually, unlike with other approaches, a same cbwoKB can be used by many
communities with partially overlapping focus since the KB is organized and can be filtered,
queried or browsed by each person according to her needs or according to a community
viewpoint. Even if built by many communities a (virtual) cbwoKB is unlikely to be huge since
i) redundancies are reduced, and ii) “well organized knowledge” (as opposed to data) is
difficult to build. However, a cbwoKB can permit to index or relate the content of data-bases.
In any case, the bigger and the more organized the cbwoKB, the more information are easier to
access and compare. Since building a cbwoKB can partly re-use resources of more classic (i.e.,
less organized) Semantic Web solutions or database solutions, it can be incrementally built to
overcome the limitations of these solutions when they become clear and annoying to their
users.

Section 3 presents the knowledge representation model used by the rules of the
collaborative “KB editing” protocol of WebKB-2. Section 4 presents these rules and introduces
many ideas yet unpublished in a journal. For readability reasons, the model and rules are not

IADIS International Journal on Computer Science and Information Systems

16

presented in a fully formal way. Furthermore, as with most methodological rules, the
“completeness” criterion does not apply well to these rules.

Collaborative evaluation of knowledge representations is an extension of collaborative KB
editing since, for precision and re-use purpose, evaluations should themselves be knowledge
representations. The collaboration scheme of WebKB-2 is quickly introduced in Point 7 of the
collaborative “KB editing” protocol.

WebKB-2 has been applied to the collaborative representation of many domains by students
(for learning purposes), researchers (for knowledge sharing and evaluation purposes) and,
currently, experts in biodiversity. Section 5 presents an example of application for (e-)learning.

Section 6 concludes and reminds that the presented knowledge sharing approaches are
complementary.

2. APPROACHES BASED ON FILES VERSUS CBWOKB
SERVERS

With files, information retrieval (IR) often leads to a list of possibly relevant files or pieces of
information (objects, e.g., a formal term or a informal sentence) whereas it leads to an exact
answer in one ontology (a cbwoKB or one formal file; the problem is that without a cbwoKB,
there are more than one file). Such an answer may be a portion of the cbwoKB, e.g., a
part/subtask/specialization hierarchy (with associated argumentation structures) if the query is
of the kind “what are the resources/tools/methods to do ...”. Such semantically structured
answers allow a user to find and compare all relevant objects instead of getting a long
redundant list of objects/files where original/precise ones are hidden among/behind objects that
are more general, mainstream or from big organizations. This is also why IR quality decreases
when the size and number of the files increases, but not when the number of objects increases
in one ontology.

The more objects two files contain, the more difficult it is to link these files via semantic
relations and hence to semantically compare, organize and evaluate them. Instead,
similarity/distance (statistical) measures have to be used. In a cbwoKB, when needed, semantic
queries can be used to filter objects or generate files, according to arbitrary complex
combinations of criteria, e.g., about the creators of the objects. (Some of these criteria may be
used for the internal organization of the cbwoKB but the resulting “views” or “contexts” are
language/content dependent choices and, unlike (semi-)independently created static files, lead
the users to strongly relate objects of different views). Ontology libraries, from early ones such
as the Ontolingua library to imagined ones such as “The Lattice of Theories” (Sowa, 2005), are
often organized into “minimal and internally consistent theories” to maximize their re-use.
However, this also leads to few relations between objects of different ontologies, as well as
implicit redundancies or inconsistencies between them, and hence more difficulties to compare,
merge or relate them. On the other hand, as acknowledged by Sowa, if the objects are organized
into a cbwoKB, such (lattices of) theories can be generated via queries.

With formal files as inputs and outputs, knowledge re-use or integration leads to the
creation of even more files and requires people to select, compare, relate, merge, adapt and
combine (parts of) files. Except for simple applications where fully automatic tools can deliver
good-enough results, these are complex tasks that have to be done by trained people who know
the domain. Most works in collaborative knowledge sharing or “ontology evolution in

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

17

collaborative environments” are about (semi-)automatic procedures for integrating ontologies
(Euzenat et al, 2009) and for rejecting or integrating changes made in other ontologies, e.g.,
(Casanovas et al, 2007; Noy and Tudorache, 2008; Palma et al, 2008). In a cbwoKB, no
adaptation or integration has to be done for each re-use: the most important relations from an
object have to be entered by its creators and then can be complemented by any user. Indeed, it
is often the case that only the object creators know what their objects really mean or have
information required for relating them to other objects.

The normalization/editing rules of a cbwoKB should maximize the use of principled multi-
inheritance hierarchies (for example, hierarchies of specialization/mereological/spatial/...
relations) where each object has a “right place” in the restricted sense that different users would
search or insert a same object at the same place. Only a KB server with a large cbwoKB can
permit a knowledge provider to simply/directly add one new object “at its right place” and
guide her to provide precise and re-usable objects that complement the already stored objects.
This “unique/right place”, i.e., the absence of implicit redundancies, is a minimal requirement
for knowledge insertion and retrieval to be done in a scalable way in the hierarchies and hence
in the semantic network of which they are the backbones (Dromey, 2006).

3. LANGUAGE MODEL FOR THE KB EDITING PROTOCOL

The cbwoKB editing protocol used in WebKB-2 is intended to keep the cbwoKB “at-least-
minimally-well-organized” in the sense given in the introduction. It is not tied to any particular
knowledge representation language (KRL) or inference mechanism (hence, this is not the point
of this article and no comparison is made on such mechanisms). This protocol only requires that
conflicts between knowledge representations - i.e., partial redundancies or inconsistencies
between terms or statements - are detected by some inference mechanism or by people (hence,
the protocol also works with informal pieces of knowledge as long as they can be inter-related
by semantic relations). This does not imply that the KR language should be restricted. The
more conflicts are detected, the more the KB is kept organized and hence exploitable.

The model for the protocols - i.e., their view on a KB (whichever KR language it actually
uses) - is a set of objects which are either terms or statements. Every object has at least one
associated source (creator, believer, interpreter, source file or language) represented by a formal
term. A formal term is a unique identifier for anything that can be though of, i.e., either a
source, a statement or a category. It has a unique meaning which may be made partially/totally
explicit by its creator via definitions with necessary and/or sufficient conditions. An identifier
may be an URI or, if it is not a creator identifier, may include the identifier of its creator (this is
the classic solution to avoid lexical conflicts between terms from various sources). An informal
term is one name of one or several objects. Two objects may share one or several names but
cannot share identifiers. A statement is a sentence that is either formal, semi-formal or informal.
It is informal if it cannot be translated into a logic formula, for example because it does not
have a formal grammar with an interpretation in some logics. Otherwise, it is formal if it only
uses formal terms, and semi-formal if it uses some informal terms. A statement is either a
category definition or a belief. A belief must have a source that is its creator and that believes in
it and/or that has represented (and hence interpreted) a statement from some other source.
Finally, a category is either a type of objects or an individual (object). A type (a “class” in

IADIS International Journal on Computer Science and Information Systems

18

OWL) is either a relation type or a concept type. An individual is an instance of a first-order
type.

Giving a definition is equivalent to using a specialization/identity relation, except that the
system can exploit the definition to better place the term in the specialization hierarchy. Every
belief is also automatically inserted in the specialization hierarchy and its place may be refined
by its creator if this does not introduce an inconsistency in the KB. In order to have a unique
specialization/generalization hierarchy and hence be able to compare any pair of formal or
informal objects (i.e., know if one generalizes or specializes the other), this hierarchy must
actually use several kinds of specialization relations (all of which being subtypes of an
“extended-specialization” relation type): i) the classic “subtype” and “instance” relations
between formal terms, ii) the classic “logical-deduction-of” between formal statements (which,
when formal terms have definitions, permits to calculate or check subtype/instance relations
between these terms), and iii) an “informal-generalization” from a formal or informal object to
an informal one.

The KR model of WebKB-2, its associated notations and its inference mechanism must now
be introduced for illustration purposes. Although graph-based, this model is equivalent to the
model of KIF (Knowledge Interchange Format; http://logic.stanford.edu/kif/dpans.html), i.e., it
permits to use 1st order logic with collections (sets, lists, ...) and contexts (meta-statements that
restrict statements). WebKB-2 allows the use of several notations: RDF/XML (an XML format
for knowledge using the RDF model), the KIF standard notation and other ones which are here
collectively called KRLX. These KRLX languages were specially designed to ease knowledge
sharing: they are expressive, intuitive and normalizing, i.e., they guide users to represent things
in ways that are automatically comparable. One of them is a formal controlled English named
FE. It will be used for the examples along with KIF. These languages can be used for creating
assertion/query commands and these commands can be sent to the WebKB-2 server via the
HTTP/CGI protocol, from an application or from a WebKB-2 Web form. Other communication
interfaces are being implemented: one based on SOAP and one based on OKBC (Open
Knowledge Base Connectivity; http://www.ai.sri.com/~okbc) to query (or be queried by)
frame-based tools or servers, e.g., Loom, SRI and the GKB-Editor.

Here are examples of terms in KRLX. en#"bird" and "bird" refer to the English informal
word “bird” while wn#bird is a formal term referring to one of the WordNet categories for
“bird”. Here are examples of statements in FE. u1#u2#"birds fly" is an informal statement
from u2 that is represented by u1. u1#`any u1#bird is pm#agent of a pm#flight´ is a formal
statement and definition by u1 of u1#bird as something that necessarily fly. u1#`every

u1#bird is agent of a flight´ is a semi-formal statement and belief of u1 that “every
u1#bird flies”. In KIF, these last two statements would respectively be
 (creator u1 '(defrelation u1#bird (?b) :=> (exists ((?f pm#flight)) (pm#agent ?b ?f))))

and (believer u1 '(forall ((?b u1#bird)) (exists ((?f flight)) (agent ?b ?f)))).
When the creator of an object is not explicitly specified, WebKB-2 exploits its “default

creator” related rules and variables to find this creator during the parsing. Similarly, unless
already explicitly specified by the creator, WebKB-2 uses the “parsing date” for the creation
date of a new object. The creator of a belief is also encouraged to add contextualizing relations
on it (at least temporal and spatial relations must be specified).

RDF/XML - the W3C recommended linearization of RDF - and OWL - the W3C
recommended language ontology - are currently not particularly well suited for the cbwoKB

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

19

editing protocol or, more generally, for the representation or interconnection of expressive
statements from different users in a same KB.

• They offer no standard way to associate a believer, creator or interpreter to every object
in an RDF/XML file. Since 2003, RDF/XML has no bagID keyword, thus no way to
represent contexts and hence believers or beliefs. XML name-space prefixes (e.g.,
u1:bird), Dublin Core relations and statement reification do not permit to do this. This
is likely a temporary only constraint since many RDF-related languages or systems
extend RDF in this direction: Notation3 (N3), Sesame, Virtuoso, ...

• RDF and OWL - like almost all description logics - do not permit their users to
distinguish definitions from universal quantifications. More precisely, they do not offer
a universal quantifier. N3 does (Turtle, the RDF-restricted subset of N3, does not). The
distinction is important since, as noted in the documentation of KIF
(http://logic.stanford.edu/kif/dpans.html#5.3), a universally quantified statement (belief)
may be false while a definition cannot. A definition may be said to be “neither true nor
false” or “always true by definition”. A user u1 is perfectly entitled to define u1#cat as a
subtype of wn#chair; there is no inconsistency as long as the ways u1#cat is further
defined or used respect the constraints associated with wn#chair. A definition may be
changed by its creator but then the meaning of the defined term is changed rather than
corrected. This distinction is important for a cbwoKB editing protocol since it leads to
different conflict resolution strategies: “term cloning” and “loss-less correction” (Point
5 and Point 6 of the next section).

• Many natural language sentences are difficult to represent in RDF/XML+OWL or
N3+OWL, since they do not yet have various kinds of numerical quantifiers, contexts,
collections, modalities, ... (FE has concise syntactic sugar for the different kinds).
However, at least N3 might soon be extended.

• Like most formal languages, RDF/XML and N3 do not accept - or have a special syntax
for - the use of informal objects instead of formal objects. KRLX does and this permits
WebKB-2 to create one specialization/generalization hierarchy categorizing all objects.
More precisely, this is an “extended specialization/generalization” hierarchy since in
WebKB-2 the classic “generalization” relation between formal objects (logical
implication) has been extended to apply to informal objects too.

For its cbwoKB editing protocol, WebKB-2 detects (partial) redundancies or
inconsistencies between objects by detecting exclusion and extended specialization relations
between (parts of) these objects. A statement Y is an extended specialization of a statement X
(i.e., Y includes the information of X and hence either contradicts it or makes it redundant) if
X structurally matches a part of Y and if each of the terms in this part of Y is identical or an
extended specialization of its counterpart term in X. For example, WebKB-2 can detect that
u2#`Tweety can be agent of a flight with duration at least 2.5 hour´ (which means “u2
believes that Tweety can fly for at least 2.5 hours”) is an extended specialization (and an
“extended instantiation”) of both u1#`every bird can be agent of a flight´ and
u1#`2 bird can be agent of a flight´. In KIF, the
first of these two statements can be written:
(believer u1 '(modality possible '(forall ((?b bird)) (exists ((?f flight)) (agent ?b

?f)))))

IADIS International Journal on Computer Science and Information Systems

20

These last two statements can be found to be extended specializations of (and redundant
with) respectively u2#`75% of bird can be agent of a flight´ and u2#`at least 1 bird can
be agent of a flight´. Similarly, this last graph can be found to be exclusive with u3#`no
bird can be agent of a flight´.

WebKB-2 uses the same graph-matching technique for calculating partial or total
extended-specialization relations between formal/informal statements, and therefore also
“actual or potential conflicts”. Other inference mechanisms could be used instead or in
addition for detecting more specialization relations. This matching takes into account
numerical quantifiers and measures, not just existential and universal quantifiers. Apart for
this, it is similar to the classic graph matching for a specialization (or conversely, a
generalization which is a logical deduction) between positive conjunctive existential formulas
(with or without an associated positive context, i.e., a meta-statement that does not restrict its
truth domain). This classic graph matching is sound and complete with respect to first-order
logic and can be computed with polynomial complexity if the query graph (X in the above
description) has no cycle (Chein and Mugnier, 1997). Apart from this restricted case, graph
matching for detecting an extended specialization is not always sound and complete.
However, this operation works with language of any complexity (it is not restricted to OWL or
FOL) and the results of searches for extended specializations of a query graph are always
“relevant”.

4. COLLABORATIVE KB EDITING PROTOCOL

The rules of the protocol are intended for each object to be connected to at least another object
via relations of specialization/generalization, identity and/or argumentation. These rules also
permit a loss-less information integration since they do not force to make knowledge
selections. They apply to the addition, modification or removal of an object in the KB, e.g.,
through a graphical interface or via the parsing of a new command in a new input file. This
does not serialize objects in the KB and waiting till the whole input file is parsed would not
permit to detect more partial redundancies or inconsistencies between the objects.

The independence of the protocol with respect to KRLs is clear in its high-level algorithms
which are given below in Java (and, for clarity purposes, in an object-oriented way) and then
discussed via a list of informal rules. These algorithms present some checks on a user's
attempt to remove or add a statement and the resulting system decision: rejecting the action
(“return false”) or accepting it, with possibly some automatic repair step before accepting it.
Only statement removal and adding are considered in the algorithms since i) updating is
considered as removing followed by adding, ii) reading or re-using an object is always
accepted (privacy control is not dealt with in this article), and iii) term removal or adding
must be made via the removal or addition of a statement (see the second informal rule below).

In the following algorithms and rules, the word “user” is used as a synonym for “source”.

boolean statement.removal_by (User agent)

{ if (object.creator != agent) return false;

 if (agent.created_statements.are_inconsistent_with(this)) return false;

 if (agent.created_statements.are_redundant_with(this)) return false;

 if (this.is_definition())

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

21

 { if (KB.statements_without(this).are_inconsistent())

KB.clone_term_in_statements_using(this.defined_term());}

 else if (KB.statements_without(this).are_inconsistent()) this.clone_for_other_believers();

 KB.remove(this,agent); return true;

}

boolean statement.adding_by (User agent)

{ if (this.is_informal_statement() && !this.has_associated_argumentation_relation()) return

false;

 if (agent.created_statements.are_inconsistent_with(this)) return false;

 if (agent.created_statements.are_redundant_with(this)) return false;

 if (this.is_definition())

 { if (this.is_definition_of_new_term() && KB.statements.are_inconsistent_with(this)) return

false;

 if (this.is_new_definition_of_already_declared_term() &&

KB.statements.are_inconsistent_with(this))

 KB.clone_term_in_statement_inconsistent_with(this);

 }

 else if (KB.statements.are_partially_conflicting_with(this)) return false; //implicitly

redundant/inconsistent

 KB.add(this,agent); return true;

}

Here are the informal rules enforced by these algorithms.

1. Any user can add and use any object but an object may only be modified or removed by its
creator.

2. Adding, modifying or removing a term is done by adding, modifying or removing at least
one statement (generally, one relation) that uses this term. A new term can only be added
by specializing another term (e.g., via a definition), except for process types which, for
convenience purposes, can also be added via subprocess/superprocess relations. In
WebKB-2, every new statement is also automatically categorized into the extended
specialization hierarchy. A new informal statement must also be connected via an
argumentation relation to an already stored statement. In summary, all objects are
manually or automatically inserted in the extended specialization hierarchy and/or the
subprocess hierarchy, and thus can be easily searched and compared. However, it is clear
that if one user (say, u2) enters a term (say, u2#object) that is implicitly semantically close
to another user's term (say, u1#thing) but does not manually relates them or manages to
give u2#object a definition that is not automatically comparable to the definition of
u1#thing (i.e., there is no partial redundancies between the two definition) then the two
terms cannot be automatically related by the system and the implicit redundancy cannot be
rejected by the system. Here, the problem is that u2 has not respected the following “best
practice” rule (which is part of WebKB-2 normalization rules): “always relate a term to all
existing terms in the KB via the most important or common relations: i) transitive
relations, especially (extended) specialization/generalization relations and mereological

IADIS International Journal on Computer Science and Information Systems

22

relations (to specify parts, containers, …), ii) exclusion/correction relations (especially via
subtype partitions), iii) instance/type relations, iii) basic relations from/to processes,
iv) contextualizing relations (spatial, temporal, modal, …) and v) argumentation relations”.

3. If adding, modifying or removing a statement introduces an implicit redundancy (detected
by the system) in the shared KB, or if this introduces a detected inconsistency between
statements believed by the user having done this action, this action is rejected by the
system. Thus, in the case of an addition, the user must refine his statement before trying to
add it again or he must first modify at least one of his already entered statements. An
“implicit” redundancy is a redundancy between two statements without a relation between
them making the redundancy explicit. Such a relation is typically an equivalence relation
in the case of total redundancy and an extended specialization relation (e.g., an “example”
relation) in the case of partial redundancy. As illustrated in the previous section, the
detection of extended specializations between two objects reveals an inconsistency or a
total/partial redundancy. It is often not necessary to distinguish between these two cases to
reject the newly entered object. Extended “instantiations” (one example was given in the
previous section) are exceptions: they do not reveal an inconsistency or a total/partial
redundancy that needs to be made explicit, since adding an instantiation is giving an
example for a more general statement. It is important to reject an action introducing a
redundancy instead of silently ignoring it because this often permits the author of the
action to detect a mistake, a bad interpretation or a lack of precision (on his part or not). At
the very least, this reminds the users that they should check what has already been
represented on a subject before adding something on this subject.

4. If the addition of a new term u1#T by a user u1 introduces an inconsistency with
statements of other users, this action is rejected by the system. Indeed, such a conflict
reveals that u1has directly or indirectly used – and misunderstood - at least one term from
another user in his definition of u1#T. The addition by a user u2 of a definition to u1#T is
actually a belief of u2 about the meaning of u1#T. This belief should be rejected if it is
found (logically) inconsistent with the definition(s) of u1#T by u1 (example in Point 6).

5. If the addition, modification or removal of a statement defining an already existing term
u1#T by a user u1 introduces an inconsistency involving statements directly or indirectly
re-using u1#T and created or believed by other users (i.e., users different from u1), u1#T
is automatically cloned to solve this conflict and ensure that the original interpretation of
u1#T by these other users is still represented. Indeed, such a conflict reveals that these
other users had a more general interpretation of u1#T than u1 had or now has. Assuming
that u2 is this other user or one of these other users, the term cloning of u1#T consists in
creating u2#T with the same definitions as u1#T except for one, and then replacing u1#T
by u2#T in the statements of u2. The difficulty is to chose a relevant definition to remove
for the overall change of the KB to be minimal. In the case of term removal by u1, term
cloning simply means changing the creator's identifier in this term to the identifier of one
of the other users (if this generated term already exists, some suffix can be added). In a
cbwoKB server, since statements point to the terms they use, changing an identifier does
not require changing the statements. In a global virtual cbwoKB distributed on several
servers, identifier changes in one server need to be replicated to other servers using this
identifier. Manual term cloning is also used in knowledge integrations that are not loss-less
(Djedidi and Aufaure, 2010).

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

23

In a cbwoKB, it is not true that beliefs and term definitions “have to be updated sooner or
later”. To avoid this and to get precise knowledge, in a cbwoKB every belief must be
contextualized in space and time, as in u3#` `75% of bird can be agent of a flight´in

place France and in period 2005 to 2006´ (such contexts are not shown in the other
examples of this article). If needed, u3 can associate the term
u3#75%_of_birds_fly__in_France_from_2005_to_2006 with this last belief. Due to the possibility
of contextualizing beliefs, it is rarely necessary to create formal terms such as
u2#Sydney_in_2010. Most common formal terms, e.g., u3#bird and wordnet1.7#bird never
need to be modified by their creators. They are specializations of (or equal to) more general
formal terms, e.g., wn#bird (the fuzzy concept of bird shared by all versions of the WordNet
ontologies; u3#bird refers to a more precise concept, otherwise u3 would not have created it).
What certainly evolves in time is the popularity of a belief or the popularity of the association
between an informal term and a concept. If needed, this changing popularity can be
represented by different statements contextualized in time and space.

6. If adding, modifying or removing a belief introduces an implicit potential conflict
(partial/total inconsistency or redundancy) involving beliefs created by other creators, it
is rejected. However, a user may still represent his belief (say, b1) – and thus “loss-less
correct” another user's belief that he does not believe in (say, b2) – by connecting b1 to b2
via a corrective relation. E.g., here are two FE statements by u2, each of which corrects a
statement made earlier by u1:
u2#` u1#`every bird is agent of a flight´ has for corrective_restriction
 u2#`most healthy flying_bird are able to be agent of a flight´ ´ and
u2#` u1#`every bird can be agent of a flight´ has for corrective_generalization
 u2#`75% of bird can be agent of a flight´ ´.

In the second case, u2's belief generalizes u1's belief and corrects it since otherwise u2
would not have needed to add it. In the first case, u2's belief specializes u1's belief (except
for a quantifier which is generalized) and corrects it. In both cases, WebKB-2 detects the
conflict by simple graph-matching.

If instead of the belief `every bird can be agent of a flight´ (all birds can fly), u1
entered the definition `any bird can be agent of a flight´, i.e., if he gave a definition
to the type named “bird”, there are two cases (as implied by the rules of the two previous
points):

• u1 originally created this type (u1#bird); then, u2's attempt to correct the definition is
rejected, or

• u1 added a definition to another user's type, say wn#bird since this WordNet type has
no associated constraint preventing the adding of such a definition; then, i) the types
u1#bird and u2#bird are automatically created as clones (and subtypes of) wn#bird,
ii) the definition of u1 is automatically changed into `any u1#bird is agent of a
flight´, and iii) the belief of u2 is automatically changed into u2#`75% of u2#bird
can be agent of a flight´.

In WebKB-2, users are encouraged to provide argumentation relations on corrective
relations, i.e., a meta-statement using argument/objection relations on the statement using the
corrective relation. However, to normalize the shared KB, people are encouraged not to use an
objection relation but a “corrective relation with argument relations on them”. Thus, not only

IADIS International Journal on Computer Science and Information Systems

24

are the objections stated but a correction is given and may be agreed with by several persons,
including the author of the corrected statement (who may then remove it). Even more
importantly, unlike objection relations, most corrective relations are transitive relations and
hence their use permits better organization of argumentation structures, thus avoiding
redundancies and easing information retrieval. The use of corrective relations makes explicit
the disagreement of one user with (his interpretation of) the belief of another user. There is no
inconsistency: an assertion A may be inconsistent with an assertion B but a belief that “A is a
correction of B” is technically consistent with a belief in B. Thus, the shared KB can remain
consistent.

For problem-solving purposes, application-dependent choices between contradictory
beliefs often have to be made. To make them, an application designer can exploit i) the
statements describing or evaluating the creators of the beliefs, ii) the corrective/argumentation
and specialization relations between the beliefs, and more generally, iii) their evaluations via
meta-statements (see Point 7). For example, an application designer may choose to select only
the most specialized or restricted beliefs of knowledge providers having worked for more than
10 years in a certain domain. Thus, the approach of this protocol is unrelated to defeasible
logics and avoids the problems associated with classic “version management” (furthermore, as
above explained, in a cbwoKB, formal objects do not have to evolve in time).

This approach assumes that all beliefs can be argued against and hence be “corrected”.
This is true only in a certain sense. Indeed, among beliefs, one can distinguish “observations”,
“interpretations” (“deductions” or “assumptions”; in this approach, axioms are considered to
be definitions) and “preferences”; although all these kinds of beliefs can be false (their authors
can lie, make a mistake or assume a wrong fact), most people would be reluctant to argue
against self-referencing beliefs such as u2#"u2 likes flowers" and u2#"u2 is writing this
sentence". The editing protocol of WebKB-2 relies on the reluctance of people to argue
against such beliefs that should not be argued against.

7. To support more knowledge filtering or decision making possibilities and lead the users to
be careful and precise in their contributions, a cbwoKB server should propose “default
measures” deriving a global evaluation of each statement/creator from i) users' individual
evaluations of these objects, and ii) global evaluations of these users. These measures
should not be hard-coded but explicitly represented (and hence be executable) to let each
user adapt them - i.e., combine their basic functions - according to his goals or preferences.
Indeed, only the user knows the criteria (e.g., originality, popularity, acceptance, ..., number
of arguments without objections on them) and weighting schemes that suit him. Then, since
the results of these evaluations are also statements, they can be exploited by queries on the
objects and/or their creators. Furthermore, before browsing or querying the cbwoKB, a user
should be given the opportunity to set “filters for certain objects not to be displayed (or be
displayed only in small fonts)”. These filters may set conditions on statements about these
objects or on the creators of these objects. They are automatically executed queries over the
results of queries. In WebKB-2, filtering is based on a search for extended specialization, as
for conceptual querying. Filters are useful when the user is overwhelmed by information in
an insufficiently organized part of the KB. The KB server Co4 (Euzenat, 1996) also had
protocols based on peer-reviewing for finding consensual knowledge; the result was a
hierarchy of KBs, the uppermost ones containing the most consensual knowledge while the
lowermost ones were the private KBs of contributing users. Establishing “how consensual a
belief is” is more flexible in a cbwoKB: i) each user can design his own global measure for

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

25

what it means to be consensual, and ii) KBs of consensual knowledge need not be
generated. In any case, the reliability/popularity of user contributions is collaboratively
assessed; this is much more difficult with traditional “static formal file based” approaches.

The approach described by the previous points is incremental and works on semi-formal
KBs. Indeed, the users can set corrective or specialization relations between objects even when
the system does not detect an inconsistency or redundancy. As noted, a new informal statement
must be connected via an argumentation relation (e.g., a corrective relation) or an extended
specialization relation to an already stored statement. For this relation to be correct, this new
statement should generally not be composed of several sub-statements. However, allowing the
storing of (small) paragraphs within a statement eases the incremental transformation of
informal knowledge into (semi-)formal knowledge and allows doing so only when needed. This
is necessary for the general acceptance of the approach. The techniques described in this article
work do not seem particularly difficult for information technology amateurs, since the
minimum they require is for the users to set the above mentioned relations from/to each term or
statement. Hence, these techniques could be used in semantic wikis to avoid their governance
problems cited in the introduction and other problems caused by their lack of structure. More
generally, the presented approach removes or reduces the file-based approach problems listed in
the previous section, without creating new problems. Its use would allow merging of (the
information discussed or provided by the members of) many communities with similar
interests, e.g., the numerous different communities working on the Semantic Web.

5. EXAMPLES OF APPLICATIONS IN TEACHING

WebKB-2 has been used for integrating many ontologies (Martin, 2003, 2009) and representing
many domains. In particular, it has been used for representing and inter-connecting the most
important concepts of four different courses that I gave: “Workflow Management”, “Systems
Analysis & Design”, “Introduction to Multimedia” and “Client-Server Architecture”. Nearly
each sentence of each slide for these courses has been represented into a semantic network of
tasks, data structures, properties, definitions, etc. Figure 1 shows an extract of a Web file that
was an input file for WebKB-2 and that mixed formal and informal elements; the formal ones
are in the FL notation and represent important statements (here, relations between important
concepts) from a book in Workflow Management. Figure 2 shows an example of results to a
query. Each FL statement in these figures follow the generic schema:

 CONCEPT1 RELATION1: CONCEPT2 CONCEPT3,
 RELATION2: CONCEPT4 (sourceForRel2) ...;

Such a statement should be read: “any CONCEPT1 may have for RELATION1 one or many
CONCEPT2, and may have for RELATION1 one or many CONCEPT3, and may have for RELATION2 one or
many CONCEPT4 (relation which can be found at sourceForRel2), ...”. The sources of those
relations in the book and the persons who created those representations (e.g., pm and the
student s162557) are indicated. When the creator of a relation is not indicated, I (the user “pm”)
was the creator.

The students of these courses have recognised the help that the semantic network provided
them in relating and comparing information otherwise scattered in many different slides and
other lecture materials (an analysis of their evaluation of this teaching approach is given by

IADIS International Journal on Computer Science and Information Systems

26

Martin (2009)). However, having to learn the FL notation was perceived as a problem,
especially by the students who were evaluated on their contributions to the semantic network.
An intuitive table-based knowledge entering/display interface for FL should reduce this
problem. Compared to an informal “learning journal”, evaluating the students on their
contributions to the semantic network permitted a much better evaluation of whether or not they
understood the nature of the important concepts and their relationships. To enter these
contributions, i.e., to collaboratively complete the initial “course formal summary (semantic
network)” that I designed for them, the students used WebKB-2. For the students, the KB
editing protocols were not a problem but entering meaningful knowledge representations
proved to be very difficult. This highlighted the necessity for a very strong and very advanced
semantic checking. Due to its knowledge normalization procedures, WebKB-2 enforces
stronger semantic checks than RDF+OWL inference engines but this still proved to be very
insufficient.

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

27

Figure 2. Command to display the specializations of a
 type, followed by its first result:
 wfm#workflow_management
 (here, this type is displayed along with
 some of its related objects using an
 informal format looking like FL)

Figure 1. Extract from an input file including some
 formal representations of representing statements
 from a book in Workflow Management
 (here referred to by the variable $book)

IADIS International Journal on Computer Science and Information Systems

28

6. CONCLUSION

This article first aimed to show that a cbwoKB is technically and socially possible. To that end,
the fourth (and main) section of this article presented a protocol permitting, enforcing or
encouraging people to incrementally interconnect their knowledge into a well-organized
(formal or semi-formal) KB without having to discuss and agree on terminology or beliefs. As
noted, it seems that all other knowledge-based cooperation protocols that currently exists work
on the comparison or integration of whole KBs, not on the comparison and loss-less integration
of all their objects into a same KB. Other required elements for a cbwoKB - and for which
WebKB-2 implements research results - were also mentioned: expressive and normalizing
notations, methodological guidance, a large general ontology, and an initial cbwoKB core for
the application domain of the intended cbwoKB. Already explored kinds of applications were
cited. One currently explored is the collaborative representation and classification by Semantic
Web experts of “Semantic Web related techniques”. More generally, the approach seems
interesting for collaboratively-built corporate memories or catalogues, e-learning, e-
government, e-science, e-research, etc. Hillis (2004) describes a “Knowledge Web” to which
teachers and researchers could add “isolated ideas” and “single explanations” at the right place,
and suggests that this Knowledge Web could and should “include the mechanisms for credit
assignment, usage tracking and annotation that the Web lacks” (pp. 4-5). Hillis did not give
hints on what such mechanisms could be. The cbwoKB elements described by this article can
be seen as a basis for such mechanisms.

A second aim of this article (mainly via Section 2) was to show that - in the long term or
when creating a new KB for general knowledge sharing purposes - using a cbwoKB does/can
provide more possibilities, with on the whole no more costs, than the mainstream approach
(Shadbolt et al, 2006; Bizer et al., 2010) where knowledge creation and re-use involves
searching, merging and creating (semi-)independent (relatively small) ontologies or semi-
formal documents. The problem - and related debate - is more social (which formalism and
methodology will people accept to learn and use?) than technical. A cbwoKB is much more
likely to be adopted by a small communities of researchers but could incrementally grow to a
larger and larger community. In any case, research on the two approaches are complementary:
i) techniques of knowledge extraction or merging ease the creation of a cbwoKB, and ii) the
results of applying these techniques with a cbwoKB as input would be better, and iii) these
results would be easier to retrieve, compare, combine and re-use if they were stored in a
cbwoKB.

REFERENCES

Bizer, C. et al, 2010. Linked data - the story so far. In International Journal on Semantic Web and
Information Systems, 5, Vol. 3, pp. 1-22.

Casanovas, P. et al, 2007. Opjk and diligent: ontology modeling in a distributed environment. In
Artificial Intelligence Law, 15, vol. 2, pp. 171-186.

Chein, M. and Mugnier, M.-L., 1997. Positive nested conceptual graphs. Proceedings of ICCS 1997,
LNAI 1257, pp. 95-109.

COLLABORATIVE KNOWLEDGE SHARING AND EDITING

29

Djedidi R. and Aufaure A., 2010. Define Hybrid Class Resolving Disjointness due to Subsumption.
http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybrid_Class_Resolving_Disjointness_due_
to_Subsumption

Dromey, G.R., 2006. Scaleable Formalization of Imperfect Knowledge. Proceedings of AWCVS-2006, 1st
Asian Working Conference on Verified Software, Macao SAR, China, October 29-31 2006.

Euzenat, J., 1996. Corporate memory through cooperative creation of knowledge bases and hyper-
documents. Proceedings of KAW 1996, pp. (36)1-18.

Euzenat, J. et al, 2009. Sharing resources through ontology alignment in a semantic peer-to-peer system.
In Cases on semantic interoperability for information systems integration: practice and applications,
pp. 107-126.

Hillis, W.D. Aristotle (the knowledge web). Edge Foundation, Inc., 138, May 6, 2004.
Martin, Ph. and Eboueya, M., 2008. For the ultimate accessibility and re-usability. Chapter 29 (14

pages) of the Handbook of Research on Learning Design and Learning Objects: Issues, Applications
and Technologies, IGI Global, pp. 589-606.

Martin, Ph., 2003. Correction and Extension of WordNet 1.7. Proceedings of ICCS 2003, Springer
Verlag, LNAI 2746, pp. 160-173.

Martin, Ph., 2007. Managing Knowledge to Enhance Learning. International Journal of Knowledge
Management & E-Learning (ISSN 2073-7904), Vol.1, No.2, 2009, pp. 103-119.

Martin, Ph., 2009. Towards a collaboratively-built knowledge base of&for scalable knowledge sharing
and retrieval. HDR thesis ("Habilitation to Direct Research"; 240 pages), University of La Réunion,
France, December 8, 2009.

Noy, N.F., Tudorache, T., 2008. Collaborative ontology development on the (semantic) web.
Proceedings of the AAI Spring Symposium on Semantic Web and Knowledge Engineering (SWKE
2008).

Palma, R., et al, 2008. Propagation models and strategies. Deliverable 1.3.1 of NeOn - Lifecycle Support
for Networked Ontologies; NEON EU-IST-2005-027595.

Shadbolt, N. et al, 2006. The semantic web revisited. In IEEE Intelligent Systems, 21, Vol. 3, pp. 96-101.
Sowa, J., 2005. Theories, models, reasoning, language, and truth.

http://www.jfsowa.com/logic/theories.htm

