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ABSTRACT 

We consider the clustering problem with arbitrary shapes and different densities both within and between 
the clusters, where the number of clusters is unknown. We propose a new density-based approach in the 
graph theory context. The proposed algorithm has three phases. The first phase makes use of graph-based 
and density-based clustering approaches in order to identify the neighborhood structure of data points. 
The second phase detects outliers using the local outlier concept. In the third phase, a hiearchical 
agglomeration is performed to form the final clusters. The algorithm is tested on a number data sets and 
compared with the well-known clustering algorithms in the literature. Its strengths and limitations are 
explored in detail.  
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1. INTRODUCTION 

Cluster analysis is the organization of a collection of data points in multidimensional space 
into clusters based on similarity (Jain et al., 1999). Clustering tries to represent the data by 
relatively fewer clusters and ensures simplicity. For this reason, it is encountered in many 
research contexts. It is an important and useful step in exploratory data analysis.  
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Clustering problems have several challenging issues including determination of the 
number of clusters, handling arbitrary shaped clusters, dealing with density variations within 
and between clusters, and detection of outliers. Hard (crisp) clustering methods in the 
literature can be classified into hierarchical, partitional, probabilistic, density-based and graph-
based algorithms. In hierarchical methods, clusters are formed either top-down (divisive) or 
bottom-up (agglomerative). Partitional methods aim at obtaining a single partition of the data 
set using iterative optimization of a criterion. In probabilistic clustering, data points are 
assumed to belong to a certain statistical distribution for which parameters are estimated. 
Density-based clustering considers clusters as dense regions separated by less dense regions. 
Graph-based approaches consider the problem as a graph in which nodes are the data points 
and edges represent the similarity between data points. These approaches try to form 
subgraphs as clusters. In addition to these hard clustering methods, there are also fuzzy 
clustering algorithms. In fuzzy clustering the membership levels of points in the data set are 
found instead of assigning a point to a cluster.  

Many of the existing clustering algorithms lack a systematic view and they focus on only 
some of the challenging issues. However, a priori information about the clusters in a data set 
(e.g. the number of clusters, shape and density of the clusters) is very limited or unavailable. 
For this reason, it is necessary to consider the clustering problem in a broad framework.  

In this work, we propose a new density-based approach. Our approach can handle a 
combination of the challenging issues for which most of the well-known algorithms have 
deficiencies. A graph theory context is adopted to address arbitrary shapes and heterogeneous 
densities in two or higher dimensional space. Unknown number of clusters is assumed. Our 
algorithm is composed of three phases: neighborhood construction, outlier detection and 
merging. The first phase uses ideas from both density-based algorithms to handle arbitrary 
shapes and graphs to deal with varying densities. A neighborhood is constructed for each data 
point using the proximity and connectivity information. The second phase focuses on outlier 
detection. Local Outlier Factor (LOF) proposed by Breunig et al. (2000) is revised for the 
neighborhoods obtained. In the third phase, a hiearchical agglomeration is performed where 
closures are merged considering the improvement in separation-to-compactness ratio subject 
to consistency with their neighborhood. In Section 2, we describe the Neighborhood 
Construction (NC) algorithm. The three-phase heuristic (NOM) is presented in Section 3. 
Experimental results are presented in Section 4. We conclude in Section 5. 

2. NEIGHBORHOOD CONSTRUCTION (NC) ALGORITHM  

Widely used neighborhood structures in clustering are based on k-nearest neighbors (k-NN) or 
local density of neighbors. k-NN is sensitive to parameter k for arbitrary shapes and varying 
densities. In DBSCAN (Ester et al., 1996), neighborhood of a point is defined by a circle with 
radius ε, and the point is classified as a core point if there are more than MinPts points in the 
circle. Setting ε and MinPts is difficult, and different density regions may require different 
parameter values. DBSCAN can handle arbitrary shaped clusters. However, it is not possible 
to find clusters with density variations by using k-NN or density-based approaches.  

NC aims at handling both arbitrary cluster shapes and variations in density. In NC, 
proximity graphs are used in defining the neighborhood and connectivity of data points. The 
neighbors of a point are determined using mutual connectivity and density information. 
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2.1 Notation and Definitions  

We use the notation given below in the discussion to follow. 
D set of data points to be clustered (nodes of the graph) 
p, q, i, j indices for data points 
dpq Euclidean distance between points p and q  
CCi, BCi, PCi core, break point, potential candidate sets of point i 
CSi final candidate set (neighborhood) of point i 
Clm set of points in closure (subcluster) m 

Clustering of a data set can be interpreted as constructing a disconnected graph where 
nodes represent the data points and edges connect the data points that are in the same cluster. 
In the graph theory literature, proximity graphs extract the influence and relevance of nodes in 
a graph and present proximity information of the nodes. Proximity between any pair of nodes 
is determined by the distance between the nodes and the existence of other neighboring nodes. 
We use the Gabriel Graph (GG) in Euclidean space in constructing the neighborhood of data 
points. 

Two nodes p and q are directly connected by an edge of the GG if and only if the 
(hyper)ball having diameter dpq and centered at the midpoint of p and q does not contain any 
other node of D in its interior. Direct connection makes all connected nodes reachable. Two 
nodes p and q are indirectly connected if the ball with diameter dpq contains at least one other 
node of D in its interior. This implies that there exists at least one path between the two nodes 
whose maximum edge length is shorter than dpq. Density between nodes p and q is measured 
by the number of nodes lying in the ball with diameter dpq.  

2.2 Steps of the NC Algorithm   

Step 1. Core candidate set construction: In this step, we classify the neighbors of each data 
point by considering the (direct or indirect) connectivity and density information. For point i, 
all remaining points in D are listed in non-decreasing order of distance to point i, and the 
ordered set Ti is formed. The nearest point having an indirect connection to point i is identified 
as point j. Then, dij is the first indirect connection distance to point i. Data points having a 
distance to point i shorter than dij are directly connected to point i with density 0. We call these 
data points core (neighbor) points of point i and include them in CCi. Indirect connections to 
other points will be established via these core points. 

Step 2. Break point candidate set construction: Next comes the detection of density 
change. A cluster is defined as a connected group of patterns of dense neighborhoods (Yousri 
et al., 2008). Hence, as one moves to the next member of Ti, the density is expected to stay the 
same or to increase for close neighbors of point i. The first data point in Ti at which the 
density starts to decrease is identified and called the break point. This point may be the sign of 
a density change (a different cluster). The points that are closer to point i than the break point 
form BCi. BCi is a superset of CCi, and includes points with indirect connections as well.  

Figure 1 shows an example for steps 1 and 2. First, neighbors of data point 1 are ranked 
and T1 is formed. Then, density values between point 1 and its neighbors are calculated as 0, 
0, 2, 0, 2, 0, 1, 2 in Figure 1(a). The first point subject to indirect connection is point 4, so 
points 2 and 3 having shorter distance than d14 form CC1. The first density decrease occurs at 
point 5, which becomes a break point. Points having shorter distance than d15 are included in 
BC1. 
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            (a)          (b) 
Figure 1. (a) Density of points in the example data set, (b) Construction of CC1 = {2, 3} and BC1 = {2, 3, 

4} 

Step 3. Potential candidate set construction: The break point marked in step 2 may 
indicate either a new density region (a different cluster) or a direction change in the same 
region (cluster). Premature set wrapping at a break point may cause falling short in defining 
the neighborhood of a data point. As a remedy, BCi is extended by checking the connectivity 
of points. Let k be the first break point of point i. If the intersection of sets BCi and BCk is 
nonempty, then there exists at least one point ensuring an indirect connection between points i 
and k. Following the points in Ti, this check is conducted for every subsequent break point 
until the first empty intersection of the break point sets is found. Points up to the first empty 
intersection form PCi. 

Let us consider extension of BC1 in Figure 1. Remember that data point 5 is a break point. 
We check if there exists a direction change or beginning of a new density region at this point. 
{1} U BC1 and BC5 are compared to check the existence of a point that ensures connectivity 
between points 1 and 5. BC5 is found as {3, 1, 2, 4} and the intersection is {1, 2, 3, 4} so point 
5 is added to PC1. The density increases to 2 for the next member of T1 (point 6). This implies 
that we are moving along a similar density region, so data point 6 is also in PC1. The next 
density decrease occurs at data point 8. Again {1} U BC1 and BC8 are compared. This time, 
the intersection is empty as BC8 is {7, 9}. Hence, extension ends with PC1 = {1, 2, 3, 4, 5, 6}.  

Step 4. Candidate set construction: PCi includes potential neighboring points of data 
point i. Final decision about a neighboring point is made after a mutual connectivity check. In 
this operation, PCi is shrunk to CSi. Let point j be any point in PCi. If point j is in CCi, then 
CCi and CCj are compared for mutuality. If the intersection of these sets is nonempty, points i 
and j are mutually (nearest) neighbors. So point j is added to CSi. If the intersection is empty, 
then these points do not share the same neighborhood. Hence, point j and the remaining points 
in the ordered set PCi are eliminated from further consideration. If point j is not in CCi, but the 
intersection of CSi and CSj is nonempty, then point j is again added to CSi. These mutuality 
check operations are conducted for each point until there is no change in any of the CSi sets. 

As an example, let us consider point 7 in Figure 1. When we apply steps 1 through 3, we 
come up with BC7 = PC7 = {8, 9, 1, 2, 3, 4, 5, 6}. BC7 and PC7 are the same in this case and 
both sets include points 1-6 from another cluster. The reason is that the density does not show 
any decrease due to the position of point 7. Even the intersection of CS7 and PC1, the superset 
of CS1, is empty so mutual connectivity is not satisfied for points 7 and 1. Step 4 eliminates 
point 1 and the points with longer distance than d71 from CS7.  

Step 5. Formation of closures (subclusters): Points with common neighbors imply that 
these points are connected. Thus, closure sets Clm are formed by taking the union of CSi sets 
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that have points in common. Closures formed as such constitute the skeleton of the target 
clustering solution.  

Two main outputs of NC are neighborhood of each point, CSi, and closures, Clm. However, 
two complications may occur in the neighborhoods constructed. (1) Outlier mixing: If there 
exist more than one core point for an outlier and if these core points are mutual core 
neighbors, then outlier mixing occurs. (2) Divided clusters: Because NC lacks a global view of 
the data set, some local density decreases are taken as different density regions. This causes 
formation of closures that are smaller than the target clusters.  

Time complexity of step 1 of NC is governed by the GG construction and O(n3) with n 
nodes. Break point candidate set construction in step 2 takes O(n2) time. Potential candidate 
set extension in step 3 has time complexity of O(n2). Step 4 checks the mutual connectivity of 
data points with their neighborhoods in O(n2) time. Step 5 forms closures in O(n2) time. Since 
step 4 is repeated until no change occurs in neighborhoods, we cannot determine the overall 
time complexity of the algorithm, but we can infer that it is at least O(n3). 

3. NEIGHBORHOOD CONSTRUCTION - OUTLIER 
DETECTION - MERGING (NOM) ALGORITHM  

We use the following additional notation in describing NOM.  
m, n indices for clusters 

GG
ijd  Gabriel Graph (GG) distance between points i and j 

ilrd  local reachability distance for point i 

iLOF  local outlier factor for point i 

i(m) point i in cluster m  
MSTm set of edges in the Minimum Spanning Tree (MST) of the points in cluster m 
MSTi(m) set of edges in the MST of the points in the neighborhood of point i in cluster m 
GGij set of edges in the GG of the points that are in the ball centered at the midpoint 

of points i and j with diameter dij 
NGGm set of clusters in the GG neighborhood of cluster m 
Cm set of points in cluster m  
sepmn single link separation between clusters m and n 
comp(i)m compactness for the neighborhood of point i in cluster m  

Three phases of the NOM algorithm are described below. 
Phase 1. Neighborhood construction: This is done with the NC algorithm described in 

Section 2. 
Phase 2. Outlier detection: An outlier is a point that shows abnormal behavior in a data 

set. In the literature, there are algorithms that extract both clusters and outliers, such as CURE 
(Guha et al., 1998) and DBSCAN (Ester et al., 1996). However, they specialize in the 
detection of global outliers, and neither intercluster nor the intracluster density variations are 
considered. In Breunig et al. (2000), points that are outlying relative to their local neighbors 
are defined as local outliers. They use a parameter to define the number of points in a 
neighborhood and compute a Local Outlier Factor (LOF) for each point using this 
neighborhood. LOF represents the degree of being an outlier based on relative comparison of 
the average reachability distances of a point and its neighbors.  
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We are interested in both global and local outliers. Thus, we identify the outliers using a 
revised version of LOF. Instead of using a fixed parameter to define the size of the 
neighborhood, we use the neighborhoods constructed in step 1. As the NC algorithm makes 
use of GG connectivity, resulting neighborhoods can have different sizes and arbitrary shapes. 
Traditional distance calculation schemes may mislead the density calculation, therefore we 
consider the GG distance between two points in local reachability calculation. The GG 
distance takes into account the connectivity between two points. It is the edge with the 
maximum length in the GG of the points circumscribed by the ball passing through points i 

and j, i.e. { }
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Computational complexity of the outlier detection phase is O(n3) due to GG construction. 
Phase 3. Merging: Hierarchical agglomerative clustering methods construct clusters in 

stages. Among these CURE (Guha et al., 1998) uses a fixed number of representative points to 
define the clusters. Agglomeration of a cluster pair is conducted considering the minimum 
distance between representatives and this is repeated until the given number of clusters is 
achieved. Although CURE can handle arbitrary shapes, the parameters including the number 
of representative points, the number of clusters and shrink factor should be set a priori. One of 
the complications of CURE is handling intracluster and intercluster density variations. 
CHAMELEON (Karypis et al., 1999) uses k-NN to partition the data set. Merging of these 
partitions depends on the graph connectivity. That is, relative inter-connectivity and relative 
closeness are calculated between each cluster pair and compared with a given threshold. Like 
CURE, CHAMELEON can extract arbitrary shaped clusters with different sizes and densities, 
but faces problems due to density variations within clusters. As we are interested in arbitrary 
shaped clusters with varying densities, we propose the following procedure for merging 
subclusters. 

At the end of the first phase, we have closures Clm obtained from the NC algorithm. After 
outliers are separated in the second phase, NC closures may consist of divided clusters. As the 
first two phases take into account density variations in the neighborhood, they depend on the 
local view. The whole data set is not considered, so there is a lack of global view in the 
clustering solution. As a remedy, a hierarchical agglomerative procedure is used for merging 
the neighboring clusters. In order to consider both global and local patterns in the data, 
improvement in the separation-to-compactness ratio and dispersion of the neighbors are taken 
into account as the two merging criteria. Clusters subject to merging are determined by using 
the GG. Two clusters are in the same GG neighborhood if the ball drawn across the nearest 
two points of a cluster pair does not include any points from other clusters. The following two 
criteria are then checked for merging.  

Criterion 1. Improvement in the separation-to-compactness ratio: We define the potential 
compactness of a cluster as the most inconsistent edge in the neighborhoods it contains. MSTs 
are constructed to identify the connections with the minimum total length in a cluster and in its 
neighborhoods. Then, each edge in the cluster’s MST is compared with the edges in the MSTs 
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of the neighborhoods within cluster m. Potential compactness of cluster m is defined as 

( , ) MST
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If the current cluster had to be divided, the edge that would define the separation would most 
probably be the most inconsistent edge with its neighborhood identified by mpcomp . 

Let the candidate clusters for merging be 1 and 2 where { }
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whether the current separation-to-compactness ratio will improve after the merging. We 
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after merging. If we merge clusters 1 and 2, the bound on the new separation-to-compactness 

ratio becomes 
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separation, and 12csep  becomes the new normalized compactness of the merged cluster.  

If new_sc is greater than current_sc, we conclude that the separation-to-compactness ratio 
improves after merging. However, this might still be an incorrect signal for merging, 
especially for the heterogeneous data sets with large distance variations between clusters. 
Although the ratio seems improving, the new compactness value after merging might be 
inconsistent with its neighborhood. For this reason, a second check is conducted for the 
consistency of the neighborhood.  

Criterion 2. Heterogenity of edge lengths in the neighborhood: If the candidate clusters for 
merging satisfy the first criterion, we consider the separation 12csep between these two clusters 

as the potential compactness. To merge, this new edge should be consistent with the 
neighborhoods of its end points. Hence, merging is performed if this edge does not worsen the 
dispersion of edge lengths in the neighborhoods, that is 
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Merging continues until none of the cluster pairs satisfy the two merging criteria 
simultaneously. Therefore, we cannot determine the overall time complexity of this phase.  
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4. EXPERIMENTAL RESULTS  

Performance of NOM is tested on two groups of data sets. Group 1 data sets are taken from 
the literature (Asuncion and Newman, 2007; Sourina, 2008; Iyigun, 2008) whereas group 2 is 
a 3-dimensional control group to explore the capabilities of NOM. Group 2 data sets are 
composed of letters with non-convex shapes (A, E, O, S) and generated using the four factors 
presented in Table 1. There are 45 and 24 data sets in groups 1 and 2, respectively. Target 
clusters are either given by the data source or found by visual inspection.  

The properties of the data sets are characterized using three measures: the minimum 
separation-to-compactness ratio (MSCR), the coefficient of variation of the edge lengths in the 
MST of the whole data set (CV1), and the average of the coefficient of variations of the edge 
lengths in individual target cluster MSTs (CV2). High values of the MSCR show that even the 
cluster with the minimum ratio is well-separated from the others, e.g. data_circle. A high 
coefficient of variation (CV1) for the whole data set indicates well-separated clusters. Large 
values of CV2 show significant density variations within the clusters, e.g. data-c-cv-nu-n. 
Group 1 data sets include several types of arbitrary shapes (elongated, curling, ring-shapes, 
spherical, elliptical, etc.) with density variations. In group 2, in addition to these, proximity of 
clusters and existence of outliers are explored further. The properties of some sample data sets 
from two groups are presented in Tables A1 and A2 in the Appendix. The plots of some 
example data sets are provided in Figures 2 and 3.  

Table 1. Factors used in generation of group 2 data sets 

  
Level 0 Level 1 Level 2 

F
ac

to
rs

 Intercluster density difference No difference Clusters having different densities - 
Intracluster density variation No variation Random change Smooth change 
Intercluster distance Distant Close - 
Outlier Without outlier With outlier - 

 
Four performance criteria are used in evaluating the results: the number of clusters, Jaccard 

index (JI), Rand index (RI) and quasi-Jaccard index (QJI). JI and RI are well-known external 
cluster validity indices. JI focuses only on the number of point pairs that belong to the same 
target cluster and assigned to the same cluster whereas RI also considers the number of point 
pairs that belong to different target clusters and assigned to different clusters. Both of them 
penalize the divisions and mixes of target clusters. In NC we work on neighborhood 
construction and we aim to have no mixes from other clusters in the neighborhoods. In order 
to measure this, we use the relaxed version of JI, QJI, which penalizes only the number of 
point pairs that belong to the same target cluster and assigned to different clusters. Each 
measure is calculated for the target clustering solution versus found solutions. The algorithm 
is coded in Matlab 7.0, and runs are made on a PC with Intel Centrino processor and 512MB 
RAM.  

The performances of NC, outlier detection (OD) and NOM after merging are compared 
with the results of  k-means, single-linkage (SL) and DBSCAN approaches. In our comparison 
k-means represents the partitional clustering approach and SL the hierarhical clustering 
approach. SL also has a graph theoretic view as it has an analogy with MST construction. 
DBSCAN is selected as a representative of the density-based clustering algorithms. In order to 
have a fair comparison among these algorithms, k-means is run for several values of k in the 
range between 2 and 10% of the points in the data set with increments of 1, and the one with 
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the best JI is used. In the same manner, for DBSCAN, among several MinPts settings the one 
with the best JI is selected for comparison.  

 
(a) 

 
(b) 

 
(c)  

(d) 

Figure 2. Group 1 data sets (a) train2, (b) data-c-cc-nu-n, (c) data-uc-cc-nu-n, (d) data-c-cv-nu-n 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Group 2 data sets (a) D_0000: no intercluster density difference, no intracluster density 
variation, distant clusters, no outlier. (b) D_0100: no intercluster density difference, random intracluster 
density variation, distant clusters, no outlier. (c) D_1010: clusters with intercluster density difference, no 

intracluster density variation, close clusters, without outlier. (d) D_1211: clusters with intercluster 
density difference, smooth intracluster density variation, close clusters, with outlier.  

The only parameter in NOM, the threshold level a, is set to 2 after pilot runs. The details of 
the results for some sample data sets are given in Tables A3 through A8 in the Appendix. In 
Tables 2 and 3 the summary of the results for the entire group 1 and group 2 data sets are 
provided. Clustering results for an example data set is provided in Figure 4. For this data set, 
JI values with k-means, single linkage and DBSCAN algorithms are 0.59, 0.49 and 0.50, 
respectively. Results of both NC and NOM are superior with respective JI values of 0.98 and 
1.  

According to Table 2, NOM gives the best average and minimum values of JI and RI over 
45 data sets in group 1, as well as the smallest standard deviation. For QJI the best average 
performance and the smallest standard deviation are achieved by NOM, but k-means is better 
in terms of the minimum. That is, NOM results in clustering solutions close to target clusters. 
Moreover, the number of cluster mixes is fewer in NOM on the average. 

 For group 1 data sets, which include arbitrary shapes, intercluster and intracluster density 
variations, NOM gives the best performance among all the clustering algorithms. Using 
density-based connectivity through GG, NC is the initial phase for detecting both arbitrary 
shapes and density changes in the clusters. Outlier detection based on the neighborhoods 
ensures separation of such points in less dense regions. Merging is performed wherever the 
separation-to-compactness ratio indicates an increase. The relative evaluation of compactness 
and separation values according to the neighborhoods in clusters helps handling arbitrary 
shapes and density differences. 
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In data sets in which clusters are well-separated and there are ruptures in the intracluster 
density variations (e.g. data_circle_20_1_5_10 and data_mix_uniform_normal), NOM 
solution has more clusters than the target solution whereas the clustering solutions obtained by 
single-linkage and DBSCAN are better. The main reason is the lack of a global view in NOM. 
In particular, both the NC and the outlier detection phases of NOM have a local view as the 
decisions are made depending on the information gathered from the neighborhoods. Merging 
in the third phase tries to bring about a global perspective by checking the improvement at a 
larger scale, that is, neighborhoods of the clusters instead of points. However, the scale we 
consider seems to be insufficient to fully realize this.  

In group 1 experiments target clusters are achieved in 9, 32, 17, 13, 16 and 23 data sets for 
k-means, single linkage, DBSCAN, NC, outlier detection phase of NOM, and NOM, 
respectively. Note that merging operations in the third phase worsen the performance of NOM 
in three data sets. In fact these three data sets are the only ones that have JI smaller than 0.80 
in NOM. One of them (train3) having the worst performance in JI (0.59), includes noise rather 
than a few outliers. JI is calculated greater than 0.90 after NC and outlier detection phases and 
most of the noise is detected as outlier. However, in the merging phase of NOM noise is 
perceived as a cluster showing similar density properties, so most of these points are merged 
and clusters made up of noise are formed. We also tested the noise removed version of this 
data set and NOM was successful in finding the target clusters in this version. As a result, we 
can infer that NOM is not capable of handling noise. The remaining two data sets that have JI 
smaller than 0.80 (data_circle_5_10_8_12 and data_circle_3_10_8_12) include intermingled 
clusters. JI is greater than 0.75 after NC and outlier detection phases. However, the close 
proximity between the clusters prevents the algorithm from detecting different density regions 
by the separation-to-compactness ratio, and the clusters are merged in the third phase. 
Consequently the limitations of NOM are handling data sets with intermingled clusters and 
noise.  

Group 2 is used to explore the main limitations and strengths of NOM further. In this 
controlled experiment target clusters are achieved in 12, 6, 8, 7 and 7 data sets with single 
linkage, DBSCAN, NC, outlier detection, and NOM, respectively. k-means could not find the 
target clusters in any of the data sets in group 2, although it seems the best in terms of RI. The 
letters in group 2 are non-convex, but the shapes are not intertwined. Thus, the center 
calculation in k-means is still useful, and k-means shows an average performance in all data 
sets. As seen from Table 3 NOM is no more the best performer, and DBSCAN and k-means 
have higher JI averages. However, both algorithms find the target clusters in fewer data sets 
than NOM. Single linkage, having the highest number of successes, does not show good 
performance in the entire group. DBSCAN having the highest JI achieves the target clusters in 
only 6 data sets. NOM finds the target clusters in 7 data sets but its JI average is only 0.758. In 
fact, NOM works well in certain data sets as seen in Table A4 in the Appendix, and 
performance becomes poor for a certain group. Factorial analysis is conducted to determine 
the data set properties for which NOM has poor and superior performance.  

The effects of the four factors in Table 1 on NOM’s performance (RI) are presented in 
Figure 5(a). When the density differs among the clusters and the distance between clusters is 
close (intercluster distance is equal to the distance between the points in the same cluster), RI 
decreases. The negative effect of smooth density variation is higher than the random 
intracluster density variation. Note that the existence of outliers does not have a significant 
effect on the performance of NOM. According to Figure 5(b) the negative effect of the smooth 
density change increases when the intercluster distance is close. When we exclude the data 
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sets having these properties, the remaining have JI values higher than 0.80. Thus, NOM is 
capable of handling data sets with intracluster density variations and intercluster density 
differences when the distance between the clusters is greater than the distance between the 
closest points in the same cluster. Otherwise, the mixing of clusters seems unavoidable.  

To summarize, despite its high performance in JI, RI and QJI, k-means cannot find the 
target clusters. Single linkage performs well when there is no intercluster density difference. 
DBSCAN mixes outliers and its performance decreases dramatically when there is intracluster 
density variation (either random change or smooth change) and clusters are close. NOM can 
handle data sets having arbitrary shapes, intercluster density differences and intracluster 
density variations, but it fails when clusters are extremely close or when there is noise. To sum 
up, each clustering approach has its own weaknesses and strengths depending on the 
characteristics of the approach taken. 

Execution times of competing approaches and each phase of NOM are given in Tables A7 
and A8 in the Appendix for selected data sets. Execution times of NOM are significantly 
higher compared to k-means, single-linkage and DBSCAN. It spends much time for GG 
construction, especially for the data sets having a large number of points. Outlier detection 
takes less time as it requires only one pass of the entire data set. Merging time increases when 
the number of closures generated by NC (divided clusters) is higher than the number of target 
clusters (e.g. data_circle). As the dimensionality of the data set increases, the execution times 
of NOM increase significantly.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Clustering results for data-uc-cc-nu-n: (a) k-means, (b) Single linkage, (c) DBSCAN, (d) NOM 

Table 2. Summary results for group 1 data sets 

k-means 
Single 

linkage DBSCAN NC 
Outline 

detection NOM 

JI 
average 0.756 0.937 0.940 0.875 0.875 0.955 
std.dev. 0.231 0.163 0.139 0.128 0.137 0.088 
min 0.278 0.453 0.504 0.558 0.456 0.591 

RI 
average 0.856 0.955 0.963 0.908 0.908 0.967 
std.dev. 0.138 0.119 0.095 0.101 0.107 0.065 
min 0.580 0.532 0.531 0.659 0.639 0.648 

QJI 
average 0.954 0.947 0.972 0.996 0.998 0.981 
std.dev. 0.087 0.145 0.097 0.016 0.012 0.080 
min 0.659 0.460 0.504 0.905 0.916 0.593 
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Table 3. Summary results for group 2 data sets 

k-means 
Single-
linkage DBSCAN NC 

Outline 
detection NOM 

JI 
average 0.858 0.774 0.877 0.740 0.739 0.758 
std.dev. 0.127 0.255 0.183 0.257 0.257 0.256 
min 0.623 0.328 0.559 0.248 0.248 0.247 

RI 
average 0.962 0.887 0.960 0.905 0.891 0.886 
std.dev. 0.036 0.153 0.060 0.170 0.166 0.196 
min 0.895 0.567 0.843 0.412 0.395 0.285 

QJI 
average 0.938 0.789 0.939 0.878 0.878 0.867 
std.dev. 0.041 0.238 0.119 0.206 0.206 0.218 
min 0.876 0.381 0.674 0.305 0.306 0.259 

5. CONCLUSION 

NOM is a new density-based clustering algorithm, which uses graph theoretic concepts such 
as proximity and connectivity as well as density of points in a data set. It has three phases, 
namely neighborhood construction, outlier detection, and merging of subclusters. It assumes 
that the number of clusters is unknown. Compared to some other clustering approaches, one of 
the advantages of NOM is that no parameters need to be set in the neighborhood construction, 
and only a single parameter (threshold level a) is needed in the rest of NOM. 

NOM is tested on a number of data sets having various properties and compared with some 
well-known competing approaches. When the intercluster distances are larger than the 
intracluster distances, NOM is capable of finding clustering solutions close to the target 
clusters with arbitrary shapes and different densities. Moreover, NOM can detect the outliers 
in these data sets although it is not sucessful with noise. Even in the first phase of NOM, the 
closures obtained after the neighborhood construction are the same as the target clusters for 
some data sets. Evaluation of compactness and separation measures relative to the 
neighborhood densities strengthens the capabilities of NOM in handling arbitrary shapes and 
density variations.  

Main limitation of NOM is the lack of collective information from a global perspective. 
The interrelations among the points are evaluated taking a local view and this results in 
excessive division of target clusters. More information is needed to handle close clusters 
having intracluster density variations. Besides stronger mechanisms than the one in phase 3 of 
NOM can be developed to merge divided clusters. Another complication of NOM is high 
execution times, but these times can be reduced using efficient coding schemes.  
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Figure 5. (a) Main effects of factors on RI, (b) Interaction effects 
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APPENDIX 

Table A1. Properties of group 1 data sets 

Data set 
# of 

target  
clusters 

# of  
outliers 

# of  
points MSCR CV1 CV2 min. 

sep. 
max. 

comp. 

data_60            3 0 60 1.50 0.43 0.23 1.46 1.00 
data_66            4 0 66 1.50 0.47 0.27 1.27 1.00 
data-c-cv-nu-n_v2  3 0 73 1.02 1.04 0.25 0.80 0.78 
data-c-cv-nu-n     6 3 76 1.02 1.04 0.25 0.80 0.78 
data-c-cv-u-n   5 3 81 2.74 1.13 0.24 1.79 0.65 
data-uc-cv-nu-n    6 3 127 0.92 1.04 0.32 0.62 0.67 
data-oo_v2                             2 0 140 2.52 0.47 0.16 0.46 0.55 
data-oo         6 4 144 2.52 1.46 0.16 0.46 0.55 
iris        3 0 150 0.35 0.60 0.46 0.22 0.91 
data-uc-cc-nu-n_v2 3 0 188 0.80 0.78 0.42 0.54 0.68 
data-uc-cc-nu-n    6 3 191 0.80 1.04 0.42 0.54 0.68 
data-c-cc-nu-n2_v2 3 0 192 3.31 0.63 0.24 1.82 0.55 
data-c-cc-nu-n2 6 3 195 1.72 0.79 0.24 0.95 0.55 
dataX_v2                                2 0 200 1.15 0.64 0.63 1.04 0.90 
dataX              4 2 202 1.15 0.75 0.63 1.04 0.90 
data-c-cc-nu-n_v2  3 0 285 1.07 0.56 0.37 0.82 0.77 
train2             4 0 287 2.79 1.23 0.27 0.07 0.03 
data-c-cc-nu-n  7 4 289 0.60 0.94 0.37 0.46 0.77 
train1_v1          5 1 306 3.02 1.28 0.38 0.05 0.03 
3d_dataset3 2 0 325 11.87 0.93 0.13 5.94 0.62 
train3          36 30 397 0.03 1.26 0.78 0.02 0.74 
data_circle        2 0 700 51.94 2.36 0.59 0.71 0.04 
data_mix_uniform_normal                2 0 1000 13.52 1.39 0.71 2.12 0.51 
data_circle_2_10_2_12                  2 0 1200 15.19 0.82 0.61 0.33 0.08 
data_circle_5_10_8_12                  2 0 1500 0.46 0.61 0.61 0.04 0.09 
3d_dataset4 2 0 1523 29.68 0.71 0.13 5.94 0.62 
data_circle1                            2 0 1890 3.90 0.67 0.61 0.22 0.06 
data_circle_1_20_1_15                  2 0 2100 14.99 0.68 0.62 0.23 0.08 
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Table A2. Properties of group 2 data sets 

Data set 
# of 

target  
clusters 

# of  
outliers 

# of  
points MSCR CV

1 CV2 
min

. 
sep. 

max. 
comp. 

D_0001 8 3 2783 3.00 0.28 0.04 3.00 1.00 
D_0011 8 3 2783 2.00 0.29 0.04 2.00 1.00 
D_0101 8 3 1978 2.12 0.31 0.06 3.00 1.41 
D_0111 8 3 1930 1.41 0.34 0.05 2.00 1.41 
D_0201 8 3 2783 1.58 0.51 0.39 3.10 2.00 
D_0211 8 3 2783 1.02 0.49 0.39 2.00 2.00 
D_1001 8 3 2783 1.28 0.31 0.12 2.20 4.33 
D_1011 8 3 2783 0.96 0.31 0.12 2.01 4.33 
D_1101 8 3 1928 1.44 0.36 0.17 2.20 4.33 
D_1111 8 3 1951 0.96 0.33 0.16 2.01 4.33 
D_1201 8 3 2783 1.44 0.55 0.45 4.06 6.05 
D_1211 8 3 2783 0.98 0.55 0.45 2.12 6.05 

Table A3. Performance of clustering algorithms in terms of JI and RI for group 1 data sets 

Data set k-means SL DBSCAN NC OD NOM 
JI RI JI RI JI RI JI RI JI RI JI RI 

data_60            0.7
9 

0.9
0 

1.0
0

1.0
0

1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data_66            0.6
6 

0.8
3 

1.0
0

1.0
0

1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data-c-cv-nu-n_v2  0.6
1 

0.8
4 

1.0
0

1.0
0

0.6
6 

0.8
6 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data-c-cv-nu-n     0.5
9 

0.8
3 

1.0
0

1.0
0

0.6
3 

0.6
8 

0.9
5

0.9
8

1.0
0

1.0
0 

1.0
0

1.0
0

data-c-cv-u-n   0.9
3 

0.9
7 

1.0
0

1.0
0

1.0
0
∆ 

1.0
0
Ө 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data-uc-cv-nu-n    0.6
2 

0.8
3 

0.9
8

0.9
9

0.9
8 

0.9
9 

0.9
8

0.9
9

1.0
0

1.0
0 

1.0
0

1.0
0

data-oo_v2                             0.5
2 

0.7
6 

0.8
9

0.9
5

0.9
5 

0.9
8 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data-oo         0.4
9 

0.7
5 

0.5
0

0.5
3

0.5
0 

0.5
3 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

iris        0.7
0 

0.8
8 

0.5
7

0.7
8

0.5
9 

0.7
8 

0.8
6

0.9
2

0.8
6

1.0
0
Ө 

1.0
0

1.0
0

data-uc-cc-nu-n_v2 0.3
4 

0.7
3 

0.4
5

0.6
0

0.5
9 

0.8
3 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data-uc-cc-nu-n 0.5
9 

0.7
3 

0.4
8

0.6
2

0.5
0 

0.8
3 

0.9
8

0.9
9

1.0
0

1.0
0 

1.0
0

1.0
0

data-c-cc-nu-n2_v2 0.2
9 

0.6
3 

1.0
0

1.0
0

1.0
0 

1.0
0 

0.9
8

0.9
9

0.9
8

0.9
9 

1.0
0

1.0
0

data-c-cc-nu-n2 0.2
8 

0.6
4 

1.0
0

1.0
0

0.9
9 

0.9
9 

0.9
8

0.9
9

0.9
8

0.9
9 

1.0
0

1.0
0
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dataX_v2                               1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

dataX              0.9
8 

0.9
9 

1.0
0

1.0
0

1.0
0
∆ 

1.0
0
Ө 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data-c-cc-nu-n_v2  0.8
0 

0.8
8 

1.0
0

1.0
0

1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

train2             0.7
8 

0.9
1 

1.0
0

1.0
0

1.0
0 

1.0
0 

0.9
7

0.9
9

0.9
6

0.9
9 

1.0
0

1.0
0

data-c-cc-nu-n  0.7
8 

0.8
6 

0.9
9

0.9
9

0.9
9 

0.9
9 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

train1_v1          1.0
0
ψ 

1.0
0
Ө 

1.0
0

1.0
0

1.0
0 

1.0
0 

0.9
5

0.9
8

0.9
5

0.9
8 

1.0
0

1.0
0

3d_dataset3 1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

train3          0.3
7 

0.7
9 

0.4
6

0.6
4

0.9
7 

0.9
9 

0.9
0

0.9
7

0.9
1

0.9
7 

0.5
9

0.7
9

data_circle        1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0 

1.0
0 

0.8
4

0.8
8

0.8
4

0.8
8 

1.0
0

1.0
0

data_mix_uniform_no
rmal                 

1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0
ψ 

1.0
0
∆ 

0.5
6

0.8
3

0.4
6

0.7
3 

0.8
4

0.9
2

data_circle_2_10_2_1
2                   

0.9
3 

0.9
5 

1.0
0

1.0
0

1.0
0
∆ 

1.0
0
Ө 

0.7
9

0.8
5

0.7
9

0.8
5 

0.9
4

0.9
6

data_circle_5_10_8_1
2                   

0.9
3 

0.9
6 

0.9
9

0.9
9

0.9
9 

0.9
9 

0.7
7

0.8
7

0.7
7

0.8
7 

0.7
7

0.8
7

3d_dataset4 1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0 

1.0
0 

1.0
0

1.0
0

1.0
0

1.0
0 

1.0
0

1.0
0

data_circle1                           0.5
9 

0.6
2 

1.0
0

1.0
0

1.0
0 

1.0
0 

0.6
6

0.6
9

0.6
6

0.6
9 

0.9
5

0.9
6

data_circle_1_20_1_1
5                   

0.6
1 

0.6
4 

1.0
0

1.0
0

1.0
0
Ө 

1.0
0
Ө 

0.8
5

0.8
6

0.8
5

0.8
6 

0.9
9

0.9
9

ψ this value is 0.997.  ∆ this value is  0.998. Ө this value is 0.999.  
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Table A4. Performance of clustering algorithms in terms of JI and RI for group 2 data sets 

Data set 
k-means SL DBSCAN NC OD NOM 

JI RI JI RI JI RI JI RI JI RI JI RI 

D_0001 0.98 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

D_0011 0.94 0.98 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

D_0101 0.98 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

D_0111 0.92 0.98 1.00 1.00 0.99 0.99 1.00∆ 1.00Ө 1.00∆ 1.00Ө 1.00∆ 1.00Ө 

D_0201 0.90 0.97 1.00 1.00 0.99 0.99 0.78 0.95 0.78 0.95 0.84 0.96 

D_0211 0.81 0.95 1.00 1.00 0.94 0.98 0.60 0.87 0.60 0.87 0.63 0.88 

D_1001 0.89 0.97 0.67 0.88 0.98 0.99 0.68 0.92 0.68 0.92 0.68 0.92 

D_1011 0.66 0.91 0.33 0.57 0.56 0.89 0.37 0.81 0.37 0.81 0.37 0.81 

D_1101 0.98 0.99 0.67 0.88 0.98 0.99 0.97 0.99 0.97 0.99 0.97 0.99 

D_1111 0.62 0.89 0.33 0.57 0.56 0.84 0.57 0.85 0.57 0.85 0.57 0.85 

D_1201 0.85 0.96 0.67 0.88 0.92 0.98 0.62 0.90 0.62 0.90 0.79 0.94 
D_1211 0.64 0.90 0.36 0.59 0.58 0.85 0.25 0.39 0.25 0.40 0.25 0.29 

∆ this value is  0.998. Ө this value is 0.999. 

Table A5. Performance of clustering algorithms in terms of the number of clusters for group 1 data sets 

Data set #TC* k-means  
#C** 

SL  
#C** 

DBSCAN 
#C** 

NC 
#C** 

OD  
 #C** 

NOM 
#C** 

data_60            3 2 3 3 3 3 3 

data_66            4 2 4 4 4 4 4 

data-c-cv-nu-n_v2  3 4 3 5 3 3 3 

data-c-cv-nu-n     6 5 6 3 4 6 6 

data-c-cv-u-n   5 2 5 3 5 5 5 

data-uc-cv-nu-n    6 5 5 4 5 6 6 

data-oo_v2                             2 5 7 3 2 2 2 

data-oo         6 7 5 2 6 6 6 

iris        2 3 6 3 4 4 2 

data-uc-cc-nu-n_v2 3 8 7 8 3 3 3 

data-uc-cc-nu-n 6 6 6 5 4 6 6 

data-c-cc-nu-n2_v2 3 7 3 3 4 4 3 

data-c-cc-nu-n2 6 7 6 4 7 7 6 

dataX_v2                                2 2 2 2 2 2 2 

dataX              4 2 4 3 4 4 4 

data-c-cc-nu-n_v2  3 2 3 3 3 3 3 

train2             4 3 4 4 6 6 4 

data-c-cc-nu-n  7 2 6 4 7 7 7 

train1_v1          5 4 5 5 8 8 5 

3d_dataset3 2 2 2 2 2 2 2 

train3          36 7 10 6 17 20 14 

data_circle        2 2 2 2 14 14 2 

data_mix_uniform_normal        2 2 2 3 38 39 12 
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data_circle_2_10_2_12                  2 2 2 3 22 23 8 

data_circle_5_10_8_12                  2 2 7 3 29 30 30 

3d_dataset4 2 2 2 2 2 2 2 

data_circle1                            2 2 2 2 35 36 9 

data_circle_1_20_1_15                  2 2 2 3 47 49 8 

*#TC: the number of target clusters, **#C: the number of clusters found 

 

Table A6. Performance of clustering algorithms in terms of the number of clusters for group 2 data sets 

Data set #TC* k-
means  
#C** 

SL  
#C** 

DBSCA
N #C** 

NC 
#C** 

OD 
 #C** 

NOM 
#C** 

D_0001 8 4 8 6 8 8 8 

D_0011 8 4 8 6 8 8 8 

D_0101 8 4 8 6 8 8 8 

D_0111 8 4 8 6 7 7 7 

D_0201 8 4 8 6 67 71 19 

D_0211 8 4 8 6 66 71 18 

D_1001 8 5 6 4 15 16 16 

D_1011 8 5 10 10 15 16 16 

D_1101 8 4 6 4 9 9 9 

D_1111 8 5 10 18 14 18 18 

D_1201 8 4 10 10 44 48 15 
D_1211 8 5 10 10 40 45 17 

*#TC: the number of target clusters, **#C: the number of clusters found 
Table A7. Performance of clustering algorithms in terms of time (in seconds) for group 1 data sets 

Data set k-means  SL DBSCA
N  

NC OD NOM* 

data_60            0.21 0.52 0.07 1.24 2.23 3.74 
data_66            0.07 0.38 0.03 1.51 1.08 2.65 
data-c-cv-nu-n_v2  0.19 0.39 0.06 2.16 1.71 3.97 
data-c-cv-nu-n     0.05 0.38 0.04 2.36 1.91 4.37 
data-c-cv-u-n   0.11 0.38 0.24 2.77 3.37 6.30 
data-uc-cv-nu-n    0.07 0.42 0.13 10.71 7.44 18.34 
data-oo_v2                             0.73 0.43 1.95 14.08 13.72 28.04 
data-oo         0.11 0.43 0.23 15.15 14.28 29.67 
iris        2.19 0.57 7.45 18.21 6.24 25.02 
data-uc-cc-nu-n_v2 0.09 0.48 0.13 34.27 9.30 43.81 
data-uc-cc-nu-n 0.10 0.48 0.12 35.71 9.37 45.33 
data-c-cc-nu-n2_v2 0.32 0.49 0.38 36.14 16.69 53.49 
data-c-cc-nu-n2 0.11 0.49 0.19 37.72 17.06 55.42 
dataX_v2                               0.83 0.50 2.34 40.48 14.94 55.74 
dataX              0.10 0.51 0.13 42.29 15.00 57.67 
data-c-cc-nu-n_v2  0.05 0.87 0.05 119.27 33.48 153.28 



A NEW DENSITY-BASED CLUSTERING APPROACH IN GRAPH THEORETIC CONTEXT 

135 

train2             0.10 0.65 0.11 120.45 21.81 143.59 
data-c-cc-nu-n  0.24 0.66 0.26 123.37 34.31 159.49 
train1_v1          0.08 0.72 0.11 146.64 22.03 170.14 
3d_dataset3 1.99 1.00 6.11 11923.00 399.94 12325.35 
train3          0.14 0.91 0.23 318.46 51.66 377.31 
data_circle        0.10 2.17 0.12 1765.74 606.09 2390.75 
data_mix_uniform_nor

mal                 
0.17 4.19 0.29 3250.87 295.99 3700.85 

data_circle_2_10_2_12                  0.92 6.63 2.75 3430.11 2273.90 5784.75 
data_circle_5_10_8_12                  2.71 10.23 5.71 2504.25 2403.26 5092.63 
3d_dataset4 2.11 32.60 5.57 2714383.00 82117.80 2796865.3

0 
data_circle1                           0.29 16.69 0.47 3414.44 10983.40 15261.26 
data_circle_1_20_1_15                  0.77 19.08 3.68 8461.14 19980.85 30163.46 

* Times for NOM include NC and OD times.  

Table A8. Performance of clustering algorithms in terms of time (in seconds) for group 2 data sets 

Data set k-means  SL DBSCA
N  

NC OD NOM* 

D_0001 
3.69 293.72 13.09 

24832592.00 51118.54 24883768.
88 

D_0011 
3.88 267.73 13.48 

36493251.00 83338.22 36576925.
47 

D_0101 
2.26 102.05 14.40 

9769738.00 12538.38 9782294.1
8 

D_0111 
2.26 101.57 14.27 

3263598.00 5548.29 3269162.4
8 

D_0201 
3.74 48.79 12.66 

28430650.00 12642.69 28450350.
29 

D_0211 
3.84 48.82 23.01 

23344144.00 22100.90 23374030.
94 

D_1001 
5.86 170.14 232.33 

13781560.00 9587.78 13791169.
13 

D_1011 
3.90 164.47 14.87 

16609053.00 8218.61 16617291.
82 

D_1101 
1.97 59.17 10.91 

3026006.00 2351.49 3028447.8
0 

D_1111 
2.28 59.77 11.94 

3960810.00 3641.22 3964510.9
1 

D_1201 
3.81 48.66 16.31 

16772753.00 12758.56 16788467.
91 

D_1211 
3.92 48.64 14.79 

11819776.00 5800.89 11825587.
75 

* Times for NOM include NC and OD times.  

 


