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ABSTRACT

We consider the clustering problem with arbitraémgses and different densities both within and betwe
the clusters, where the number of clusters is uwkn®We propose a new density-based approach in the
graph theory context. The proposed algorithm heeetphases. The first phase makes use of grapd-base
and density-based clustering approaches in ordatetatify the neighborhood structure of data points
The second phase detects outliers using the laaddieo concept. In the third phase, a hiearchical
agglomeration is performed to form the final clust&'he algorithm is tested on a number data sets a
compared with the well-known clustering algorithinsthe literature. Its strengths and limitationg ar
explored in detail.
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1. INTRODUCTION

Cluster analysis is the organization of a collettad data points in multidimensional space
into clusters based on similarity (Jain et al., 99Llustering tries to represent the data by
relatively fewer clusters and ensures simplicitgr Ehis reason, it is encountered in many
research contexts. It is an important and useéyl Bt exploratory data analysis.
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Clustering problems have several challenging issmetuding determination of the
number of clusters, handling arbitrary shaped elsstdealing with density variations within
and between clusters, and detection of outliersscdHarisp) clustering methods in the
literature can be classified into hierarchical tiianal, probabilistic, density-based and graph-
based algorithms. In hierarchical methods, cluséeesformed either top-down (divisive) or
bottom-up (agglomerative). Partitional methods ainobtaining a single partition of the data
set using iterative optimization of a criterion. fmobabilistic clustering, data points are
assumed to belong to a certain statistical distidbufor which parameters are estimated.
Density-based clustering considers clusters asedmtgons separated by less dense regions.
Graph-based approaches consider the problem a&pha gr which nodes are the data points
and edges represent the similarity between datatgpoirhese approaches try to form
subgraphs as clusters. In addition to these hawgtering methods, there are also fuzzy
clustering algorithms. In fuzzy clustering the memghip levels of points in the data set are
found instead of assigning a point to a cluster.

Many of the existing clustering algorithms lackystematic view and they focus on only
some of the challenging issues. However, a prigdrimation about the clusters in a data set
(e.g. the number of clusters, shape and densitieotlusters) is very limited or unavailable.
For this reason, it is necessary to consider thgteting problem in a broad framework.

In this work, we propose a new density-based amhro®ur approach can handle a
combination of the challenging issues for which mokthe well-known algorithms have
deficiencies. A graph theory context is adoptedddress arbitrary shapes and heterogeneous
densities in two or higher dimensional space. Umkmmumber of clusters is assumed. Our
algorithm is composed of three phases: neighborhmmustruction, outlier detection and
merging. The first phase uses ideas from both tehaised algorithms to handle arbitrary
shapes and graphs to deal with varying densitieseighborhood is constructed for each data
point using the proximity and connectivity inforrizat. The second phase focuses on outlier
detection. Local Outlier Factor (LOF) proposed bieihig et al. (2000) is revised for the
neighborhoods obtained. In the third phase, a tiéeal agglomeration is performed where
closures are merged considering the improvemeseparation-to-compactness ratio subject
to consistency with their neighborhood. In Sectidn we describe the Neighborhood
Construction (NC) algorithm. The three-phase héaridNOM) is presented in Section 3.
Experimental results are presented in Section 4cdvielude in Section 5.

2. NEIGHBORHOOD CONSTRUCTION (NC) ALGORITHM

Widely used neighborhood structures in clusterirggkesed olk-nearest neighbor&-(NN) or
local density of neighbor&-NN is sensitive to paramet&rfor arbitrary shapes and varying
densities. In DBSCAN (Ester et al., 1996), neighioad of a point is defined by a circle with
radiuse, and the point is classified as a core point dr¢hare more thaMlinPts points in the
circle. Settinge and MinPts is difficult, and different density regions mayquére different
parameter values. DBSCAN can handle arbitrary shapesters. However, it is not possible
to find clusters with density variations by usik§IN or density-based approaches.

NC aims at handling both arbitrary cluster shaped wariations in density. In NC,
proximity graphs are used in defining the neighbordhand connectivity of data points. The
neighbors of a point are determined using mutuaheotivity and density information.
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2.1 Notation and Definitions

We use the notation given below in the discussiciottow.

D set of data points to be clustered (hodes ofthph)
p,qi,j indices for data points

(o Euclidean distance between poiptandq

CG, BG, PG  core, break point, potential candidate sets afifioi
CS final candidate set (neighborhood) of paint

Clm set of points in closure (subclustar)

Clustering of a data set can be interpreted astmanisig a disconnected graph where
nodes represent the data points and edges comeedata points that are in the same cluster.
In the graph theory literature, proximity graphsragt the influence and relevance of nodes in
a graph and present proximity information of thelem Proximity between any pair of nodes
is determined by the distance between the nodesheneistence of other neighboring nodes.
We use the Gabriel Graph (GG) in Euclidean spaamistructing the neighborhood of data
points.

Two nodesp and q are directly connected by an edge of the GG if and only if the
(hyper)ball having diametet,, and centered at the midpointfindq does not contain any
other node of D in its interior. Direct connectiorakes all connected nodes reachable. Two
nodesp andq areindirectly connected if the ball with diameted,, contains at least one other
node of D in its interior. This implies that thergists at least one path between the two nodes
whose maximum edge length is shorter tdgn Density between nodgsandq is measured
by the number of nodes lying in the ball with didenel,,

2.2 Steps of the NC Algorithm

Step 1. Core candidate set construction: In this step, we classify the neighbors of eacla dat
point by considering the (direct or indirect) coatinéty and density information. For point

all remaining points in D are listed in non-deciegsorder of distance to point and the
ordered set iTis formed. The nearest point having an indirecineetion to point is identified

as pointj. Then,d; is the first indirect connection distance to pdinData points having a
distance to poiritshorter thaml; are directly connected to pointvith density 0. We call these
data pointscore (neighbor) points of pointi and include them in GClindirect connections to
other points will be established via these corafgoi

Step 2. Break point candidate set construction: Next comes the detection of density
change. A cluster is defined as a connected gropatterns of dense neighborhoods (Yousri
et al., 2008). Hence, as one moves to the next reofl;, the density is expected to stay the
same or to increase for close neighbors of pbirithe first data point in ;Tat which the
density starts to decrease is identified and calietireak point. This point may be the sign of
a density change (a different cluster). The pdinét are closer to poimtthan the break point
form BG. BG is a superset of GCand includes points with indirect connectionsvad.

Figure 1 shows an example for steps 1 and 2. Fiesgghbors of data point 1 are ranked
and T, is formed. Then, density values between pointd imneighbors are calculated as 0,
0,2,0 2,0, 1, 2in Figure 1(a). The first pasuibject to indirect connection is point 4, so
points 2 and 3 having shorter distance tbarform CG. The first density decrease occurs at
point 5, which becomes a break point. Points hagimgrter distance thaihs are included in
BC..
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Figure 1. (a) Density of points in the example dah (b) Construction of GG {2, 3} and BG =1{2, 3,
4}

Step 3. Potential candidate set construction: The break point marked in step 2 may
indicate either a new density region (a differelster) or a direction change in the same
region (cluster). Premature set wrapping at a bpeakt may cause falling short in defining
the neighborhood of a data point. As a remedy, iB@xtended by checking the connectivity
of points. Letk be the first break point of poimt If the intersection of sets B@nd B( is
nonempty, then there exists at least one pointrérgsan indirect connection between points
andk. Following the points in T this check is conducted for every subsequentkbpeant
until the first empty intersection of the break masets is found. Points up to the first empty
intersection form PC

Let us consider extension of B{ Figure 1. Remember that data point 5 is a bpeakt.
We check if there exists a direction change oritm@gg of a new density region at this point.
{1} U BC,; and BG are compared to check the existence of a pointethsures connectivity
between points 1 and 5. BiS found as {3, 1, 2, 4} and the intersection is 21 3, 4} so point
5 is added to PCThe density increases to 2 for the next membdn gpoint 6). This implies
that we are moving along a similar density regiem,data point 6 is also in RCrhe next
density decrease occurs at data point 8. Againy1BC, and BG are compared. This time,
the intersection is empty as BfS {7, 9}. Hence extension ends with RG {1, 2, 3, 4, 5, 6}.

Step 4. Candidate set construction: PG includes potential neighboring points of data
pointi. Final decision about a neighboring point is mafter a mutual connectivity check. In
this operation, Pds shrunk to CS Let pointj be any point in PCIf pointj is in CG, then
CG andCG are compared for mutuality. If the intersectiortlidse sets is nonempty, points
andj are mutually (nearest) neighbors. So pgiistadded to GSIf the intersection is empty,
then these points do not share the same neighbarhtence, point and the remaining points
in the ordered set R@re eliminated from further consideration. If ggirs not in CG, but the
intersection of CSand C$is nonempty, then poirjtis again added t€S. These mutuality
check operations are conducted for each point thfle is no change in any of the;Gé&ts.

As an example, let us consider point 7 in Figur&/hen we apply steps 1 through 3, we
come up with Bg=PG ={8, 9, 1, 2, 3, 4, 5, 6}. BCand PG are the same in this case and
both sets include points 1-6 from another clusfée reason is that the density does not show
any decrease due to the position of point 7. Eleriritersection of GS&and PG, the superset
of CS,, is empty so mutual connectivity is not satisfied points 7 and 1. Step 4 eliminates
point 1 and the points with longer distance tbgrfrom CS.

Step 5. Formation of closures (subclusters): Points with common neighbors imply that
these points are connected. Thus, closure sgtar€lformed by taking the union of Csts
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that have points in common. Closures formed as sucistitute the skeleton of the target
clustering solution.

Two main outputs of NC are neighborhood of eacimip@S, and closures, Gl However,
two complications may occur in the neighborhoodsstmcted. (1) Outlier mixing: If there
exist more than one core point for an outlier ahdhese core points are mutual core
neighbors, then outlier mixing occurs. (2) Dividddsters: Because NC lacks a global view of
the data set, some local density decreases ara #akdifferent density regions. This causes
formation of closures that are smaller than thgetclusters.

Time complexity of step 1 of NC is governed by B& construction and @7) with n
nodes. Break point candidate set constructiondp &t takes @f) time. Potential candidate
set extension in step 3 has time complexity af?D(Step 4 checks the mutual connectivity of
data points with their neighborhoods innf)(time. Step 5 forms closures in@Y time. Since
step 4 is repeated until no change occurs in neigldnds, we cannot determine the overall
time complexity of the algorithm, but we can infeat it is at least @f).

3. NEIGHBORHOOD CONSTRUCTION - OUTLIER
DETECTION - MERGING (NOM) ALGORITHM

We use the following additional notation in destriopNOM.

m, n indices for clusters

d;° Gabriel Graph (GG) distance between poiraad;

Ird, local reachability distance for point

LOF, local outlier factor for poinit

i(m) pointi in clusterm

MST,, set of edges in the Minimum Spanning Tree (MSTthefpoints in clustem

MSTim) set of edges in the MST of the points in the negghbod of poini in clusterm

GG; set of edges in the GG of the points that are énbtall centered at the midpoint
of pointsi andj with diamete;

NGG,, set of clusters in the GG neighborhood of cluster

Cn set of points in clusten

SEPmn single link separation between clusterandn

COMPiym compactness for the neighborhood of pointclusterm

Three phases of the NOM algorithm are describeovhel

Phase 1. Neighborhood construction: This is done with the NC algorithm described in
Section 2.

Phase 2. Outlier detection: An outlier is a point that shows abnormal behawioa data
set. In the literature, there are algorithms théaitaet both clusters and outliers, such as CURE
(Guha et al., 1998) and DBSCAN (Ester et al., 19%&)wever, they specialize in the
detection of global outliers, and neither intertdushor the intracluster density variations are
considered. In Breunig et al. (2000), points that @utlying relative to their local neighbors
are defined as local outliers. They use a paranetatefine the number of points in a
neighborhood and compute a Local Outlier Factor KLJor each point using this
neighborhood. LOF represents the degree of beingudier based on relative comparison of
the average reachability distances of a point emdaighbors.
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We are interested in both global and local outligisus, we identify the outliers using a
revised version of LOF. Instead of using a fixedapaeter to define the size of the
neighborhood, we use the neighborhoods construntstep 1. As the NC algorithm makes
use of GG connectivity, resulting neighborhoods lcave different sizes and arbitrary shapes.
Traditional distance calculation schemes may mikldee density calculation, therefore we
consider the GG distance between two points inlleeachability calculation. The GG
distance takes into account the connectivity betwieo points. It is the edge with the
maximum length in the GG of the points circumsaitiy the ball passing through poirts

andj, i.e. di?G = max {dkl} . Then, the revised local reachability density &@f becomes

(k.)OGG;
Z goe ™ Ird;
) ! ) Ird.

Ird, =| 22— and LOF =151 Given a threshold level, a, if
[cs cs

LOF, > ar_gé';g({ LOFJ.} , then poini is called a local outlier.
]

Computational complexity of the outlier detectidmpe is Qf°) due to GG construction.

Phase 3. Merging: Hierarchical agglomerative clustering methods cmtstclusters in
stages. Among these CURE (Guha et al., 1998) ursdanumber of representative points to
define the clusters. Agglomeration of a cluster paiconducted considering the minimum
distance between representatives and this is regaattil the given number of clusters is
achieved. Although CURE can handle arbitrary shapiess parameters including the number
of representative points, the number of clustedssimink factor should be set a priori. One of
the complications of CURE is handling intraclustemnd intercluster density variations.
CHAMELEON (Karypis et al., 1999) usdsNN to partition the data set. Merging of these
partitions depends on the graph connectivity. Tibatelative inter-connectivity and relative
closeness are calculated between each clusteapéicompared with a given threshold. Like
CURE, CHAMELEON can extract arbitrary shaped clusteith different sizes and densities,
but faces problems due to density variations witlusters. As we are interested in arbitrary
shaped clusters with varying densities, we propibee following procedure for merging
subclusters.

At the end of the first phase, we have closurgsdblained from the NC algorithm. After
outliers are separated in the second phase, N@rekwsnay consist of divided clusters. As the
first two phases take into account density variegin the neighborhood, they depend on the
local view. The whole data set is not consideredthere is a lack of global view in the
clustering solution. As a remedy, a hierarchicallamerative procedure is used for merging
the neighboring clusters. In order to consider bglibbal and local patterns in the data,
improvement in the separation-to-compactness eatdispersion of the neighbors are taken
into account as the two merging criteria. Clustrgject to merging are determined by using
the GG. Two clusters are in the same GG neighbattibthe ball drawn across the nearest
two points of a cluster pair does not include aains from other clusters. The following two
criteria are then checked for merging.

Criterion 1. Improvement in the separation-to-compactness ratio: We define the potential
compactness of a cluster as the most inconsistiygt i the neighborhoods it contains. MSTs
are constructed to identify the connections with tinimum total length in a cluster and in its
neighborhoods. Then, each edge in the cluster's MSbmpared with the edges in the MSTs
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of the neighborhoods within clusten. Potential compactness of clusteris defined as

d. d.
pcomp,, = max { 1 . } where compactness value for the neighborhood of
(LDEMST, | COMP, y  COMP; 1y
pointi in clustermis comp,,,, = max {dpq} .

(P.a)IMST; 1y
If the current cluster had to be divided, the ettgg would define the separation would most
probably be the most inconsistent edge with itgmebrhood identified bycomp,,.

Let the candidate clusters for merging be 1 andhéres(i*, j*) =arg min{d”} . Thend,
i0c,,j0c,

is the separation between clusters 1 and 2. Mergiem will eliminate the separatiod,. .

and it will become potential compactness for thegwae cluster. A new separation value will
emerge between the merged cluster and the clusseest to either 1 or 2. We try to find out
whether the current separation-to-compactness natlloimprove after the merging. We

normalize the separation to account for heterogeanid calculate the current separation-to-

i d. . d,
compactness ratio as csep,, = maxy ——— —— and
COMP,.yy  COMD,. )

Ccsep,, _
max{ pcomp, , pcomp,}

We consider the lower bounkb:mrr’lienel{seplm,sepm} as the possible separation value

nONGG,
m#2,n£l

after merging. If we merge clusters 1 and 2, thenoon the new separation-to-compactness
lb/d. .

2
separation, andsep,, becomes the new normalized compactness of theeah@tgster.

If new_sc is greater thaourrent_sc, we conclude that the separation-to-compactnéss ra
improves after merging. However, this might stik @an incorrect signal for merging,
especially for the heterogeneous data sets witljelalistance variations between clusters.
Although the ratio seems improving, the new compegs value after merging might be
inconsistent with its neighborhood. For this reasansecond check is conducted for the
consistency of the neighborhood.

Criterion 2. Heterogenity of edge lengths in the neighborhood: If the candidate clusters for
merging satisfy the first criterion, we considee #eparatiorcsep,, between these two clusters
as the potential compactness. To merge, this nege edhould be consistent with the

neighborhoods of its end points. Hence, mergimeformed if this edge does not worsen the
dispersion of edge lengths in the neighborhood,ith

current_sc=

ratio becomesnew_sc = where d.;. is used to normalize the lower bound on

(NS ta} T 1)
min {dij}' min {dij}

(i, 1) EMSTqy (i,] AMST()

Merging continues until none of the cluster paiegisfy the two merging criteria
simultaneously. Therefore, we cannot determineotlezall time complexity of this phase.

csep,, < max
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4. EXPERIMENTAL RESULTS

Performance of NOM is tested on two groups of dats. Group 1 data sets are taken from
the literature (Asuncion and Newman, 2007; Sour2@8; lyigun, 2008) whereas group 2 is

a 3-dimensional control group to explore the cdji@s of NOM. Group 2 data sets are

composed of letters with non-convex shapes (A, ESXand generated using the four factors
presented in Table 1. There are 45 and 24 datarsgi®ups 1 and 2, respectively. Target
clusters are either given by the data source ordday visual inspection.

The properties of the data sets are characterizgtg three measures: the minimum
separation-to-compactness ratio (MSCR), the cdeffimf variation of the edge lengths in the
MST of the whole data set (CV1), and the averagi®fcoefficient of variations of the edge
lengths in individual target cluster MSTs (CV2)gHivalues of the MSCR show that even the
cluster with the minimum ratio is well-separatednfr the others, e.g. data_circle. A high
coefficient of variation (CV1) for the whole datatsndicates well-separated clusters. Large
values of CV2 show significant density variationghim the clusters, e.g. data-c-cv-nu-n.
Group 1 data sets include several types of arpitshapes (elongated, curling, ring-shapes,
spherical, elliptical, etc.) with density variaterin group 2, in addition to these, proximity of
clusters and existence of outliers are explorethéur The properties of some sample data sets
from two groups are presented in Tables Al and M2he Appendix. The plots of some
example data sets are provided in Figures 2 and 3.

Table 1. Factors used in generation of group 2 skt

Level O Level 1 Level 2
«» | Intercluster density difference | No difference Clusters having different densities -
S | Intracluster density variation No variation Random change Smooth chan
Eé Intercluster distance Distant Close -
Outlier Without outlier | With outlier -

Four performance criteria are used in evaluatiegésults: the number of clusters, Jaccard
index (JI), Rand index (RI) and quasi-Jaccard in@g@X). JI and RI are well-known external
cluster validity indices. JI focuses only on thentner of point pairs that belong to the same
target cluster and assigned to the same clustereatidr| also considers the number of point
pairs that belong to different target clusters asdigned to different clusters. Both of them
penalize the divisions and mixes of target clusténs NC we work on neighborhood
construction and we aim to have no mixes from otheasters in the neighborhoods. In order
to measure this, we use the relaxed version oRJI, which penalizes only the number of
point pairs that belong to the same target cluatet assigned to different clusters. Each
measure is calculated for the target clusteringtgwi versus found solutions. The algorithm
is coded in Matlab 7.0, and runs are made on a RClmtel Centrino processor and 512MB
RAM.

The performances of NC, outlier detection (OD) &f@dM after merging are compared
with the results ofk-means, single-linkage (SL) and DBSCAN approachesur comparison
k-means represents the partitional clustering ampraend SL the hierarhical clustering
approach. SL also has a graph theoretic view &astan analogy with MST construction.
DBSCAN is selected as a representative of the tlehased clustering algorithms. In order to
have a fair comparison among these algorithamgans is run for several valueskoin the
range between 2 and 10% of the points in the detavish increments of 1, and the one with
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the best Jl is used. In the same manner, for DBSGhbng severallinPts settings the one
with the best Jl is selected for comparison.
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Figure 3. Group 2 data sets (a) D_0000: no intstefuensity difference, no intracluster density
variation, distant clusters, no outlier. (b) D_0100 intercluster density difference, random intrater
density variation, distant clusters, no outlie).lc 1010: clusters with intercluster density diéfiece, no

intracluster density variation, close clustershaitt outlier. (d) D_1211: clusters with intercluste

density difference, smooth intracluster densityatan, close clusters, with outlier.

The only parameter in NOM, the threshold leaels set to 2 after pilot runs. The details of
the results for some sample data sets are giva@iales A3 through A8 in the Appendix. In
Tables 2 and 3 the summary of the results for titeeegroup 1 and group 2 data sets are
provided. Clustering results for an example datassprovided in Figure 4. For this data set,
JI values withk-means, single linkage and DBSCAN algorithms a&900.49 and 0.50,
respectively. Results of both NC and NOM are supesith respective JI values of 0.98 and
1.

According to Table 2, NOM gives the best averagd mmimum values of JI and RI over
45 data sets in group 1, as well as the smallastdatd deviation. For QJI the best average
performance and the smallest standard deviatiomenzved by NOM, but-means is better
in terms of the minimum. That is, NOM results ingtering solutions close to target clusters.
Moreover, the number of cluster mixes is fewer {@Nil on the average.

For group 1 data sets, which include arbitrarypsisaintercluster and intracluster density
variations, NOM gives the best performance amongthe clustering algorithms. Using
density-based connectivity through GG, NC is thidahphase for detecting both arbitrary
shapes and density changes in the clusters. Outtitaction based on the neighborhoods
ensures separation of such points in less densensegVerging is performed wherever the
separation-to-compactness ratio indicates an isereéehe relative evaluation of compactness
and separation values according to the neighboshaodclusters helps handling arbitrary
shapes and density differences.
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In data sets in which clusters are well-separatetithere are ruptures in the intracluster

density variations (e.g. data circle_20_1 5 10 atata_mix_uniform_normal), NOM
solution has more clusters than the target solutibereas the clustering solutions obtained by
single-linkage and DBSCAN are better. The mainaaas the lack of a global view in NOM.
In particular, both the NC and the outlier detetthases of NOM have a local view as the
decisions are made depending on the informationeget from the neighborhoods. Merging
in the third phase tries to bring about a globakpective by checking the improvement at a
larger scale, that is, neighborhoods of the clssiestead of points. However, the scale we
consider seems to be insufficient to fully realizis.

In group 1 experiments target clusters are achiavéd 32, 17, 13, 16 and 23 data sets for
k-means, single linkage, DBSCAN, NC, outlier detmctiphase of NOM, and NOM,
respectively. Note that merging operations in thiedltphase worsen the performance of NOM
in three data sets. In fact these three data settha only ones that have JI smaller than 0.80
in NOM. One of them (train3) having the worst penfiance in JI (0.59), includes noise rather
than a few outliers. Jl is calculated greater D& after NC and outlier detection phases and
most of the noise is detected as outlier. Howeirethe merging phase of NOM noise is
perceived as a cluster showing similar density erigs, so most of these points are merged
and clusters made up of noise are formed. We alsted the noise removed version of this
data set and NOM was successful in finding thediactusters in this version. As a result, we
can infer that NOM is not capable of handling noiBee remaining two data sets that have Ji
smaller than 0.80 (data_circle 5 10 8 12 and datdec3 10 8 12) include intermingled
clusters. Jl is greater than 0.75 after NC andieutletection phases. However, the close
proximity between the clusters prevents the algorifrom detecting different density regions
by the separation-to-compactness ratio, and thetests are merged in the third phase.
Consequently the limitations of NOM are handlingadaets with intermingled clusters and
noise.

Group 2 is used to explore the main limitations atre@ngths of NOM further. In this
controlled experiment target clusters are achiemetl2, 6, 8, 7 and 7 data sets with single
linkage, DBSCAN, NC, outlier detection, and NOMspectively.k-means could not find the
target clusters in any of the data sets in grougtBpugh it seems the best in terms of RI. The
letters in group 2 are non-convex, but the shapesnat intertwined. Thus, the center
calculation ink-means is still useful, ankkmeans shows an average performance in all data
sets. As seen from Table 3 NOM is no more the pesformer, and DBSCAN ankimeans
have higher JI averages. However, both algorithnts the target clusters in fewer data sets
than NOM. Single linkage, having the highest numbgisuccesses, does not show good
performance in the entire group. DBSCAN havinghighest Jl achieves the target clusters in
only 6 data sets. NOM finds the target clusters @tata sets but its JI average is only 0.758. In
fact, NOM works well in certain data sets as seenTable A4 in the Appendix, and
performance becomes poor for a certain group. Fattanalysis is conducted to determine
the data set properties for which NOM has poorsamkrior performance.

The effects of the four factors in Table 1 on NOMN®&rformance (RI) are presented in
Figure 5(a). When the density differs among thestelts and the distance between clusters is
close (intercluster distance is equal to the desdretween the points in the same cluster), RI
decreases. The negative effect of smooth densitjatian is higher than the random
intracluster density variation. Note that the etiste of outliers does not have a significant
effect on the performance of NOM. According to Feg8(b) the negative effect of the smooth
density change increases when the interclusteardistis close. When we exclude the data
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sets having these properties, the remaining hawaldies higher than 0.80. Thus, NOM is
capable of handling data sets with intraclustersdgnvariations and intercluster density
differences when the distance between the clustegseater than the distance between the
closest points in the same cluster. Otherwisentixing of clusters seems unavoidable.

To summarize, despite its high performance in JiaRd QJl,k-means cannot find the

target clusters. Single linkage performs well wiieere is no intercluster density difference.

DBSCAN mixes outliers and its performance decredsasatically when there is intracluster

density variation (either random change or smobtinge) and clusters are close. NOM can
handle data sets having arbitrary shapes, intdeclugensity differences and intracluster

density variations, but it fails when clusters exéremely close or when there is noise. To sum
up, each clustering approach has its own weakneasdsstrengths depending on the
characteristics of the approach taken.

Execution times of competing approaches and eaakepbf NOM are given in Tables A7
and A8 in the Appendix for selected data sets. Hec times of NOM are significantly
higher compared ti&-means, single-linkage and DBSCAN. It spends mugte tfor GG
construction, especially for the data sets havirgrge nhumber of points. Outlier detection
takes less time as it requires only one pass oétitiee data set. Merging time increases when
the number of closures generated by NC (dividedtels) is higher than the number of target
clusters (e.g. data_circle). As the dimensionalityhe data set increases, the execution times

of NOM increase significantly.

e
o]

@

7 8 9 10

ssssssss
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uuuuu

(©)

aaaaaaaaa

(d)

Figure 4. Clustering results for data-uc-cc-nua)k{means, (b) Single linkage, (c) DBSCAN, (d) NOM

Table 2. Summary results for group 1 data sets

Single Outline
k-means linkage = DBSCAN NC detection NOM

average 0.756 0.937 0.940 0.875 0.875  0.955

Jl std.dev. 0.231 0.163 0.139 0.128 0.137  0.088

min 0.278 0.453 0.504 0.558 0.456 0.591

average 0.856 0.955 0.963 0.908 0.908 0.967

RI std.dev. 0.138 0.119 0.095 0.101 0.107 0.065

min 0.580 0.532 0.531 0.659 0.639 0.648

average 0.954 0.947 0.972 0.996 0.998 0.981

QJI std.dev. 0.087 0.145 0.097 0.016 0.012 0.080
min 0.659 0.460 0.504 0.905 0.916 0.593
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Table 3. Summary results for group 2 data sets

Single- Outline
k-means linkage = DBSCAN NC detection NOM

average 0.858 0.774 0.877 0.740 0.739 0.75§
Ji std.dev. 0.127 0.255 0.183 0.257 0.257 0.256
min 0.623 0.328 0.559 0.248 0.248 0.247
average 0.962 0.887 0.960 0.905 0.891 0.886
RI std.dev. 0.036 0.153 0.060 0.170 0.166 0.196
min 0.895 0.567 0.843 0.412 0.395 0.285

average 0.938 0.789 0.939 0.878 0.878 0.867
QJI std.dev. 0.041 0.238 0.119 0.206 0.206 0.218
min 0.876 0.381 0.674 0.305 0.306 0.259

5. CONCLUSION

NOM is a new density-based clustering algorithmijciwlhuses graph theoretic concepts such
as proximity and connectivity as well as densitypoints in a data set. It has three phases,
namely neighborhood construction, outlier detecteamd merging of subclusters. It assumes
that the number of clusters is unknown. Comparesbtoe other clustering approaches, one of
the advantages of NOM is that no parameters nebd &®t in the neighborhood construction,
and only a single parameter (threshold lejat needed in the rest of NOM.

NOM is tested on a number of data sets having uanmwoperties and compared with some
well-known competing approaches. When the inteteluslistances are larger than the
intracluster distances, NOM is capable of findirlgstering solutions close to the target
clusters with arbitrary shapes and different désitMoreover, NOM can detect the outliers
in these data sets although it is not sucessful miise. Even in the first phase of NOM, the
closures obtained after the neighborhood consticire the same as the target clusters for
some data sets. Evaluation of compactness and admparmeasures relative to the
neighborhood densities strengthens the capabibifidééOM in handling arbitrary shapes and
density variations.

Main limitation of NOM is the lack of collective farmation from a global perspective.
The interrelations among the points are evaluatddhg a local view and this results in
excessive division of target clusters. More infotiora is needed to handle close clusters
having intracluster density variations. Besidesrgjer mechanisms than the one in phase 3 of
NOM can be developed to merge divided clusters.tierocomplication of NOM is high
execution times, but these times can be reduced esficient coding schemes.
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Figure 5. (a) Main effects of factors on R, (b)dratction effects

The authors are grateful to Dr. Cem lyigun for pding some of the data sets.
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APPENDI X

Table Al. Properties of group 1 data sets

# of .
Data set target Oufl‘i);s pﬁi‘;‘;s MSCR | CV1 | cv2 g‘e';)‘ Crgr?,l’;)'

clusters ) )

data_60 3 6P 1.5 43 023 1146 1.00
data_66 4 ) 6p 1.5 47 027 127 1.00
data-c-cv-nu-n_v2 3 q 78 1.0 D4 025 0[{80 Q.78
data-c-cv-nu-n 6 3 76 1.0 .04 0.5 0}{80 Q.78
data-c-cv-u-n 5 3 81 2.7 1.13 0.p4 1j79 0.65
data-uc-cv-nu-n 4 K 12¢ 0.9 1.04 0§32 0,62 0.67
data-oo_%2 2 0 140 2.52 0.16 0.46 0.55
data-oo 6 4 144 2.5 .46 016 0{46 Q.55
iris 3 0 150 0.31 0.46 0.22 0.01
data-uc-cc-nu-n_v2 3 D 188 0. 0.r8 0j42 Q.54 .68
data-uc-cc-nu-n @ 3 191 0. 1.p4 0{42 054 0.68
data-c-cc-nu-n2_v2 K D 192 3. 0.p3 0j24 1.82 .55
data-c-cc-nu-n2 6 3 196 1. .J9 024 0[95 0.55
dataX_v2 2 0 200 1.1 0.683 1.04 0.90
dataX 4 2 202 1. 0.75 0.3 1|04 g.90
data-c-cc-nu-n_v2 3 D 285 1. 0.p6 0§37 0.82 0.77
train2 4 0 287 2. 1.23 0.27 0Jo7 0.03
data-c-cc-nu-n T 289 0.0 094 0B7 046 Q.77
trainl_v1 5 1 306 3.0 1.28 0.88 0405 0.03
3d_dataset3 2 32p 11.87 0.p3 013 594 .62
train3 36 30 397 0.0 1.26 0./8 0402 0.74
data_circle 2 q 700 51. 286 06H9 071 40.0
data_mix_uniform_normal 2 0 1000 135 071 212 0.p1
data_circle_2_10 2_12 2 0 1200 15.1 0.61 0.33 0.08
data_circle_510 8 12 2 0 1500 0.4 | 0.61 0.04 0.09
3d_dataset4 y. 1523 29. 071 0[{13 1§5.94 D.62
data_circlel 2 0 1890 3.9 0.6L 0.22 0.06
data_circle_1_20_1 15 2 0 2100 14.9 0.6 0.23 0.08
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Table A2. Properties of group 2 data sets

# of min

Data set target | A0 | FO e | OV |l oyp | L | M.

dusters outliers | points 1 S0, comp.
D_0001 8 3 2783 3.00 0.28 0.04 3.0 1.00
D_0011 8 3 2783 200 0.29 0.04 2.0 1.00
D_0101 8 3 1978 212 031 0.06 3.0 141
D_0111 8 3 1930 141 034 0.0p 2.0 1.41
D_0201 8 3 2783 158 051 03P 3.10 2.00
D_0211 8 3 2783 1.02 049 03P 2.0Q0 2.00
D_1001 8 3 2783 128 031 0.1p 220 4.33
D_1011 8 3 2783 096 031 01p 201 4.83
D_1101 8 3 1928 144 036 0.1f 2.20 4.83
D_1111 8 3 1951 096 033 0.1p 2.01 4.83
D_1201 8 3 2783 144 05% 04p 4.06 6.05
D_1211 8 3 2783 098 05% 04p 212 6.05

Table A3. Performance of clustering algorithmsamts of JI and RI for group 1 data sets
Data set k-means SL DBSCAN NC oD NOM
Ji RI Ji RI | Jl RI Ji RI | JI RI Ji RI

data_60 07| 09| 10| 10| 10| 10| 10| 10| 2.0| 1.0| 10| 1.0

9 0 q 0 0 0 g q g 0 q g
data_66 06| 08| 10| 10| 10| 10| 10| 10| 1.0| 10| 10| 1.0

6 3 q g 0 0 g q g 0 q g
data-c-cv-nu-n_v2 06| 08| 10| 10| 06| 08| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0

1 4 q g 6 6 g q g 0 q g
data-c-cv-nu-n 05| 08| 10| 10| 06| 06| 09| 09| 10| 10| 10| 1.0

9 3 q 0 3 8 5 8 g 0 q g
data-c-cv-u-n 09| 09| 10| 10| 10| 10| 10| 10| 20| 10| 10| 210

3 7 q g 9 00 g q g 0 q g
data-uc-cv-nu-n 06| 08| 09| 09| 09| 09| 09| 09| 10| 10| 10| 1.0

2 3 8 9 8 9 8 9 g 0 q g
dataoo_v2 05| 07| 08| 09| 09| 09| 10| 10| 10| 1.0| 10| 1.0

2 6 9 5 5 8 g q g 0 q g
data-oo 04| 07| 05| 05| 05| 05| 10| 10| 1.0| 1.0|] 1.0| 1.0

9 5 q 3 0 3 0 q g 0 q g
iris 07| 08| 05| 07| 05| 07| 08| 09| 08| 1.0| 1.0| 1.0

0 8 7 8 9 8 6 2 6 9 q g
data-uc-cc-nu-n_v2 03| 07| 04| 06| 05| 08| 10| 10| 1.0 10| 10| 1.0

4 3 5 0 9 3 g q g 0 q g
data-uc-cc-nu-n 05| 07| 04| 06| 05| 08| 09| 09| 10| 10| 1.0| 1.0

9 3 8 2 0 3 8 9 g 0 q g
data-c-cc-nu-n2_v2 02| 06| 10| 20| 10| 10| 09| 09| 09| 09| 10| 1.0

9 3 q 0 0 0 8 9 8 9 q g
data-c-cc-nu-n2 02| 06| 1.0| 10| 09| 09| 09| 09| 09| 09| 10| 1.0

8 4 q g 9 9 8 9 8 9 q g
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v this value is 0.997+ this value is 0.998.this value is 0.999.

132




A NEW DENSITY-BASED CLUSTERING APPROACH IN GRAPH THEOREC CONTEXT

Table A4.Performance of clustering algorithms in terms odrddl RI for group 2 data sets

k-means S DBSCAN NC oD NOM
Data set Ji RI Ji RI Ji RI Ji RI Jl RI Jl RI
D_0001 098] 099 10d 100 099 099 1.00 100 1,00 1.00001 1.00
D_0011 094| 098 100 100 09 099 1.0 1lo0 1200 1.00001 1.00
D_0101 098| 099 104 100 099 099 1.0 1loo 100 1.00001 1.00
D_0111 092| 098 100 100 099 099 12001.00| 1.00| 1.00 | 1.00 | 1.00
D_0201 090| 097 100 100 099 099 O0F8 095 078 095840 0.96
D_0211 081| 095 100 100 094 098 060 087 060 087630 0.88
D_1001 089| 097 067 08 098 099 068 092 068 092680 0.92
D_1011 066| 091 033 o057 o056 089 087 081 037 08L37p 081
D_1101 098| 099 067 08 098 099 087 099 097 099970 0.99
D 1111 062| 089 033 057 056 08 067 085 057 085570 0.85
D_1201 0.85| 096| 067 08 092 098 062 090 062 0.9079D 0.94
D 1211 064 090 036 059 058 0B85 025 039 029.40| 025 0.29

s this value is 0.998.this value is 0.999.

Table A5. Performance of clustering algorithmsamis of the number of clusters for group 1 dats set

Data set

#TC*

k-means
#C**

SL
#C* *

DBSCAN
#C**

NC
#C**

oD
#C**

NOM
HC**

data_60

data_66
data-c-cv-nu-n_v2
data-c-cv-nu-n
data-c-cv-u-n
data-uc-cv-nu-n
dataoo_v2
data-o00

iris
data-uc-cc-nu-n_v2
data-uc-cc-nu-n
data-c-cc-nu-n2_v2
data-c-cc-nu-n2
dataX_v2

dataX
data-c-cc-nu-n_v2
train2
data-c-cc-nu-n
trainl_vl
3d_dataset3
train3

data_circle

data_mix_uniform_normal
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data_circle_2 10 2 12
data_circle_ 5 10 8 12
3d_dataset4
data_circlel
data_circle_1 20 1 15

NN

2
2

NN

2
2

~N N

2
2

w w

2
3

22
29

35
a7

*#TC: the number of target clusters, **#C: the numbkclusters found

Table A6.Performance of clustering algorithms in terms ef tumber of clusters for group 2 data sets

Data set HTC* k- SL DBSCA | NC oD NOM
means #C** N #C** #C** #C** #C**
#C**
D_0001 8 4 8 6 8 8 8
D_0011 8 4 8 6 8 8 8
D_0101 8 4 8 6 8 8 8
D_0111 8 4 8 6 7 7 7
D_0201 8 4 8 6 67 71 18
D_0211 8 4 8 6 66 71 16
D_1001 8 5 6 4 15 16 16
D_1011 8 5 10 10 15 16 16
D_1101 8 4 6 4 9 9 9
D_1111 8 5 10 18 14 14 16
D_1201 8 4 10 10 44 49 15
D_1211 8 5 10 10 40 45 17

*#TC: the number of target clusters, **#C: the numbkclusters found

Table A7. Performance of clustering algorithmsamis of time (in seconds) for group 1 data sets

134

Data set k-means SL DBSCA NC oD NOM*

N
data_60 0.21 0.52 0.07 1.p4 2|23 3.74
data_66 0.0y 0.38 0.03 1.61 1,08 2.65
data-c-cv-nu-n_v2 0.19 0.39 0.06 2.6 1{71 3.97
data-c-cv-nu-n 0.0% 0.38 0.04 2.36 191 4.37
data-c-cv-u-n 0.11 0.38 0.24 2.77 3.37 6(30
data-uc-cv-nu-n 0.07 0.42 0.13 10.J71 744 18.34
dataoo_v2 0.73 0.43 1.95 14.08 13.72 28.04
data-o00 0.11 0.438 0.23 15.15 14|28 29.67
iris 2.19 0.57 7.4% 18.211 6.24 25.02
data-uc-cc-nu-n_v2 0.09 0.48 0.13 3427 9130 43.81
data-uc-cc-nu-n 0.10 0.48 0.12 35.r1 9{37 45.33
data-c-cc-nu-n2_v2 0.32 0.49 0.38 36,14 16.69 53.49
data-c-cc-nu-n2 0.11 0.49 0.19 37.r2 17,06 55.42
dataX_v2 0.83 0.50 2.34 40.48 14.94 55.74
dataX 0.1( 0.501 0.13 42.29 15/00 57.67
data-c-cc-nu-n_v2 0.0b 0.7 0.05 11927 33.48 Z53.
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train2
data-c-cc-nu-n
trainl_vl
3d_dataset3
train3
data_circle

data_mix_uniform_nor
mal

data_circle_2 10 2 12
data_circle_5 10 8 12
3d_dataset4

data_circkl
data_circle_1 20 1 15

0.14
0.24
0.0§
1.99
0.14
0.1
0.17

0.92
271
2.11

0.29
0.77

0.6
0.6
0.7
1.0
0.91
2.1
4.19

6.63
10.23
32.4

16.69

0.11
0.26
0.11
6.11
0.28
0.12
0.29

N 0 ooy ¢t

2.75
5.71
0 5.%7

0.47

19.08

3.68

).49

5.35
31

85

75
63

26

21481 1a3.
34131 15

22{03 1%0Q.
399.94 1232

51.66 371.
606.09 90Z%
295.99 3700
2273.90 5784
2403.26 5092
7.8796865.3
0

10983.40 15261]

19980.85 30163,

46

* Times for NOM include NC and OD times.

Table A8. Performance of clustering algorithmsamts of time (in seconds) for group 2 data sets

Data set k-means SL DBSCA NC oD NOM *
N
> o001 24832592.00 5111854  24883768.
- 369| 20372  13.0¢ 88
5 0011 36493251.00 8333820  36576975.
— 388| 26773  13.44 47
9769738.00| 1253838 97822941
D_o0101 226| 10205  14.4( 8
3263598.00| 554820 32691624
D_0111 226| 10157  14.27 8
5 0201 28430650.00 12642.60  28450350.
- 374| 4879  12.66 29
5 0211 2334414400 2210090  23374030.
— 384| 4882 2301 94
5 1001 13781560.000 9587.78  13791160.
— 586| 17014 232.33 13
5 1011 16609053.00 8218.61 16617291,
- 300| 16447  14.87 82
3026006.00 2351.49 3028447.8
D_1101 197 5917 10091 0
3960810.00| 364122 39645109
D_1111 228| 5977  11.94 1
16772753.000 1275856 16788447
D_1201 381| 4866  16.31 91
D 1211 11819776.000 5800.80 11825587,
302| 4864l 1479 75

* Times for NOM include NC and OD times.
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