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ABSTRACT  

We present a novel Hidden Markov Model for detecting copy number variations (CNV) from genotyping 
arrays. Our model is a novel application of HMM to inferring CNVs from genotyping arrays: it assumes 
a continuous-time framework and is informed by prior findings from previously analyzed real data. This 
framework is also more realistic than discrete-time models which are currently used since it does not 
assume that CNV breakpoints occur at the genotyped loci. We show how to estimate the model 
parameters using a training data of normal samples whose CNV regions have been confirmed, and 
present results from applying the model to a set of HapMap samples containing aberrant SNPs.  

KEYWORDS 

Hidden Markov Models; Copy Number Variation; Markov Chain Monte Carlo; SNP genotyping arrays. 

1. INTRODUCTION 

In this paper we propose a novel application of a continuous-time hidden Markov model 
(CHMM) for interrogating genetic copy number (CN) information from genome-wide Single 
Nucleotide Polymorphism (SNP) arrays. DNA Copy number changes, either deletions or 
amplifications of a region of DNA, result in having less or more than the usual 2 versions of 
DNA sequence. Such DNA alterations constitute an important class of genetic mutations 
which are proving extremely useful in understanding the genetic underpinnings of many 
diseases and other phenotypic information (McCarroll and Altshuler, 2007). The Affymetrix 
Mapping 500K chip set (Affymetrix, 2006) is a pair of arrays that interrogate over 500,000 
human SNPs. In the rest of the paper, we refer to this pair of arrays as a SNP array. While 
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SNP arrays were originally developed for genome-wide genotyping, the technology has also 
proven to be capable of producing copy number calls. The copy number analysis of SNP 
arrays consists of the following sequence of steps: (1) the preprocessing of the low-level (i.e. 
probe-level) data, which involves removing various biases that exist in the data (such as PCR 
fragment length); (2) single locus copy number estimation at each SNP location, which 
summarizes the DNA concentration; and (3), chromosome-wide modelling to infer regions of 
copy number changes, called copy number variations (CNVs). This paper focuses on the 
improvement of methodology for the third step. 

Copy number data from normal cell lines is often characterized by long stretches of no 
variation, interspersed with typically small regions of CNVs. Hidden Markov models (HMMs) 
are well-suited to modelling such sudden changes in the data, enabling them to make good 
predictions of copy number along the genome. For this reason, HMMs are a commonly used 
technique for the genome-wide detection of CNVs. Indeed, numerous HMMs have already 
been proposed for the analysis of SNP arrays, including dChip (Lin et al., 2004) and 
VanillaICE (Scharpf, 2008). Both of these implementations of HMMs model the copy-number 
process as discrete with respect to the genomic location and are therefore called discrete-time 
HMMs (DHMMs). Furthermore, since DHMMs do not model the process between the 
observed locations they necessarily force copy number changes  to occur at the observed SNP 
locations, which is an unrealistic assumption as pointed out by Stjernqvist et al. (2007). In 
reality, CNV breakpoints are likely to occur between the locations interrogated by the SNP 
arrays; even the most dense SNP arrays interrogate only a small fraction (less than 0.1%) of 
the genome.  In this paper we adopt a continuous-time HMM in which the Markov process 
governing copy number changes along the genome is viewed as continuous in time, so that 
copy number changes can occur at any point along the genome. Another advantage of the 
continuous-time framework is that the uneven distances between the SNPs on the array are 
naturally taken into account. Such models have been previously used by Stjernqvist et al. 
(2007) in the context of array CGH data (Snijders et al., 2001). The copy number analysis of 
array CGH data differs from that of SNPs arrays in two important ways. First, since the 
endpoints from array CGH data are ratios of the signal from the test DNA sample to that of a 
reference DNA sample, it is difficult to determine whether a detected CNV occurred in the test 
or reference sample. Thus, such an approach is not effective when interested, as we are in this 
study, in finding germline CNVs – CNVs in normal cell lines, rather than tumor cell lines. 
Second, the probes are designed differently. For example, SNP arrays use short probes that 
produce allele-specific measurements, while array CGH use probes that are longer, non-allele-
specific, and tend to overlap. These structural differences require different model 
specifications and, therefore, model fitting procedures. 

In this paper we propose a fully Bayesian continuous-time HMM (CHMM) for the analysis 
of SNP arrays. We show that Bayesian copy number estimation addresses some shortcomings 
of the standard approach – the combination of the Baum-Welch (EM) algorithm for parameter 
estimation and the Viterbi algorithm for copy number estimation. We assess the methodology 
on a set of a previously verified aberrant loci and also with a simulation study consisting of 
100 samples from chromosome 8 data. We end the paper with some concluding remarks and 
comments about future work. 
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2. BODY OF PAPER 

2.1 Overview of our Procedure for Copy Number Determination 

The SNP arrays produce a number of intensity values for each interrogated SNP. The 
description of the underlying technology and meaning of these values is beyond the scope of 
this paper; for further details, readers are asked to consult Kennedy et al. (2003) and the 
references therein. For the purpose of CN determination, a summary of the total intensity at 
each SNP, regardless of the underlying genotype present at the site, is needed. We used a 
popular procedure called Copy-number estimation using Robust Multichip Analysis (CRMA) 
(Bengtsson et al., 2008) that summarizes the total raw intensity data for each SNP. We refer to 
these single-locus, non-polymorphic, continuous, copy number estimates as raw CNs. Each 
raw CN is computed independently of other loci, in the sense that information from nearby 
loci is not utilized at this stage. One of the advantages of CRMA over other methods is that it 
utilizes information, if available, from multiple arrays (observations) to improve estimates at a 
given SNP location. In sum, sufficiently large raw CN estimates indicate evidence of a copy 
number gain, whereas sufficiently small raw CN estimates indicate evidence of a copy number 
loss. 

2.2 Emission Distribution for the Raw CNs 

We focus on the analysis of a single individual sample, so the data we analyze consists of a 
sequence of continuous raw CNs  for  where  is the number of SNPs. 
Additionally, we also know the physical location in bps of the observed SNPs, which we 
denote by  for . Let Ci be the underlying copy-number value where Ci 

={1,2,3}. The raw CNs are assumed to be generated from a conditional Gaussian model, 
whose parameters depend on the underlying and hidden, CN state. These Gaussians are 
usually called emission distributions. So, independently for all ,  
 

  (1) 
Since regions with altered CN states are assumed to be of genetic length that usually 
encompasses more than one SNP site, a hidden Markov model is used to estimate Gaussian 
model parameters and hence the underlying CN states across each chromosome. 

2.3 Titration and Human Population Data to set Hyper-Parameters 
of our Model 

We used two previously published datasets to help specify (hyperparameters) prior 
distributions of our model parameters; see Section 2.8 for more details on how this is done.  

The X chromosome titration data set (3X, 4X, and 5X) contains three artificially 
constructed DNA samples containing abnormal amplification of the whole X chromosome 
(aneuploidies). There are four replicates of each DNA sample. The aneuploidies are a X 
trisomy (presence of three copies of chromosome X); a X chromosome tetrasomy (presence of 
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four copies of chromosome X); and a X chromosome pentasomy (presence of five copies of 
chromosome X). These data were downloaded from the Affymetrix data resource center 
(Affymetrix) The Coriell Cell Repository numbers for these three cell lines are NA04626 
(3X), NA01416 (4X), and NA06061 (5X). We used this data to specify the hyperparameters of 
the emission distribution. 

McCarroll et al. (2008) report genomic coordinates for 1,320 copy number polymorphisms 
from the 270 HapMap samples. We used these data to inform about mean lengths of copy 
number deletions and amplifications, which are both hyperparameters of the transition 
intensity matrix. 

2.5 The Copy Number Model 

The copy number process records the number of copies of DNA at specific locations along the 
genome. We let  denote the unobserved copy number process of one 
sample which we wish to infer, where  is the length of the chromosome in bps. We allow the 
process to take three possible values: 1 (haploid), 2 (diploid) or 3 (triploid). This could easily 
be extended to include more states, such as 0- and 4-copy states. For convenience, we will 
denote the copy number at the observed SNP locations  by 

. Our goal is to infer  based on the observed data 
. 

We model  as a continuous-time Markov process. The continuous-time Markov process 
is parameterized in terms of a  transition intensity matrix of copy number changes 

, where, for , , and , so that 
 and . Unlike a discrete-time Markov process whose state transitions 

are defined in terms of transition probabilities, the continuous-time Markov process is defined 
in terms of its instantaneous transition intensities . The intensity  represents the 
instantaneous risk of moving from state  to state :  
 

  (2) 
The complete specification of the transition intensity matrix is given by  

 

  
This model assumes that, for example, the rate of deletion in a normal (2-copy) region is 

different than the rate of deletion in a amplified (3-copy) region. More specifically, this model 
specification is based on the reasonable belief that the rate of deletions will be larger from the 
normal state than from the amplified state (i.e. ), since deletions rarely follow 
regions of amplification. 

The parameters of the Q matrix govern the occurrence of copy number changes along the 
chromosome. The model is shown graphically in Figure 1. Perhaps a better way of 
understanding the evolution of the Markov chain is through the time it spends in a state or, in 
the context of genomics, the number of bases pairs before a copy number change occurs. 
(Note that the number of bps before a copy number change occurs simply corresponds to the 
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length of the region; for example, the length of a copy number deletion.) Assuming that the 
chain begins in the diploid (2-copy) state, the chain stays in the diploid state for a length of 
time (or distance) that is exponentially distributed with rate parameter . 
Thus, under this model, the expected length of a diploid region is . Once the stay in the 
diploid state is complete, the chain then moves to either the deleted (1-copy) state with 
probability  or the amplified (3-copy) state with probability 

. This process repeats itself, over and over. We denote the transition 
probabilities of the chain by  and the transition rates by 

 for . Note that  for ; once the process 
leaves state , it must proceed to a new state. Also ,  and 

. As we will see later, it is convenient to reparameterize the model in terms of 
the - and -parameters. Under this parameterization for the CHMM, the collection of all 
parameters is  and we sometimes also 
distinguish between parameters governing the emission distribution, 

, and the parameters governing the Q-matrix, 
. 

 

Figure 1. Graphical representation of the continuous-time HMM for SNP arrays. 

2.6 Computing the Distance-  Transition Probability Matrix 

In order to specify the likelihood of the model, , we need to compute the 
corresponding distance- transition probability matrix, . The matrix  is defined by 
the elements  for  and . 
This matrix can be derived from the matrix by computing the matrix exponential of : 

; see Ross (2003) for details. For our model, though, there are no closed-
form solutions for the matrix exponential. So, instead, we assume that there is at most one 
transition between adjacent SNPs. This is a reasonable assumption as we do not expect more 
than one transition between adjacent SNPs due to the close proximity of SNPs on the arrays. 
With this assumption, if we let  be a random variable representing the length of the stay in 
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state , then, assuming that we are in state  at SNP , the probability that we are still in 

state  at SNP  is  

 

  
where , the distance between SNP  and . This holds because we 
know that  is exponentially distributed with parameter . Similarly, the probability that we 

transition to state  from state  between SNPs  and  is  
 

  
Therefore, the corresponding distance- transition probability matrix is given by  

 
 

 

2.7 Estimation 

The standard approach to parameter estimation for HMMs consists of two stages. First, we 
find the marginal posterior mode of the model parameters,  

 

  (3) 

This can be accomplished by using the Baum-Welch algorithm (Welch, 2003). 
Second, given the parameter estimates , we then use the Viterbi algorithm (Rabiner, 

1989) to calculate the most probable sequence of CN states,  

 

  (4) 
The primary problem with this approach is that it does not fully account for the uncertainty 

in the parameters. That is, its solution  is conditional on a single point estimate  and it fails to 
take into account other reasonable values of . Other authors have also recognized this 
shortcoming and have proposed using a fully Bayesian approach; see e.g. Churchill and 
Lazareva (1999). Furthermore, the EM algorithm does poorly at estimating the parameters of 
the transition intensity matrix, especially the transition rate parameters, , which we expect to 
be very small. For example, this was observed by Rydén (2008) who recommend using priors 
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for these parameters. To address these issues, we propose an MCMC algorithm in Section 2.9. 

2.8 Prior Distributions 

We used a fully Bayesian approach to estimate the model parameters and copy number. We 
place prior distributions on the unknown parameters of the emission distribution which depend 
on the underlying copy number as follows.  

 

  (5) 

and  

 

  (6) 

where  are the degrees of freedom for the  and  is the variance of 
a typical locus. This is the scaled  specification for the variance, ; see Gelman 
et al. for a definition. 

We also place priors on the parameters of the distance-  transition probability matrix:  

 

  
These priors are conjugate for all parameters except for the -parameters for which no 

conjugate prior exists. This leaves us with a set of hyperparameters, 

, to specify. Our Beta prior parameters 
 and  can be interpreted as pseudo-counts of the number of 

transitions between states. For example,  is the prior number of observations for transitions 
between the 1-copy state and the 2-copy state, and  is the prior number of observations for 
transitions between the 1-copy state and the 3-copy state. Since it is rare for a duplication to 
follow a deletion, we expect the probability  to be close to 1. Thus, the specification of  
should be large relative to . Similarly, the reciprocal of  represents the expected length of 
a deletion and, under the above prior specification, . Therefore,  is the prior 
expected length of a deletion. In sum, informative priors are appealing for copy number data, 
because we can use prior biological knowledge to help specify the parameters while, at the 
same time, allow the data to adjust these a priori values accordingly. 

2.9 A Markov Chain Monte Carlo Algorithm 

The posterior distribution of  can be written as  
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where  is the  element of the distance- transition probability matrix described in 
Section 2.6. To generate samples from this posterior distribution, an MCMC algorithm was 
used. All model parameters have conjugate priors with the exception of the rate parameters for 
which we used the Metropolis-Hastings algorithm (Hastings, 1970) to sample from their 
distributions. We used the backward sampling algorithm proposed in Churchill and Lazareva 
(1999) to sample from . Starting from initial values  and , iterate the 
following steps:  

1. Given the current drawn values of , update  using a backward sampling 
algorithm. The backward sampling algorithm is based on the equation  

 
 

 
Here,  is the joint probability of observing data up to SNP  and  
copies at SNP , often called the forward probability. Note that  depends 
on .  

               (a) For , initialize the forward probabilities:   
 (b) For ,  and given , compute the remaining forward probabilities 
using the          recursive equation 

  
 (c) Sample  from a , where  

.  
 (d) Sample  recursively for  from  

           where  

.  

2. For  and given the current drawn , sample  and  from 
their full conditional distributions. Since these distributions are standard 
conjugate distributions, we omit the details here. 

3. Given the current drawn , sample ,  and  from their full conditional 
distributions. Since these distributions are standard conjugate distributions, we 
omit the details here. 

4. For , given the data, other model parameters and the most 

recently drawn value of , denoted by , sample  using a Metropolis-
Hastings algorithm:  

(a) Sample a proposal  from a  distribution.  
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(b) Accept  with probability  where  

represents the complete conditional distribution of , and  is the density 
function for the  distribution.  

 

   After running the MCMC algorithm, we have a set of sampled copy number sequences 

, where  and  is the number of MCMC scans, as 
well as a set of sampled model parameters , 

where  

2.10 Data Analyses 

We analyzed data from a set of HapMap samples containing aberrant SNPs that have been 
experimentally verified by quantitative real-time PCR (qPCR) in a separate study (MacConaill 
et al., 2007). We used the titration data, which have known biological structure, to specify the 
hyperparameters of the emission distribution. Previous studies indicate that copy number 
deletions and amplifications may vary widely in size, between 5 bps and over 200 kb 
(McCarroll et al., 2008). Since we are interested in intermediate-size (10-100 kb) CNVs, we 
used  and . We collected 15,000 posterior samples using 
the MCMC algorithm and discarded the first 5000 as a burn-in phase. For each SNP, we 
estimated the copy number by taking the average of the sampled copy number values across 
the MCMC scans and rounded this number to the nearest integer. 

For fitting the discrete-time HMM, we used the VanillaICE package with the default 
settings (see Scharpf (2008), for details), except that we change the emission distribution to be 
equivalent to the one that was used for the continuous-time model. 

The results are presented in Table 1. Among the models the CHMM performed the best 
with 13 out of 14 SNPs called correctly. The discrete-time HMM was next with 11 out of 14 
SNPs called correctly. 

Table 1.  Predictions by various HMMs on a set of aberrant SNPs that have been experimentally verified 
by qPCR. DHMM is the discrete-time HMM. CHMM is the continuous-time HMM. 

SNP Chr Sample qPCR DHMM dChip CHMM 
SNP_A-1941019 13 NA10851 0.86 1.00 1.00 1.00 
SNP_A-4220257 8 NA10851 1.40 2.00 2.00 2.00 
SNP_A-2114552 22 NA10863 2.74 2.00 2.00 3.00 
SNP_A-1842651 17 NA10863 4.27 3.00 2.00 3.00 
SNP_A-4209889 3 NA12801 1.24 2.00 2.00 1.00 
SNP_A-2102849 8 NA10863 0.88 1.00 2.00 1.00 
SNP_A-2122068 8 NA10863 0.85 1.00 1.00 1.00 
SNP_A-1932704 7 NA10863 0.00 1.00 2.00 1.00 
SNP_A-1889457 8 NA10863 1.05 1.00 1.00 1.00 
SNP_A-4204549 8 NA10863 0.82 1.00 1.00 1.00 
SNP_A-2125892 22 NA12707 0.00 1.00 2.00 1.00 
SNP_A-2217320 22 NA12707 1.40 1.00 2.00 1.00 
SNP_A-2126506 17 NA12707 4.51 3.00 2.00 3.00 
SNP_A-1851359 17 NA12707 2.53 3.00 2.00 3.00 
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2.11 Results from a Simulation Study 

CNV breakpoints were simulated from a model with , 

, and , except in one region of CN 
polymorphism of length 100 kb which had a 6-fold increase in the rate of deletions. These 
breakpoints were simulated over a 140 Mb stretch, the length of chromosome 8, independently 
for 100 samples, and then were mapped onto the genomic locations corresponding to the 
observed SNP markers for the Affymetrix 500K Nsp chip. For each sample, this resulted in 
underlying copy number calls for 14,839 SNPs. With these simulated copy number calls, 
observed data were then simulated from the following hierarchical model.  

1. For each copy number class  and SNP ;  

(a) sample   

(b) sample   

     2. For  and , sample 

.  
This was done for , , 

 and . These values were chosen to mimic 
estimates from the titration data which have known biological structure. 

For the purpose of saving time, we analyzed the first 5,000 SNPs for each of the 100 
samples. For estimation of each simulated data set, we used the same values of the 
hyperparameters as were used for the data analyses described in the previous section, and 
collected 8,000 samples from the posterior using the MCMC algorithm.  

We compared the results of the continuous-time HMM to two other methods: GLAD 
(Hupe et al., 2004) and CBS (Olshen et al., 2004). For GLAD, the default settings were used. 
GLAD provides output labels which correspond to loss/gain/diploid status for each SNP. For 
CBS, we post-processed the results by merging classes with predicted means within 0.25 of 
one another. Furthermore, the class with mean closest to zero was assigned the diploid class 
(normal class of two copies). The remaining classes were assigned to either gain or loss 
depending on whether their predicted class mean was larger or smaller than the diploid class. 

     The results are presented in Table 1. The continuous-time HMM performed the best in 
terms of detecting aberrant loci. However, it also detected more false-positives than both CBS 
and the DHMM. 

Table 2. Prediction results for the simulation study. The second column is the misclassification error rate, 
the third column is the true positive rate of detection, and the fourth column is the true negative rate. 

These error rates are based on averages across the 100 samples. 

Method Misclassification rate TPR TNR 
CHMM 2.80% 84.54% 97.29% 
GLAD 3.26% 55.39% 98.11% 
CBS 0.76% 79.80% 99.88% 
DHMM 0.74% 82.15% 99.85% 
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3. CONCLUSION 

In this paper we develop and apply a continuous-time Hidden Markov Model for the analysis 
of SNP array data, to infer regions of altered copy number. We use a number of previously 
published results to help specify priors for the Bayesian models underlying the HMM. The 
copy number analysis and databases are a novel development in the area of genomics, hence it 
is important for models to be flexible enough to enable novel discoveries. In particular, the 
data analysis in this paper underlines the importance of developing a reliable estimation 
procedure for the parameters of the transition intensity matrix, as the results produced by the 
Viterbi algorithm are quite sensitive to the specification of these parameters. While the 
MCMC framework addresses the need to account for the uncertainty in the estimation of 
model parameters , it does also bring forth a new challenge which is how to summarize the 
sampled copy number sequences from the MCMC algorithm. Unfortunately, there is no 

Viterbi-style algorithm for maximizing . We are currently assessing various 
approaches for summarizing the sampled copy number sequences from the MCMC results. 

Related to this is CNV inference. The Bayesian continuous-time HMM framework we use 
is a more natural setting, compared to discrete-time HMMs, to develop new prior and 
parameter specification models. The model readily provides estimates of posterior quantities, 
such as the probability that a region of interest contains a CNV. Such probabilities may be 
used to rank detected CNVs. Our results indicate that our CHMM is already competitive with 
the specialized DHMM implementation for such data (a VanillaICE package) while allowing 
for a more consistent modeling framework. 

Future work also includes extending the model to the analysis of multiple samples, with 
the ultimate goal of detecting copy number polymorphisms. 
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