IADIS International Journal on Computer Science and Information Systems
Vol. 5, No.1, pp. 101-112
ISSN: 1646-3692

CONTINUOUSTIME HIDDEN MARKOV MODELS
FOR THE COPY NUMBER ANALY SIS OF
GENOTYPING ARRAYS

Matthew Kowgier and Rafal Kustraalla Lana School of Public Health, University of Toronto,
Toronto Canada.

ABSTRACT

We present a novel Hidden Markov Model for detecting copy number variations (CNV) from genotyping
arrays. Our model is a novel application of HMM to inferring CNVs from genotyping arrays: it assumes

a continuous-time framework and is informed by prior findings from previously analyzed real data. This
framework is also more realistic than discrete-time models which are currently used since it does not
assume that CNV breakpoints occur at the genotyped loci. We show how to estimate the model
parameters using a training data of normal samples whose CNV regions have been confirmed, and
present results from applying the model to a set of HapMap samples containing aberrant SNPs.
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1. INTRODUCTION

In this paper we propose a novel application of a continuous-time hidden Markov model
(CHMM) for interrogating genetic copy number (CN) information from genome-wide Single
Nucleotide Polymorphism (SNP) arrays. DNA Copy number changes, either deletions or
amplifications of a region of DNA, result in having less or more than the usual 2 versions of
DNA sequence. Such DNA alterations constitute an important class of genetic mutations
which are proving extremely useful in understanding the genetic underpinnings of many
diseases and other phenotypic information (McCarroll and Altshuler, 2007). The Affymetrix
Mapping 500K chip set (Affymetrix, 2006) is a pair of arrays that interrogate over 500,000
human SNPs. In the rest of the paper, we refer to this pair of arrays as a SNP array. While

101



IADIS International Journal on Computer Science brfdrmation Systems

SNP arrays were originally developed for genomeewgénotyping, the technology has also
proven to be capable of producing copy number cd@lle copy number analysis of SNP
arrays consists of the following sequence of stébsthe preprocessing of the low-level (i.e.
probe-level) data, which involves removing varidigses that exist in the data (such as PCR
fragment length); (2) single locus copy number rneation at each SNP location, which
summarizes the DNA concentration; and (3), chrom@savide modelling to inferegions of
copy number changes, called copy number variat{@Vs). This paper focuses on the
improvement of methodology for the third step.

Copy number data from normal cell lines is oftemreleterized by long stretches of no
variation, interspersed with typically small regsoof CNVs. Hidden Markov models (HMMs)
are well-suited to modelling such sudden changethéndata, enabling them to make good
predictions of copy number along the genome. Fisrrgason, HMMs are a commonly used
technique for the genome-wide detection of CNVslebd, numerous HMMs have already
been proposed for the analysis of SNP arrays, dimu dChip (Lin etal., 2004) and
VanillalCE (Scharpf, 2008). Both of these implenagians of HMMs model the copy-number
process as discrete with respect to the genomatitwtand are therefore called discrete-time
HMMs (DHMMSs). Furthermore, since DHMMs do not modtile process between the
observed locations they necessarily force copy rurmbanges to occur at the observed SNP
locations, which is an unrealistic assumption amted out by Stjernqvist et al. (2007). In
reality, CNV breakpoints are likely to occur betwethe locations interrogated by the SNP
arrays; even the most dense SNP arrays interragdgea small fraction (less than 0.1%) of
the genome. In this paper we adopt a continugns-tiMM in which the Markov process
governing copy number changes along the genomeveed as continuous in time, so that
copy number changes can occur at any point aloaggémome. Another advantage of the
continuous-time framework is that the uneven dixtanbetween the SNPs on the array are
naturally taken into account. Such models have lmemiously used by Stjernqvist et al.
(2007) in the context of array CGH data (Snijddralg 2001). The copy number analysis of
array CGH data differs from that of SNPs arraysvilo important ways. First, since the
endpoints from array CGH data are ratios of theaifrom the test DNA sample to that of a
reference DNA sample, it is difficult to determiwbether a detected CNV occurred in the test
or reference sample. Thus, such an approach isffemtive when interested, as we are in this
study, in finding germline CNVs — CNVs in normalllcknes, rather than tumor cell lines.
Second, the probes are designed differently. Famgke, SNP arrays use short probes that
produce allele-specific measurements, while arr@HQise probes that are longer, non-allele-
specific, and tend to overlap. These structuralfedihces require different model
specifications and, therefore, model fitting prooess.

In this paper we propose a fully Bayesian contirsdtimme HMM (CHMM) for the analysis
of SNP arrays. We show that Bayesian copy numkénason addresses some shortcomings
of the standard approach — the combination of thenBWelch (EM) algorithm for parameter
estimation and the Viterbi algorithm for copy numbstimation. We assess the methodology
on a set of a previously verified aberrant loci atgb with a simulation study consisting of
100 samples from chromosome 8 data. We end the patresome concluding remarks and
comments about future work.
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2. BODY OF PAPER

2.1 Overview of our Procedurefor Copy Number Deter mination

The SNP arrays produce a number of intensity vafieeseach interrogated SNP. The
description of the underlying technology and megrofthese values is beyond the scope of
this paper; for further details, readers are askedonsult Kennedy et al. (2003) and the
references therein. For the purpose of CN detettinimaa summary of the total intensity at
each SNP, regardless of the underlying genotypsepteat the site, is needed. We used a
popular procedure called Copy-number estimationgu&obust Multichip Analysis (CRMA)
(Bengtsson et al., 2008) that summarizes the tatmlintensity data for each SNP. We refer to
these single-locus, non-polymorphic, continuougycaumber estimates as raw CNs. Each
raw CN is computed independently of other locithie sense that information from nearby
loci is not utilized at this stage. One of the ateges of CRMA over other methods is that it
utilizes information, if available, from multiplerays (observations) to improve estimates at a
given SNP location. In sum, sufficiently large r&@M estimates indicate evidence of a copy
number gain, whereas sufficiently small raw CNraates indicate evidence of a copy number
loss.

2.2 Emission Distribution for the Raw CNs

We focus on the analysis of a single individual plemso the data we analyze consists of a

sequence of continuous raw CYisfor # = 1, ..., M, whereas is the number of SNPs.
Additionally, we also know the physical location lips of the observed SNPs, which we
denote bydi for #=1,..., M  Let G be the underlying copy-number value where C

={1,2,3}. The raw CNs are assumed to be generateah fa conditional Gaussian model,
whose parameters depend on the underlying and iddsl state. These Gaussians are
usually callecemission distributions. So, independently for &|

2 ) 2
Yi‘#c‘/o_(i’(ji =Cr ]V(M’Cvac)' (1)
Since regions with altered CN states are assumebet®f genetic length that usually

encompasses more than one SNP site, a hidden Mankdel is used to estimate Gaussian
model parameters and hence the underlying CN statess each chromosome.

2.3 Titration and Human Population Data to set Hyper-Parameters
of our M odel

We used two previously published datasets to hglpcif/ (hyperparameters) prior
distributions of our model parameters; see Se@iBrfor more details on how this is done.
The X chromosome titration data set (3X, 4X, and) 5%%ntains three artificially
constructed DNA samples containing abnormal angalifon of the whole X chromosome
(aneuploidies). There are four replicates of eadhADsample. The aneuploidies are a X
trisomy (presence of three copies of chromosomeX);chromosome tetrasomy (presence of
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four copies of chromosome X); and a X chromosom@gsmmy (presence of five copies of
chromosome X). These data were downloaded fromAtfemetrix data resource center
(Affymetrix) The Coriell Cell Repository numbersrfthese three cell lines are NA04626
(3X), NA01416 (4X), and NA06061 (5X). We used tHeta to specify the hyperparameters of
the emission distribution.

McCarroll et al. (2008) report genomic coordindimsl,320 copy humber polymorphisms
from the 270 HapMap samples. We used these datafcdon about mean lengths of copy
number deletions and amplifications, which are bbiperparameters of the transition
intensity matrix.

2.5 The Copy Number Model

The copy number process records the number of s@bfiBNA at specific locations along the

genome. We led{C'(¢)}o<—t<—7 denote the unobserved copy number process of one

sample which we wish to infer, whelis the length of the chromosome in bps. We allogv t
process to take three possible values: 1 (haplaid)liploid) or 3 (triploid). This could easily
be extended to include more states, such as O4ampy states. For convenience, we will

denote the copy number at the observed SNP losalC (d1),....C(dar)) by
(Ch.....Cm)=C". Our goal is to infer ¢ based on the observed data
Y = (Y17"‘:YJ\/T),

We modelcr as a continuous-time Markov process. The contiatione Markov process
is parameterized in terms of3 < 3 transition intensity matrix of copy number changes
€ = {4qij}i—1,2,3:5—=1,2,3, where, fori # 7, ¢i; > O, and9s* — — 2_i=x 9%, 50 that
22, 25 = O gndgre <= 0. Unlike a discrete-time Markov process whose dtaesitions
are defined in terms of transition probabilitidss tontinuous-time Markov process is defined
in terms of its instantaneous transition intensitYij. The intensity4iji represents the
instantaneous risk of moving from stite state:

The complete specification of the transition intgnmatrix is given by

—(q12 + q13) G1o 413
Q= q21 —(g21 + ga3) q23
q31 432 —(g31 + 432)

This model assumes that, for example, the rateetstion in a normal (2-copy) region is
different than the rate of deletion in a amplifi@lcopy) region. More specifically, this model
specification is based on the reasonable beligfthgarate of deletions will be larger from the
normal state than from the amplified state (421 > ¢31), since deletions rarely follow
regions of amplification.

The parameters of the Q matrix govern the occug@icopy number changes along the
chromosome. The model is shown graphically in Fegdr Perhaps a better way of
understanding the evolution of the Markov chaithi®ugh the time it spends in a state or, in
the context of genomics, the number of bases pmEfere a copy number change occurs.
(Note that the number of bps before a copy numbhange occurs simply corresponds to the
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length of the region; for example, the length afogpy number deletion.) Assuming that the
chain begins in the diploid (2-copy) state, theictsays in the diploid state for a length of
time (or distance) that is exponentially distritiliteith rate parameter’2 — 421 + §23,
Thus, under this model, the expected length ofpéoiti region isl /2. Once the stay in the
diploid state is complete, the chain then movesitber the deleted (1-copy) state with
probability 421/(¢21 +¢23) or the amplified (3-copy) state with probability
g23/(a21 + g23). This process repeats itself, over and over. Weotde the transition
probabilities of the chain byP"/ — @ij/(32k25 k) and the transition rates by
Vi = Xy ik for 7 — 1,2,3. Note thatpu = O for 4 = 1,2, 3; once the process
leaves state;, it must proceed to a new state. AP13 = 1 — P12, p2s = 1 — p21 and
ra2 = 1 — p12. As we will see later, it is convenient to repaes@nize the model in terms of
the - and v-parameters. Under this parameterization for theM®Hl the collection of all
parameters i = (it1, p2, pi3, 07, 03, 03, P12, P21, P31, V1, V2, ¥3) and we sometimes also
distinguish between parameters governing the eamssi distribution,
Op = (u1, 2, 143,07,05,03),  and  the parameters governing the Q-matrix,
Og = (p127p21;p317 v, V2, 7/3)_

Observed Y, \E Y1 Y
f
Underlying C, a C, Cwm-1 Cwm
d, d, dm1 dwu
Position

Figure 1. Graphical representation of the contirstdme HMM for SNP arrays.

2.6 Computing the Distance-d Transition Probability Matrix

In order to specify the likelihood of the moder(Y'|¢), we need to compute the
corresponding distancl-transition probability matriZ' (). The matrixZ'(<) is defined by
the element<lis(d) = P(C(t +d) = FlC() =4) for s = 1,2,3 andj = 1,2, 3.
This matrix can be derived from ti&2—matrix by computing the matrix exponential &2*
T'(d) = exp{dQ}; see Ross (2003) for details. For our model, thotitere are no closed-
form solutions for the matrix exponential. So, @&, we assume that there is at most one
transition between adjacent SNPs. This is a reddersssumption as we do not expect more
than one transition between adjacent SNPs dueetaltise proximity of SNPs on the arrays.
With this assumption, if we leL: be a random variable representing the length®fthy in
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statez, then, assuming that we are in stiam SNP/ — 1, the probability that we are still in
statei at SNFJ is

Tildj — dj—r) = P(C; =i|Cjy =i, dj, dj1)
= P(Ll > d] — d':,',l)
— e vildj—dj—1)
= p Vi
where&; = d; — d; 1, the distance between Shj2andJ — L. This holds because we
know thatl; is exponentially distributed with parame¥:r Similarly, the probability that we

transition to statk from state; between SNPJ andj — L is

Ti(A;) = P(Cy=k|Cj_1 =i, Ay)
= P(C; = k[Cj1 = )P(L: < A))
= (ai/v:)(1 — ™ 1%9)
= pip(l — e~ 29,

Therefore, the corresponding distard:é-ansition probability matrix is given by

e Vi p12(1 o 671/1d) (1 7p12)(1 o efuld)
T(d) = | pull—e ) v (1= pa)(1 — )
Par(l—e ) (1—py)(1 —e ) oo
2.7 Estimation

The standard approach to parameter estimation MMBEI consists of two stages. First, we
find the marginal posterior mode of the model patars,

6 = arg m;lxp(@|K (;))

3)
This can be accomplished by using the Baum-Welgbrahm (Welch, 2003).
Second, given the parameter estimaéleave then use the Viterbi algorithm (Rabiner,
1989) to calculate the most probable sequence oft@tes,
C = arg max p(V|C, 6).

The primary problem with this approach is thatded not fully account for the uncertainty
in the parameters. That is, its solution is caadil on a single point estima#2and it fails to
take into account other reasonable values) ofOther authors have also recognized this
shortcoming and have proposed using a fully Bayesipproach; see e.g. Churchill and
Lazareva (1999). Furthermore, the EM algorithm doesrly at estimating the parameters of
the transition intensity matrix, especially thensdion rate parameter”;, which we expect to
be very small. For example, this was observed byéRy2008) who recommend using priors
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for these parameters. To address these issuesppese an MCMC algorithm in Section 2.9.

2.8 Prior Distributions

We used a fully Bayesian approach to estimate tbdeinparameters and copy number. We
place prior distributions on the unknown parametéithe emission distribution which depend
on the underlying copy number as follows.

the ~ N{ime, v2)

C

and
1 1 9
) 5 Xd
O-g doacs(z) C do C’

wheredo.c are the degrees of freedom for x> — distribution ands3.« is the variance of

a typical locus. This is the scaldnv-x? specification for the varianc@?k; see Gelman
et al. for a definition.

We also place priors on the parameters of thertistd transition probability matrix:

p12 ~ Betalay, by),
P21 ~ Beta(ag, ba),
P31 ~ DBeta(as, b3),

v; ~ Gamma(2,1/l;) i=1,2,3.

These priors are conjugate for all parameters éximgpthe 1/-parameters for which no
conjugate prior exists. This leaves wus with a sef byperparameters,
¢ = (Mme,v7, a1,az,a3,01,b2,b3,11,12,13) to specify. Our Beta prior parameters
(a1, az,as3) and (b1, b2, b3) can be interpreted as pseudo-counts of the nurober
transitions between states. For exami12js the prior number of observations for transision
between the 1-copy state and the 2-copy stateb1uisl the prior number of observations for
transitions between the 1-copy state and the 3-stgie. Since it is rare for a duplication to
follow a deletion, we expect the probabil?12 to be close to 1. Thus, the specificatior? 1 f
should be large relative &1. Similarly, the reciprocal ¢“1 represents the expected length of
a deletion and, under the above prior specificatE,(,l/Vl) = {1, Therefore!1 is the prior
expected length of a deletion. In sum, informafviers are appealing for copy number data,
because we can use prior biological knowledge tp bpecify the parameters while, at the
same time, allow the data to adjust thegeiori values accordingly.

2.9 A Markov Chain Monte Carlo Algorithm

The posterior distribution (<> €) can be written as
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P(C.O)Y)  P(O)P(Y|C,0)P(C|0)

= P(O)me, fF(¥ale) TLZ £ (lei) Ter e (D),
whereT; (d) is theiith element of the distancd:transition probability matrix described in
Section 2.6. To generate samples from this posteligiribution, an MCMC algorithm was
used. All model parameters have conjugate priotis thie exception of the rate parameters for
which we used the Metropolis-Hastings algorithm gtitays, 1970) to sample from their
distributions. We used the backward sampling alboriproposed in Churchill and Lazareva
(1999) to sample frone(C'|Y, &), Starting from initial value®(®> and ('(®, iterate the
following steps:

1. Given the current drawn values ¢, update’ using a backward sampling
algorithm. The backward sampling algorithm is basedhe equation

=PY1,..., Y 1,01 = J)P(G|Cr1 =)
_ = a1 () Tje (D).
Here,t—1(J) is the joint probability of observing data up t&S¢ — 1 andJ
copies at SNit — 1, often called the forward probability. Note tZ%; (2:) depends
onfao.
() Fa7 = 1,2, 3, initialize the forward probabilitiec¥1 () — 7./ (¥1).
(b) Fors — 1,2,3, and giver®1{J), compute the remaining forward probabilities
using the recursive equation
ac(5) = fi(Ye) 320y ee—1(i)Tij (Ae).
(c) SampleC'as from aMultinomial, (Aar) where

o a (1) anr (2) aa(3)
A]\J — (EkXM(k)’ E,‘AXM(/»")’ EkXM(k)>'

(d) SampleC’s—1 recursively fort = A2, A — 1,...,2 from
Cy—1 ~ Multinomial(A—1(Cy)), where
At—l(Ct) _ ( a1 (DTio, (D) at—1(2)Tac, (D) ar—1(3)Tze, (A:) )

201 (k) Teoy (A7 20 a1 (B) Tk, (D)7 20, a1 (B)Twko, (AL)

2. Forc € {1,2.3} and given the current drav(’, sampletéc and®: from
their full conditional distributions. Since thesdstdbutions are standard
conjugate distributions, we omit the details here.

3. Given the current draw(’', sampleP12, P21 andP31 from their full conditional
distributions. Since these distributions are stashdmnjugate distributions, we
omit the details here.

4. For < € {1,2,3} given the data, other model parameters and thet mo

recently drawn value d’¢, denoted by/((;tfl), sample’c using a Metropolis-
Hastings algorithm:

(a) Sample a propog~t” from aGamma(1, &) distribution.
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(t) max { P | L™ 1}
(b) AcceptVc ~ with probability Pt Do) S whereP{(Ve| ~)
represents the complete conditional distributiol,/c)fandr(’/c) is the density
function for theGamma(l, ve) distribution.

After running the MCMC algorithm, we have a sétsampled copy number sequences
{COYccreer, whereC? = (17, ..., ) andT is the number of MCMC scans, as

¢

well as a set of sampled model parameters{e( )}1<:t<:T,
O RO R (VR RO X (R X O B O I B (Y I (YR (SR (3]

Wherey(‘ =y iy 00y 0 i Dy Dt WYy V)

2.10 Data Analyses

We analyzed data from a set of HapMap samples icimgaaberrant SNPs that have been
experimentally verified by quantitative real-tim€R (QPCR) in a separate study (MacConaill
et al., 2007). We used the titration data, whichehenown biological structure, to specify the
hyperparameters of the emission distribution. Pnevistudies indicate that copy number
deletions and amplifications may vary widely inesizetween 5 bps and over 200 kb
(McCarroll et al., 2008). Since we are interestedntermediate-size (10-100 kb) CNVs, we
used!t = I3 = 50000 andl2 = le 4+ 06, we collected 15,000 posterior samples using
the MCMC algorithm and discarded the first 5000aaburn-in phase. For each SNP, we
estimated the copy number by taking the averagheosampled copy number values across
the MCMC scans and rounded this number to the seateger.

For fitting the discrete-time HMM, we used the M&ICE package with the default
settings (see Scharpf (2008), for details), extegtt we change the emission distribution to be
equivalent to the one that was used for the coatiattime model.

The results are presented in Table 1. Among theetsdtie CHMM performed the best
with 13 out of 14 SNPs called correctly. The disestme HMM was next with 11 out of 14
SNPs called correctly.

Table 1. Predictions by various HMMs on a setlEreant SNPs that have been experimentally verified
by gPCR. DHMM is the discrete-time HMM. CHMM is thentmuous-time HMM.

SNP ChrSample gPCR DHMM dChip CHMM
SNP_A-1941019 1B8IA10851 0.86 1.00 1.00 1.00
SNP_A-4220257 &NA10851 1.40 2.00 2.00 2.00
SNP_A-2114552 2AA10863 2.74 2.00 2.00 3.00
SNP_A-1842651 1RNA10863 4.27 3.00 2.00 3.00
SNP_A-4209889 NA12801 1.24 2.00 2.00 1.00
SNP_A-2102849 &A10863 0.88 1.00 2.00 1.00
SNP_A-2122068 &A10863 0.85 1.00 1.00 1.00
SNP_A-1932704 NA10863 0.00 1.00 2.00 1.00
SNP_A-1889457 &NA10863 1.05 1.00 1.00 1.00
SNP_A-4204549 &NA10863 0.82 1.00 1.00 1.00
SNP_A-2125892 2NA12707 0.00 1.00 2.00 1.00
SNP_A-2217320 2NA12707 1.40 1.00 2.00 1.00
SNP_A-2126506 1NA12707 4,51 3.00 2.00 3.00
SNP_A-1851359 1NA12707 2.53 3.00 2.00 3.00

109



IADIS International Journal on Computer Science brfdrmation Systems

2.11 Resultsfrom a Simulation Study

CNV breakpoints were simulated from a model wif21 = 23 = 3.33¢ — 07
g1z = 32 = 1.998¢ — 05 and q13 = q31 = 2¢ — U8, except in one region of CN
polymorphism of length 100 kb which had a 6-foldremase in the rate of deletions. These
breakpoints were simulated over a 140 Mb stretuh)eéngth of chromosome 8, independently
for 100 samples, and then were mapped onto thengenlocations corresponding to the
observed SNP markers for the Affymetrix 500K Nsjfpclror each sample, this resulted in
underlying copy number calls for 14,839 SNPs. Whhse simulated copy number calls,
observed data were then simulated from the follgwiierarchical model.

1. For each copy number cle € {1, 2,3} and SNF¢ € {1,..., 14839},
(a) sampletti,c ~ N (e, v3);
112
(b) sample?c  do.osg . o
2. For 7€ {1.,...,14839} and J€{1,...,100}, sample
Y;'7 ~ j\[(ll’i:c'ij ’ gf,ng )

This was done for *i = (—0729, 0, 05), v? = (001.0005, 001),

do = (4,4,4) and 55 — (0.043,0.032,0.043)_ These values were chosen to mimic
estimates from the titration data which have kndiatogical structure.

For the purpose of saving time, we analyzed th& 000 SNPs for each of the 100
samples. For estimation of each simulated data wet,used the same values of the
hyperparameters as were used for the data analigsesibed in the previous section, and
collected 8,000 samples from the posterior usiegMICMC algorithm.

We compared the results of the continuous-time HMMtwo other methods: GLAD
(Hupe et al., 2004) and CBS (Olshen et al., 20Bd).GLAD, the default settings were used.
GLAD provides output labels which correspond toslgain/diploid status for each SNP. For
CBS, we post-processed the results by mergingedasith predicted means within 0.25 of
one another. Furthermore, the class with mean sideezero was assigned the diploid class
(normal class of two copies). The remaining classese assigned to either gain or loss
depending on whether their predicted class meardamgsr or smaller than the diploid class.

The results are presented in Table 1. Theirnomts-time HMM performed the best in
terms of detecting aberrant loci. However, it alsbected more false-positives than both CBS
and the DHMM.

Table 2. Prediction results for the simulation gtuthe second column is the misclassification erate,
the third column is the true positive rate of détet, and the fourth column is the true negative.ra
These error rates are based on averages acraB3aisamples.

Method Misclassification rate TPR TNR

CHMM 2.80% 84.54% 97.29%
GLAD 3.26% 55.39% 98.11%
CBS 0.76% 79.80% 99.88%
DHMM 0.74% 82.15% 99.85%
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3. CONCLUSION

In this paper we develop and apply a continuoug-titidden Markov Model for the analysis
of SNP array data, to infer regions of altered capyber. We use a number of previously
published results to help specify priors for they@ian models underlying the HMM. The
copy number analysis and databases are a novdbgewent in the area of genomics, hence it
is important for models to be flexible enough talgle novel discoveries. In particular, the
data analysis in this paper underlines the impodaof developing a reliable estimation
procedure for the parameters of the transitionmitg matrix, as the results produced by the
Viterbi algorithm are quite sensitive to the spieeifion of these parameters. While the
MCMC framework addresses the need to account feruthcertainty in the estimation of
model parameter, it does also bring forth a new challenge whichasv to summarize the
sampled copy number sequences from the MCMC algoritUnfortunately, there is no

Viterbi-style algorithm for maximizingp(c‘y). We are currently assessing various
approaches for summarizing the sampled copy nusdmprences from the MCMC results.

Related to this is CNV inference. The Bayesian ionious-time HMM framework we use
is a more natural setting, compared to discrete-tifMMs, to develop new prior and
parameter specification models. The model readibyvides estimates of posterior quantities,
such as the probability that a region of interasitains a CNV. Such probabilities may be
used to rank detected CNVs. Our results indicadé dbir CHMM is already competitive with
the specialized DHMM implementation for such data/anillalCE package) while allowing
for a more consistent modeling framework.

Future work also includes extending the model ® dhalysis of multiple samples, with
the ultimate goal of detecting copy humber polynmisms.
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