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ABSTRACT 

In this paper, we investigate the development of distributed real-time data mining algorithms for sensor 
network applications with a focus on air pollution monitoring applications. Our approach is based on a 
considering two-layer sensor network framework comprising mobile and stationary sensors. We present 
architectural abstractions for such a network that are suitable for conducting peer-to-peer data mining 
algorithms. We also develop and evaluate the performance of a real-time peer-to-peer data clustering 
algorithm for the identification of pollution hotspots and for analyzing the dispersion of pollution clouds. 
We conduct an experimental evaluation of our algorithms to compare the accuracy of our algorithms to 
centralized implementations and identify the associated tradeoffs. 
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1. INTRODUCTION 

1.1 Sensor Networks for Urban Pollution Monitoring 

Our motivations for this research are drawn from designing architectures and algorithms to 
support the analysis of data collected from large-scale sensor networks for environmental 
applications, and in particular those for air quality control and pollution monitoring [1–3]. We 
focus on newer systems such as that developed in the MESSAGE (Mobile Environmental 
Sensor System Across Grid Environments) project [4-7], which fully integrates existing static 
sensor systems and complementary data sources with the mobile environmental sensor system. 

The sensor units used in a system such as MESSAGE can be generally deployed over wide 
geographic area to collect, process, and act upon large amounts of complex data. Each of the 
units is typically equipped with multiple sensing devices that measure different variables, and 
typically also has an on-board processing unit to perform local data processing and analysis 
operations as well as exchange data with other sensor units and base stations. The units can be 
fixed or mobile and connectivity between themselves and the base stations can proceed using 
a variety of network technologies and protocols including ad-hoc wireless networking 
methods and fixed networking methods. With the support of a two-layer network framework 
formed by the mobile sensors fixed by the roadside devices and stationary sensors carried by 
public vehicles, the MESSAGE provides a highly effective system for air pollution monitoring.  

Irrespective of the actual technologies use, the key challenge that typically arises in the 
context of these applications is our ability to organize and process the large amounts of 
collected data effectively and efficiently in the network itself to minimize the reliance on 
centralized servers. In this paper, and based on our former work on the Discovery Net [8] and 
MoDisNet [9], we present architectural abstractions for such a network that are suitable for 
conducting peer-to-peer data mining algorithms within the MESSAGE system as well as in 
other environmental monitoring sensor networks. We use our abstractions to develop and 
evaluate the performance of a real-time peer-to-peer data clustering algorithm for the 
identification of pollution hotspots and for analyzing the dispersion of pollution clouds.  

1.2 Paper Layout 

The remainder of this paper is organized as follows. In Section 2 we present related and 
previous work on air pollution monitoring systems design. In section 3, we describe the 
MESSAGE system architecture and discuss how it can be adapted to meet the demands of 
distributed and peer-to-peer data mining. In section 4, we describe the implementation of our 
distributed clustering algorithm and discuss its performance properties. In Section 5, we 
describe the real-time pollution pattern recognition experiments to evaluate our approach. 

2. PREVIOUS AND RELATED WORK 

Under the current Environment Act of UK [10], most local authorities have air quality 
monitoring stations to provide environmental information to public daily via Internet. The 
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conventional approach to assessing pollution concentration levels is based on data collected 
from a network of permanent air quality monitoring stations. However, permanent monitoring 
stations are frequently situated so as to measure ambient background concentrations or at 
potential ‘hotspot’ locations and are usually several kilometers apart. For example, the 
Environmental Research Group (ERG) at King's College London is a leading provider of air 
quality information and research in the UK. In 1993, the group created the London Air Quality 
Network (LAQN) [11] in conjunction with the 33 London Boroughs and Regional Health 
Authorities. The group manages over 160 continuous monitoring sites, providing site 
management, quality assurance, local site operator support and reporting services including 
the dissemination of measurements via the Internet. 

In the US, the CitySense research group [12] in Harvard University provides an urban 
scale sensor network testbed that is being developed by researchers at Harvard University and 
BBN Technologies. At the end of 2009, CitySense consisted of 100 wireless sensor notes 
deployed across Cambridge, MA. Each node consists of an embedded PC, network interface, 
and various sensors for monitoring weather conditions and air pollutants. CitySense is 
designed as an open testbed for researchers to evaluate wireless networking and sensor 
network applications in a large-scale urban setting. 

The Discovery Net [8] and MoDisNet [9] are both architectures for the analysis of air 
pollution data sets. The Discovery Net architecture is based on collecting data from statically 
located urban pollution monitoring sensors and uses workflow technique to analyze the 
distribution of pollutants centrally. The MoDisNet system is the mobile version of 
DiscoveryNet. Furthermore, the MoDisNet system enhanced the data analysis capability by 
managing the pollution data in a distributed style. Our work in this paper is based on both of 
the above systems. Both systems are designed for analyzing data collected at finer spatial and 
temporal granularity thus enabling the studying pollution hot spots change with time. They are 
also designed to allow the integration of the sensor data with all types of data, such as 
meteorological data. The inclusion of such data allows for studying pollution hot spots change 
and the factors affecting them in scientific experiments.  

3. THE MESSAGE FRAMEWORK 

3.1 The MESSAGE Data Collection Architecture 

The key feature of the MESSAGE system [4-7] is to use a variety of vehicle fleets including 
buses, service vehicles, taxis and commercial vehicles as platform for environmental sensors. 
The system has been designed to work with a variety of sensors in three cities in the UK, 
London, Cambridge and New Castle. Figure 1(a) shows a high-level view of the data 
collection architecture of the MESSAGE project [6]. The approach is based on using a real-
time data manager to collect sensor data from distributed sensors and to organize it into a 
number of data marts for integration with other data sources for access and analysis by various 
applications 

The architecture is generic and can be used with any type of sensors. The sensors used in 
London are based DUVAS sensor units used in the system are similar to those used in 
previous projects are based on high-performance mobile UV spectroscopy sensors, which 
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measure SO2, NO, NO2, O3, NH3, and Benzene at ppb levels. The units also have the ability 
to send data using 3G/GPRS via the mobile phone network enabling greater autonomy and 
reliability in data transmission. In order to provide the data buffering locally on the device, 
they also support WiFi data transmission with a store and forward configuration. The DUVAS 
units are also equipped with on-board processing units providing them with an ability to 
perform on board data mining either on single units or collaboratively across multiple units.  

 

 

Figure 1(a). MESSAGE Architecture 

 
 
 
 
 
 
 

 
Figure 1(b). Two Layer network framework 

The input data based on our former research [8] uses the air pollution data sampled from 
140 sensors marked as the red dots (see Figure 4 and 5 in section 6) distributed in a typical 
urban area around the Tower Hamlets and Bromley areas in east London. There are some of 
the typical landmarks such as the main roads extending from A6 to L10 and M1 to K10, the 
hospitals around B5 and K4, the schools at B7, C8, D6, F10, G2, H8, K8 and L3, the train 
stations at D7 and L5, and a gas work between D2 and E1. 140 sensors collect data from 8:00 
to 17:59 at 1-minute intervals to monitor the pollution volumes of NO, NO2, SO2 and Ozone. 
Then there are 600 data items for each node and totally 84000 data items for the whole 
network. Each data item is identified by a time stamp, a location, and a four-pollutant volume 
reading. Once sensor data is collected, data cleaning and preprocessing is necessary before 
further analysis and visualization can be performed. Most importantly, missing data must be 
performed using bounding data from the sensor, or also using data from nearby sensors at the 
same time. Interpolated data may be stored back to the original database, with provenance 
information including the algorithm used. Such pre-processing is standard, and has been 
conducted using the available MESSAGE component. The relatively high spatial density of 
sensors used also allows a detailed map of pollution in both space and time to be generated. 
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3.2 Two Layer Network Framework 

Within the MESSAGE framework sensor units can be placed on vehicles (e.g. busses), thus 
allowing a fleet of moving vehicles to collect pollution data as the vehicles travel across a city. 
This enables collecting more data from more locations. Figure 1(b) shows the MESSAGE 
mobile sub-network formed by the Mobile Sensor Nodes (MSN in short) and the stationary 
sub-network organized by the Static Sensor Nodes (SSN in short). They sample the pollution 
data and execute the AD conversion to get the digital signals. According to the system 
requirements, the MSNs may pre-process the raw data (such as the noise reduction, local data 
cleaning and fusion, etc.) and then send these data to a nearest SSN. The SSNs take in charge 
of the data receiving, update, storage and exchange works.  

4. DISTRIBUTED MINING ARCHITECTURE 

In this paper we extend the MESSAGE architecture into a four-layer hierarchical architecture, 
to enable the distributed mining of the pollution data in P2P style within large scale mobile 
sensor networks. These extensions support the full scale analytical task ranging from dynamic 
real time mining of sensor data to the analysis of off-line data warehoused for historical 
analysis. The enables sensors equipped with sufficient computational capabilities to feed data 
to the warehouse as well as perform analysis tasks in collaboration with their peers when 
needed. In this section, we will first discuss the real-time sensor grid challenge, and then 
present the hierarchical e-Science grid architecture within MESSAGE with the explanation of 
each layer in detail. As with previous work [8], we use the term sensor grid rather than sensor 
network to highlight the need for processing and analyzing, rather than simply monitoring, 
large amounts of data. 

4.1 Requirements for Distributed Sensor Data Mining 

Enabling large-scale data mining within the MESSAGE architecture requires enabling 
distributed data mining to be conducted by the sensors themselves. This leads to the following 
four groups of requirements:  

Peer-to-peer processing: Within a large-scale mobile sensor network architecture, the 
sensors themselves naturally form and communicate with each other as a P2P network. In 
order to satisfy the real-time analysis requirement, the sensors themselves will have to store 
part of the information and communicate with each other within a P2P network. The 
measurements from sensors, both mobile and static, will be filtered and processed using a set 
of specialized algorithmic processes, before being warehoused within a repository. The design 
and implementation of suitable P2P sensor network architecture will need to satisfy the real-
time analysis requirements as well as the data storage/communication trade-offs. The sensors 
in such a system will need to be equipped with sufficient computational capabilities to 
participate in the grid environment and to feed data to the warehouse as well as perform 
analysis tasks and communicating with their peers.  

Metadata representation: The sensor network is characterised by the heterogeneity and 
geographic distribution of the sensors. Within a sensor network, sensors can be located, 
accessed and integrated within a particular study. Not only is it essential to record the type of 
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pollutants measured (e.g. Benzene, SO2, NOx, etc) for each sensor, but also since sensors may 
be mobile it is essential to record the location of the sensor at each measurement time. Such 
information must be described at the semantic level thus allowing sensors published as sensor 
services to be discovered. Finally methods addressing the security and authentication issues 
relating to accessing and controlling the sensors must also be addressed. 

Large data set storage and management: The sensor network is also characterised by 
sizes of data being collected and analysed. Moreover, different sensors typically provide 
measurements at different resolutions and scales and efficient data aggregation and data 
querying mechanisms must be provided, and such information must be described and 
published as sensor data services using standardised metadata techniques. 

Real-time data analysis (stream mining): Historical data is well suited to large-scale 
analysis over multiple dimensions, but for dynamic queries over real-time sensor data streams, 
the data has to be taken directly from the sensors. These data points have little value for 
warehousing and also the real time mining querying cannot afford a “store and mining” model. 
A typical analytical work would involve the statistics at a certain location and about certain 
properties in that location. The sensor may not be able to offer this information on its own, due 
to its movement from the location, or due to inability to capture all relevant information 
pertaining to the query. Dynamically composed sensor network with a P2P communication 
model will support such information aggregation for these kinds of analytical queries. 
Streaming mining algorithms are also necessary to realize such a real-time analytical querying 
model. 

4.2 Hierarchical Architecture 

Figure 2 shows the modifications to the MESSAGE architecture to address the key 
requirements for distributed data mining through the middleware layer. The architecture 
comprises four layers: 

Sensor Layer: Similar to the data capture architecture, this layer manages different types 
of sensors. Sensors within the environment are heterogeneous and may be mobile or static. 
Hence, the wireless connectivity can provide different access protocols to the IP backbone 
including WiFi (802.11.g), Zigbee (802.15.4), and WiMax (802.16). The sensors have the 
capability to sample one or more pollutants or other environmental properties such as noise or 
temperature. Sensors must have the capacity to buffer a reasonable amount of data in the event 
that connectivity is lost as well as to conduct local data analysis tasks. Then, sensors send their 
data packets to a known location. Ultimately, all data packets will be sent onto an IP network 
for transmission into the Data Layer of the architecture.  

Middleware Layer: This is the core layer of the sensor network architecture. This layer 
covers the functions of execution management, distributed data mining activity and sensor 
registry and control. As the MESSAGE system is designed primarily to support the distributed 
analysis of the pollution data, the distributed data mining entity is designed for on-line 
examination of the monitored area that is down to the level of streets and buildings. The 
execution management, which is critical for the system performance, is the core service of this 
layer as well as the whole network architecture. It enables virtual organization management, 
resource management and load balancing, etc. 

Data Layer: As with the Data capture architecture, the Data Layer handles the capture of 
streams of data packets coming from a large number of mobile environmental sensors and 
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ensures the efficient, reliable handling of this data and its insertion into the real-time data 
store. This data must then be transported to the data store and inserted in the database in an 
efficient manner. Since there is the potential for the volume of data to be significant, the key to 
this layer of the architecture is the efficient management of data. Data must be stored in a real-
time database that provides a schema that allows for efficient storage of large quantities of 
data. Database oriented queuing systems meet the desired scalability and performance 
characteristics and deliver sophisticated business management capabilities. Querying of the 
data should also be optimized but the database is not designed for large numbers of real-time 
queries. Instead, data will be batch queried at off-peak times and fed into Data Marts. 

Application Layer: Similar to the data capture architecture, the Application Layer 
retrieves information from the Real-time Database Layer, specifically the real-time data store, 
and uses this information as the input to applications. There are a number of Application 
Groups, including traffic monitoring and control, on-line or off-line data mining, public data 
query and visualization tools, etc. The user-defined service makes the system extensible so 
that the users of the system can take advantage of new services that become available. As 
many application groups require distinct sets of information, the data access and storage are 
designed to be a utility service to aid common data access task (e.g. remote ODBC database 
access), and the storage service allows data that has been accessed to be store locally. 
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Figure 2. P2P sensor grid architecture 
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5. DISTRIBUTED CLUSTERING ALGORITHM 

Data mining for pollution monitoring in sensor networks in urban environment faces several 
challenges. First, the methods of data collection and pre-processing highly rely on the 
complexity of the environment. For example, the distribution and features of pollution data are 
correlated to inter-relationships between the environment, geography, topography, weather 
and climate and the pollution source, which may guide the design of the data mining 
algorithms. Also, the mobility of the sensor nodes increases the complexity of sensor data 
collection and analysis [13, 14]. Second, resource-constrained (power, computation or 
communication), distributed and noisy nature of sensor networks presents challenges for 
storing the historical data in each sensor, even for storing the summary/pattern from the 
historical data [15]. Third, sensor data come in time-ordered streams over network, which 
makes traditional centralized mining techniques inapplicable. As the result, the real-time 
distributed data mining (DDM in short) schemes are significantly demanded in such scenario. 
Considering the pattern recognition application, in this section, we introduce a peer-to-peer 
clustering algorithm as well as the performance analysis. 

5.1 P2P Clustering Algorithm 

To realize the DDM algorithm with the capability to provide the information exchange in P2P 
style, a P2P clustering algorithm is designed to find out the pollution patterns in the urban 
environment according to the sampled air pollutants’ volumes.  

After investigating the clustering algorithm and its results in MoDisNet, we found that, 
because the clusters of the pollutants are not always in nonconvex shapes, the K-means 
algorithm doesn’t apply well in such a scenario. Hence in this paper, we design a hierarchical 
clustering algorithm based on DBSCAN in [16]. In comparison with the algorithm in [16], our 
algorithm has the following characteristics: 

1. Nodes only require local synchronization at any time, which is better suited to a 
dynamic environment. 

2. Nodes only need to communicate with their immediate neighbors, which reduces the 
communication complex. 

3. Data are inherently distributed in all the nodes, which makes the algorithm be widely 
used in large, complex systems. 

The algorithm runs in each SSN (MSN only takes in charge of collecting data and sending 
data to a closest SSN). In order to describe this algorithm, we give some definitions first 
(suppose the total numbers of SSN is n (n > 0)). 

• SSNi: a SSN node with the identity i (i = 0, …, n-1); 
• Si: an Information Exchange Node Set (IENS) of SSNi, which is a set of some of the 

SSNs that can exchange information with SSNi; 
• CS: candidate cluster centre set. Each element in CS is a cluster centre;  
• Cl

i,j: the cluster center of jth (j ≥ 0) cluster that is computed in SSNi in lth recursion (l ≥ 
0), Cl

i,j∈CS; 
• Numi,j: the number of members (data points) belongs to jth cluster in SSNi; 
• E(X, Y): the Euclidian distance of data X and Y; 
• D: a pre-defined distance threshold; 
• δ: a pre-defined offset threshold. 
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The algorithm proceeds as follows. 
1. Generates Si and local data set. Node SSNi receives data from MSNs as local data and 

chooses a certain number of SSNs as Si in term of a random algorithm (the detail of the 
random algorithm is beyond the scope of this article).  

2. Generates CS. This process is described by the following pseudo code: 
 
SSNi chooses a data item j from its local data set into CS as C0

i,j; 
for each other data item k in the local data set of SSNi 

for each data item m ∈ CS 
if E(k, m)>D 

put k into CS as C0
i,k; 

 

3. Distributes data. For each candidate cluster centre C0
i,j∈CS and a data item Y, if E(C0

i,j, 
Y) < D, then distribute Y into the cluster. Thus each local cluster of SSNi can be 
described as (C0

i,j, Numi,j) 
4. Updates CS. Node SSNi exchanges local data description with all the nodes in Si. After 

SSNi receives all the data descriptions it wants, it checks to see if two cluster centres 
C0

i,j, C
0

i,k satisfy E(C0
i,j, C

0
i,k) < 2D, then it combines these two clusters and updates the 

cluster centre as C1
i,j. 

5. Compares C0
i,j and C1

i,j. Computes the offset between C1
i,j and C0

i,j. If the offset ≤ δ, 
then the algorithm finishes; otherwise SSNi replaces C0

i,j with C1
i,j, and go to step 3. 

5.2 Clustering Accuracy Analysis 

The evaluation of the accuracy of the algorithm aims to investigate in what degree our P2P 
clustering algorithm can assign the data items into the correct clusters in comparison with the 
centralized algorithm. To do so, we design an experimental environment for data exchange 
and algorithm execution. The network topology of the simulation is shown in Figure 3. We 
use 18 sensor nodes, including 12 SSN nodes from node 0 to node 11 and 6 MSN nodes from 
node 12 to node 17. Data are sampled at each MSN and sent to a nearest SSN. The air 
pollution data we use is consisted of the volumes of four pollutants NO, NO2, SO2, and O3 
sampled at 1-minute intervals in urban environment from 8:00 to 17:59 within a day collected 
from 6 MSNs (as described in Section 3.1). Then, the total number of data items in the dataset 
is 3600. Data can be sent and received in bi-directions along the edges. 

The comparison of the average clustering accuracy of the centralized and distributed 
clustering algorithms is shown in Table 1. For the centralized clustering algorithm, we 
suppose node 8 be the sink (central point for data processing), which means every other MSN 
sends the data to node 8. And the classic DBSCAN algorithm is running in node 8 for 
centralized clustering. For the accuracy measurement, let iX  denote the dataset at node i. Let 

)(xLi
km

 and )(xLi  denote the labels (cluster membership) of sample x ( iXx ∈ ) at node i under 

centralized DBSCAN algorithm and our distributed clustering algorithm respectively. We 
define the Average Percentage Membership Match (APMM) as 

∑
=

×=∈=
n

i
i

i
km

ii

X

xLxLXx

n
APMM

1

%100
||

|)}()(:{|1     (1) 

Where n is the total number of SSNs. 
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For the distributed clustering algorithm, we vary the number of nodes in the Information 
Exchange Node Set (IENS) of each SSN from 1 to 10. Let D = 10 and δ = 1. Data are 
randomly assigned to each SSN. Table 1 shows the APMM results. 
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Figure 3. The network topology of the simulation. 

Table 1. Centralized Clustering vs. Distributed Clustering (APMM results) 

IENS 1 2 3 4 5 6 7 8 9 10 
APMM 86.3% 91.2% 92.67% 93.46 93.55% 93.74% 93.93% 94.23% 94.59% 94.97% 

 
From Table 1 we can see that, when the number of nodes in IENS is no less than 2, in 

other words, when each SSN exchanges data with at least two other SSNs, the APMM exceeds 
91%. When the number of nodes in IENS is no less than 4, the APMM exceeds 93%. The 
results are achieved under the condition of assigning the data to each SSN randomly. In 
reality, if the patterns of the dataset are various in different locations, the APMM may be lower 
than the results in Table 1. In such situations, a good scheme of how to choose the nodes to 
construct the IENS would be very important. 

6. EXPERIMENTAL ANALYSIS OF PATTERN 
RECOGNITION 

6.1 Clustering Accuracy Analysis 

The pollution hotspots identification uses the air pollution data to find out the distribution of 
some key pollution locations within the research area. Our former work in Discovery Net can 
only classify the pollution data into several pollution levels, such as high or low, but can’t tell 
us the distribution of different pollutants in different locations and their contributions to the 
pollution levels. To improve the data analysis capability, in this data analysis experiment, we 
use the distributed clustering algorithm to cluster the pollutants into groups which can 
recognize different pollution patterns. From the experimental results of Discovery Net, we 
pickup all the high pollution level locations in the research area at 15:30 and 17:00 
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respectively to check the contribution of different pollutants (NO, NO2, SO2 and Ozone) to the 
pollution levels. The results are shown in Figure 4. 

In this figure, different clusters/patterns correspond to different colors, which reveal the 
relationship between the combination and volumes of different pollutants. According to the 
clustering result, we use red color to denote the pattern of high volume of NO2 and Ozone 
whilst low volume of NO; blue color features the pattern of high volume of SO2 and Ozone; 
yellow color only contains high volume of SO2. From the figures we can see, at 15:30 the 
hotspots are located at the schools (which are highlighted by circles and almost all featured by 
high volume of NO2 and Ozone) and the gas work (which is highlighted by square and 
featured by high volume of SO2). At 17:00, the hospitals (highlighted by the ellipses) and the 
gas work all contribute to the pollutant of SO2.  

 

 
15:30 

 
17:00 

Figure 4. Pollution hotspots identification. 

Another kind of hotspot located on the main roads. However, they present different 
patterns at different time on different roads. Main road A6-L10 is covered in blue at 15:30 
while red at 17:00. There are two reasons for this circumstance. First, the road transport sector 
is the major source of NOX emissions and the solid fuel and petroleum products are two main 
contributors of SO2. Second, NO2 and Ozone are all formed through a series of the 
photochemical reactions featuring NO, CO, hydrocarbons and PM. Generating NO2 and 
Ozone needs to take a period of time. This is why the density of NO2 is always high on the 
main road whereas Ozone at 17:00 is higher than that at 15:30. Another interesting fact is that, 
at 17:00 main roads A6-L10 and M1- K10 show different pollution patterns. From the figure 
we can see, the pollution pattern on M1-K10 is very similar to the patterns at the gas work and 
hospital areas, but not similar to the pattern on the other main road. We investigated this area 
and found that, a brook flows along this area in the near east and a factory area locates on the 
opposite side of the brook which is beyond the scope of this map. This can explain why the 
pollution patterns are different on these two main roads. 

6.2 Pollution Clouds Dispersion Analysis 

In this experiment, we investigate the dispersion of different pollution clouds to see their 
movements and changes. We pick up the pollutants of NOX (NO+ NO2) and SO2 respectively 
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and calculate the pollution clouds of them at the time points of 17:15, 17:30 and 17:45. The 
results are shown in Figure 5(a) and (b). 

According to the environmental reports of the UK, it is always the worst pollution 
distribution time period within a day after 17:00. The road transport sector contributes more 
than 50% to the total emission of NOX, especially in urban areas. At the meantime, the 
factories are another emission source of the nitride pollutants. Besides the major source of SO2 
generated by the solid fuel and the petroleum products from the transport emission, some other 
locations such as the hospitals contribute some kind of pollutants, including the sulphide and 
nitride. These features are well illustrated by Figure 4.  

In Figure 5(a), the main road A6-L10 and its circumjacent areas are severely covered by 
high volume of NOX. The same situation appears in the area from A1 to N2 which includes a 
gas work (between D2 and E1), side roads (A1 to J2), factories and parking lots (K1 to L2). 
And we can notice that the dispersion of the NOX clouds fades as the time goes by, especially 
around the main road area. However, the NOX clouds will stay for a long time in A1 to N2 
area. 

The dispersion of SO2 cloud in Figure 5(b), however, shows different feature. The cloud 
mainly covers the main roads, as well as two hospitals (around B5 and K4). In comparison 
with the result at 17:15, the SO2 cloud blooms at 17:30, which lays almost over all the two 
main roads and hospitals. However, it fades quickly at 17:45 and uncovers a lot of areas, 
especially the main road M1-K10 and hospital K4. This status may due to the different 
environmental conditions in this area (the dispersion of SO2 depends on a lot of factors such as 
the temperature, wind direction, humidity and air pressure, etc.). Besides, it also can be 
attributed to the existence of the brook in the near east – SO2 can be absorbed into water to 
form sulphurous acid very easily, which decreases the volume of SO2 in the air whereas 
increases the pollution of the water. 
 

17:15 

 

17:30 

 
(a) NOX (NO+ NO2) 

17:45 

 

  
(b) SO2 

 

Figure 5. Pollution clouds dispersion of NOX and SO2. 
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7. SUMMARY AND CONCLUSIONS 

In this paper, we introduce the network framework and sensor unit design for an air pollution 
monitoring system. Based on the discussion of real-time sensor grid challenge, we present a 
hierarchical sensor grid architecture, which is featured by the four-layer structure and can 
provide a platform for different wireless access protocols. The experiments of air pollution 
analysis based on distributed P2P clustering algorithm, which investigates the distribution of 
pollution hotspots and the dispersion of pollution clouds. The experimental results are useful 
for the government and local authorities to reduce the impact of road traffic on the 
environment and individuals.  

We are currently extending the application case studies to monitor PM10 and finer 
detection (e.g. PM2.5). As addressing global warming becomes more important, there are 
increasing requirements for greenhouse gas emission monitoring and reduction. Information 
on greenhouse gases is therefore also needed for long term monitoring purposes with similar 
linkages to traffic and weather data to understand the contribution of traffic to environmental 
conditions. 
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