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ABSTRACT

This paper presents an efficient collision detection algorithm designed to support assembly and
maintenance simulation of complex assemblies. This approach exploits the surface knowledge, available
from CAD models, to determine intersecting surfaces. It proposes a novel combination of Overlapping
Axis-Aligned Bounding Box (OAABB) and R-tree structures to gain considerable performance
improvements. This paper also shows an efficient traversal algorithm based on the R-tree structure of
Axis-Aligned Bounding Boxes to determine intersecting objects and intersecting surfaces between three-
dimensional components, for supporting the recognition of constraints in assembly and disassembly
operations in virtual prototyping environments.

The implementation of the proposed collision detection algorithm, known as S-CD (Surface Collision
Detection) toolkit, performs well against moderately complex industrial case studies. Current
experimental results show that S-CD is effective in determining intersecting surfaces at interactive rates
with moderately complex real case studies.
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1. INTRODUCTION

An assembly constraint-based approach is used for simulating physical realism and
interactivity for assembly and disassembly operations in virtual prototyping environments
[Murray and Fernando 2003]. It relies on a set of geometric constraint relationships that are
automatically established or removed as the user manipulates the assembly components. The
functional modules used in this approach are collision detection, constraint recognition,
constraint satisfaction, constraint management and constraint motion. The automatic constraint
recognition process uses collision detection services for various purposes such as (a) to
provide collision response to stop object penetration, (b) to identify colliding surfaces to
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support the recognition of assembly relationshigsveen the assembly parts, (c) to simulate
constrained motion, (e) to simulate kinematics ootind sliding, thus assisting users to carry
out precise object manipulations.

Real-time recognition of assembly constraints defeam efficient surface-based collision
detection algorithm. Virtual prototyping modelsngeated by Computer-Aided Design (CAD)
systems, are surface-based. The recognition oftrednts for assembly and disassembly
operations relies on the knowledge of the intemsgcsurfaces. However, current collision
detection algorithms for virtual environments aesdéd on polygonal models and determine
intersecting polygons, disregarding all the surfaleda of the CAD model. While these
toolkits are useful for supporting physically-basschulation of rigid objects, they do not
support the extra functionalities necessary forpsujing assembly simulation, based on an
assembly constraint-based approach. The awarelesktbhe colliding surfaces is valuable
information to allow the automatic recognition @sambly constraints between surfaces.

This paper presents the S-CD (Surface Collisiore€t&tn) toolkit for collision detection
in the narrow phase. It determines intersectingfases between three-dimensional
components, for supporting the recognition of caists in assembly and disassembly
operations in virtual prototyping environments.

The S-CD toolkit uses Axis-Aligned Bounding BoxesABBs), the Overlapping Axis-
Aligned Bounding Box (OAABB) concept and a hieraraif R-trees to improve performance
of the collision detection process.

The OAABB volume was introduced in [Figueiredo £1893] for improving performance
in the determination of intersecting polygons. $mét al [1995] use the same concept but
with an octree data structure for finding intergegipolygons. This paper presents new work
that extends the OAABB concept for surfaces. Thisgy also shows the novel combination of
OAABB at three different levels: objects, surfacewd triangles. The OAABB is used to
reduce: (i) the number of axis-aligned bounding dsointersections and (ii) the number of
bounding volume update operations.

This paper also presents new work using R-tregeeémarrow phase for speeding up the
collision detection problem. Held et al [1995] implented a collision detection approach to
find collisions of only one moving object in a vd environment. They use a binary R-tree to
represent the static scenario. The approach pegb&ntlso novel work with R-trees. It allows
any number of moving objects. A novel structurdascribed where each object is represented
by an R-tree data structure at two-levels. Fist,efach object, an R-tree of surfaces is built,
grouping neighboring surfaces. Secondly, the sdtriahgles that represent each surface is
organized in another R-tree structure. The detallesign of an efficient R-tree structure for
the collision detection is presented. It is alssadiéed a novel traversal algorithm for collision
detection that takes advantage of this 3D geonsttugture.

Together, the OAABB and the R-tree structures, kzathe effective reduction of the
number of intersection operations, hence providingsiderable performance gains. Results
show that the proposed collision detection achieiesractive rates in real industrial
applications as desired.

The paper is organized as follows. Section 2 pteserlated collision detection
approaches for the determination of intersectingngies between two objects. Section 3
presents the design choices and section 4 the mnepliation of the collision detection
algorithm to compute intersecting surfaces betwtere-dimensional objects. Section 5
presents the evaluation results. Conclusions agepted in section 6.
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2. BACKGROUND

Bounding volume hierarchies (BVH) are frequenthgdiso organize the triangles of an object
to improve the performance of the collision detatfprocess, by reducing the number of pairs
of bounding volume tests. The classic scheme fearanchical collision detection is a
simultaneous recursive traversal of two boundinigwmes trees A and B.

Several types of bounding volumes are availableurBling spheres can be used
[Bradshaw and Sullivan 2004]. SOLID [Van Der BergE®97] and OPCODE [Terdiman
2001] uses axis-aligned bounding boxes (AABB). RBHGottschalk et al 1996], V-
COLLIDE [Hudson et al 1997], PQP [Larsen et al 1]98#8COLLIDE [Gregory et al 1999],
use oriented bounding boxes (OBB). QuickCD [Kloskiwet al 1998] and Dop-Tree
[Zachmann 1998] usdsdops; and Swift++ [Ehmann and Lin 2001] uses carvalls (CH).
There are also hybrid approaches like QUOSPOs B99]ithat use a combination of OBBs
and k-dops.

It is very difficult to compare different approashgince performance also depends on the
shapes of the models, type of contact, size ofithdels and others.

Bounding spheres main advantage is that they aterfto intersect and update. The main
disadvantage is that they do not approximate objigitly.

The main advantage of SOLID, OPCODE and Box-Tre¢héd AABBs are faster to
intersect. When using AABBs, only six comparisoms eequired to find out if two axis-
aligned bounding boxes are overlapping. It is plsssible to say that two AABBs are disjoint,
in the best case situation, with only one comparigtnother advantage of using AABBs is
that it is simple to update these volumes as aecblbptates and translates.

RAPID approximates 3D objects with hierarchies némted bounding boxes (OBBs). An
OBB is a rectangular bounding box with an arbitranjentation so that it encloses the
underlying geometry more tightly. The representatid an oriented bounding box encodes
position, widths and orientatiolhe main advantage of RAPID is that OBBs are better
approximations to triangles reducing effectivelg ttumber of intersecting operations.

V-COLLIDE solves the broad-phase of the collisiogtettion using a sweep-and-prune
operation to find pairs of objects potentially iontact. It uses RAPID to find in the narrow
phase which pairs of objects intersect.

PQP solves the narrow phase and is also basedeoRARID library. It uses oriented
bounding boxes to find intersecting objects. PQ#® abmputes the distance between closest
pair of points using swept spheres.

H-COLLIDE is a framework to find collisions for hép interactions. It uses a hybrid
hierarchy of uniform grids and trees of OBBs to leikpframe-to-frame coherence. It was
specialized to find collisions between a point grelgainst 3D objects.

The QuickCD and Dop-Tree implementations buildexrdnichy tree ofliscrete orientation
polytopes Discrete orientation polytopes, &rdops, are convex bounding volumes whose
faces are determined by halfspaces whose outwardat® come from a small fixed set lof
orientations. The main advantage of using discogtentation polytopes is thatdops are
better approximations to the underlying geometgnthABBs with the advantage of its low
cost compared to OBBs. A major drawback of Quick@that allows only one moving
object.

Swift++ builds a hierarchy of convex hulls and mstection is tested using a modified Lin-
Canny [Lin and Canny 1991] closest feature algarith
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He [1999] uses a hybrid approach that combines C&3teisk-dops called QUOSPOs. This
approach provides a tight approximation of theiodgmodel at each level.

Since collision detection is a very demanding taskearchers are also working in using
existing graphics accelerated boards (GPU) [Bacid ¥ong 2003, Knott and Pai 2003,
Govindaraju et al 2003, Yoon et al 2004] or dedidahardware [Raabe et al 2006] to
accelerate collision detection by hardware.

Algorithms using graphics hardware use depth aedcfitbuffer techniques to determine
collisions between convex [Baciu and Wong 2003] aond-convex [Knott and Pai 2003]
objects. CULLIDE [Govindaraju et al 2003] is alsa5®U based algorithm that uses image-
space occlusion queries and OBBs in a hybrid agbréa determine intersections between
general models with thousands of polygons. MRC [yebal 2004] deals with large models
composed of dozens of millions of polygons by usthg representation of a clustered
hierarchy of progressive meshes (CHPM) as a LORahi@ty for a conservative errorbound
collision and as a BVH for a GPU-based collisiofling algorithm.

These GPU-based algorithms are applicable to bgith and deformable models since all
the computations are made in the image-space.stalldetection methods using GPUs have
the disadvantage that they compete with the rendeprocess, slowing down the overall
frame rate. Furthermore, some of these approactepuae image based reducing their
accuracy due to the discrete geometry representatio

Collision detection with dedicated hardware ac@len techniques fok-dops bounding
volumes has been experimented [Raabe et al 2006AHC and a FPGA collision detection
single-chip was developed with two main stages,fon&raversing simultaneously a hierarchy
of k-dops and one for intersecting triangles. The AShd the FPGA implementations are up
to 1000 and four times, respectively, faster tHa doftware intersection tests on a standard
CPU.

3. DESIGN CHOICES

In this research, a 3D object is defined by a ctibe of surfaces in the three-dimensional
space. Each surface is tessellated individuallyrapdesented as a collection of triangles.

The time to determine collisions between two olgjerting BVH depends on: (1) the cost
of intersecting and updating bounding volumes;tl&) cost of intersecting triangles; and (3)
on the number of such operations.

3.1. Typeof Bounding Volume

The choice of bounding volume type influences pennce of the collision detection
process.

The collision detection toolkit presented in thaéppr uses axis aligned bounding boxes for
four reasons: i) they are fast to intersect; i lsss memory; iii) hierarchies of AABBs are
faster to build; and iv) faster to update, when parad to oriented bounding boxes and
discrete orientation polytopes.

Axis-aligned bounding box intersection requires vimrst-case six comparisons and
theoretically it is three times faster than 18-dopéile the worst-case for intersecting two
OBBs requires the execution of 252 arithmetic opena.
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Axis-aligned bounding volumes use less memory. ABR is represented with only six
scalars for representing its extents. An orientednding box is represented with fifteen
scalars. Nine scalars to store a transformationmixnahree scalars for position and three for
storing its extent. An 18-dop is represented witfhieen scalars to represent the volume
extent in each one of the nine directions. OBBs a8diops require 2.5 and 3 times more
storage than AABBS, respectively.

In some applications it is also necessary to inaed delete 3D models interactively,
without expending too much time re-computing théadstructures. Van Der Bergen [1997]
found that building an OBB tree takes three timewgartime than building an AABB tree.
Furthermore, Van Der Bergen showed that updating/&BB tree as a model is deformed is
significantly faster than in an OBB tree. Henceoaifding volume hierarchy of axis-aligned
bounding boxes also offers the flexibility to deyelan efficient collision detection algorithm
for models that can deform with time.

3.2 Bounding Volume Update

In general, each one of the three-dimensional nsoofed scene graph is represented in its own
local coordinate system and positioned in the woddrdinate system using a transformation
matrix. The bounding volume structure of an objétat is created for improving the
performance of the collision detection processse defined in the object’s local coordinate
system. The geometry and the bounding volume sireicf each object are defined in its own
local coordinate system. For two objeétsand B, two transformation matriced/,._» and
Mwc g, are defined that convert the local representatibthe two objects into the world
coordinate system.

When two objects are tested for intersection, tikston detection process first checks the
bounding volumes for overlapping. However, for AABBndk-dops, the bounding volumes
of each object are aligned in different object'sdb coordinate systems. To test if two
bounding volumes are overlapping, these volumeg brusepresented in the same coordinate
system. The operation of transforming the boundiolyimes to the same coordinate system,
for performing the overlapping test, is calledainding volume update

Two cases can be considered in the choice of a @onumordinate system for performing
bounding box intersection. The bounding volumeslgéctsA andB can be updated into the
world coordinate system, e.g. ti&V/,(A) and BV(B) are transformed intd@V,(A) and
BVi(B); or the bounding volumeB\Vi(B) of objectB, are updated into the coordinate system
of objectA, BVA(B). The second approach is better since it perforais df the bounding
volume update operations. Furthermore, the secqmioach uses the original bounding
volume of objectA, which is tighter to the underlying geometry them updated bounding
volume.

S-CD updates the bounding volumes of obigaito the coordinate system of objéct

The axis-aligned bounding volumes of objB¢tare originally aligned with its own local
coordinate system. When the AABBs of objBcire updated to the local coordinate of object
A, they are not aligned with the coordinate systéwmbgectA. Therefore, a new AABB, which
is aligned with the coordinate system of obj&cheeds to be computed for objéct

One approach for computing the new bounding bdr idetermine theptimal AABB of
the transformed object within the coordinate systdnobjectA, AABB(B). This requires a
brute force approach that will transform all thederlying geometric primitives ds, into the
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coordinate system &, by applying a transformation mattfi#, _s. The newAABBy(B) is then
built by computing the new minimal and maximal \edun thex, y andz axes, defining the
new extents of the bounding volume. This approahdmajor drawback. It takes too much
time for interactivity for a large number of undenlg primitives. However, the advantage of
this approach is that the resulting bounding volusnan optimal AABB that better encloses
the underlying geometries.

The second approach is to determirmoaer AABR(B), which is an approximation of the
optimal axis-aligned bounding box Bfthat can be determined with the brute force apgroa
Initially, the eight vertices of the transformed BB of objectB are computed into the
coordinate system of. The extents of the cover AABB are determined ldihg the
minimal and maximal values of these transformedhteigrtices. The cover AABB volume is
greater than that of the brute force AABB approdxh,is faster to compute.

In the implementation of S-CD, both approaches wwed. The axis-aligned bounding
boxes in the inner nodes of the bounding volumeahidy are updated by determining a cover
axis-aligned bounding box. For the leaf nodes & Hounding volume hierarchy, a new
optimal axis-aligned bounding box for the transfethtriangles is computed, since it is faster
to do so. This optimal axis-aligned bounding boxasgnd by transforming the triangle and
computing a new AABB from the three vertices of thangle. A cover AABB transforms the
eight vertices of an AABB and computes a new boogdiolume, taking more time.

3.3R-Treefor the Collision Detection Problem

It was decided to use R-trees [Guttman 1984] tddhihie bounding volume hierarchies and
organize the 3D geometry of objects for improvihg performance of the collision detection
process.

Some important properties of the R-tree can be nindd here that contributed to its
choice: 1) At any level of the tree, each primitiseassociated with only a single node; 2) In
an R-tree all leaf nodes appear on the same I8ydlhe depth of a R-tree storingorimitives
is log,, n, mis the minimum number of children of a node; 4gTotal number of primitives

stored in a R-tree equals the number of originahipives.

For the implementation of the collision detectidgagithm each object is represented by
an R-tree data structure in its own local coordiratstem (Figure 1-a). A hierarchical tree is
built, grouping neighboring surfaces. The leaf rodEthe R-tree point to the geometry of the
surfaces that define the object. For two objetishécks for collisions between surfaces which
are in the neighborhood, eliminating comparisorth wWiose which are far away.

The same idea is applied for surfaces. Surfacaes fiathree-dimensional model can be
complex with a large number of triangles. An R-team be used to organize the triangles
spatially and hence to quickly reject trianglestthannot intersect (Figure 1-b). In this
approach, an R-tree is computed for each surfaceiping neighboring triangles to eliminate
comparisons with those that are faraway from tlea af intersection.
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Figure 1. (a) Each object of the scene graph iesgmted by its own R-tree data structure repriegent
its surfaces. (b) Each surface of the 3D modekis eepresented by its own R-tree data structure.

3.4 Overlapping Axis-Aligned Bounding Box

The proposed algorithm is based in the use ofGwerlapping Axis-Aligned Bounding Box
OAABBA, B), of two geometric primitives, to improve the perhance of the collision
detection process. Figueiredo et al [1993] intr@duthis concept for improving performance
in the determination of intersecting polygons. $net al [1995] also use the same concept
together with an octree data structure for findinggrsecting polygons. S-TCD extends the
OAABB concept for surfaces.

The OAABB is defined as the volume that is comnmiwo axis-aligned bounding boxes
of A andB, AABB(A)andAABB(B) aligned with the coordinate axes.

The OAABB is used to filter out primitives that ¢aot intersect. Consider the 2D example
of Figure 2. For two polygons in 2D, the collisialetection process wants to determine
intersecting edges. Axis-aligned bounding voluntesehch edge are used to filter out pairs of
edges that cannot intersect.
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OAABB(A,B)

Figure 2. The Overlapping Axis-Aligned Bounding B&XABB) concept shown in 2D.

Two edges,E; and E; from polygonA andB respectively, intersect if they also intersect

the overlapping axis-aligned bounding box of the t@olygons. In this way, edges whose
AABB do not intersect th©AABB(A,B are filtered out. Therefore, the first step afadlision
detection algorithm based in the OAABB concepbiseist every edge & andB against the
overlapping bounding volume. The candidate edgast dlierlap OAABB are passed to the
next stage of the collision detection pipeline.

This approach is more effective in those environmerhere most of the intersections are
superficial and the OAABB is small compared to abjelf the AABB of one of the objects is
about the same size of the OAABB, this approacts ¢ filter out many edges.

The use of the overlapping bounding volume alsaiced the number of bounding volume
update operations.

Initially, the overlapping bounding volume is defithin the coordinate system Af To
determine the edges éfthat intersect the OAABB, it is not necessary xeaite any update
operation. To determine the edgeBdhat intersect the OAABB only one update operaison
required, independent of the number of primitivéls B> The OAABB, defined in the
coordinate system & is transformed into the coordinate systerB.of

4. SCDTOOLKITIMPLEMENTATION

This section presents the algorithm for determinimigrsecting surfaces between a pair of 3D
objects. This paper presents the latest developmisbme of the initial ideas presented
earlier in [Figueiredo and Fernando 2003] and [Eigedo and Fernando 2004] and it is the
result of the gathered experience obtained withirelustrial case studies. It also describes a
novel implementation of the traversal algorithm é¢otlision detection that takes advantage of
the R-Trees structure.

The algorithm to find intersecting surfaces is préed in Figure 3.
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The collision detection algorithm, described in fblbowing paragraphs, takes advantage
of the scene graph structure built from 3D data efmdn this approach, each 3D model is
defined as a collection of surfaces. Each surfatessellated individually and represented as a
collection of triangles.

The collision detection process first checks ifemt$ A and B are disjoint (line 1-2 in
Figure 3). The bounding volumes of each objectaaiginally computed in the object’s local
coordinate systemAABB\(A) and AABB;(B), respectively. The transformation matrix that
converts the local representation of objacinto the local coordinate system of obj&is
defined as M_a. The bounding volume of objeét is updated to the coordinate system of
objectB, by computing the cover axis-aligned bounding b&&BB;(A). Once the bounding
volumes of each object are in the same coordinateim they can be checked for overlap. If
this pair of AABBs does not overlap, then the cepending two objects are not intersecting
and the process ends. If they overlap, then théesysietermines the Overlapping Axis-
Aligned Bounding BoxQAABRs(A,B) of the two objects (line 3 in Figure 3), whichdisfined
in the local coordinate system of obj&ct

S-CD_Col l'ide (A B)

1: AABBg( A) =Ms_a*AABBA( A) / / updat e Cover BV

2:if (AABBg(A) do not intersect AABBg(B)) return

3: Det erm ne QAABBg( A, B)

4: DescendRt ree( SBV(B), OAABBg( A, B))

5:for each surface from SBV(B) intersecting OAABBg( A, B)

6: DescendRtree(TBV(B), OAABBg(A B))

7: for each triangle T(B) from TBV(B) intersecti ng OAABBg( A, B)
8: Update triangle T(B) geonetry into coord. systemof A
9: Conmput e the new optimal AABBA(T(B)) for T(B)

10: DescendRiree(SBV(A), QAABBA(A B), AABBA(T(B)))

11: for each surface from SBV(A)

12: DescendRtree( TBV(A), AABBA(T(B)))

13: Intersect T(A) and T(B)

Figure 3. Pseudo-code for finding intersecting aesé.

The next step of the collision detection procesterdgines the surfaces from objest
intersecting the OAABB (line 4 of Figure 3). As niened before, the surfaces of objBcare
organized in a Surface Bounding Volume R-tree deiBV(B) The surfaces d are stored at
the leaf nodes of th8BV(B)R-tree. By descending this R-tree, the surfacesbiEctB that do
not intersect th&®AABR;(A,B) are filtered out. Only the surfaces at the leafawintesecting
the OAABR;(A,B) are candidate for collision.

Each surface of obje® is tessellated and represented by a collectiotriafigles. The
triangles of each surfaces are also representé#d own Triangle Bounding Volume R-tree
data structure, organizing its triangles into segions. The next step of the collision detection
process descends to the Triangle Bounding Voluntiee®¥FBV(B)of each candidate surface
from objectB (lines 5 and 6 of Figure 3). This stage determitestriangles of objedB
intersecting the OAABB.

Using the OAABB, the collision detection managdtefs out surfaces and triangles of
objectB that cannot intersect.

The triangles of objecB intersecting the OAABB are transformed into theorclinate
system of objecA (line 8). At this point is also determined theaigle’s optimal bounding
volume (line 9). The new optimal AABB is built bpmputing the new minimal and maximal
values in thex, y andz axes, defining the new extents of the boundingiva. This stage

80



S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTQYPING

computes the optimal bounding volume, since itastdr than computing the cover AABB.
Furthermore, the optimal AABB encloses the triariggéter than a cover AABB.

Then, the collision detection process descendsSthéace Bounding Volum&BV(A)R-
tree for objeciA (line 10 of Figure 3). In this step it finds surés of objech intersecting the
OAABB and the triangle’s optimalABB,(T(B)) of object B.

To determine if a pair of surfaces intersectss inécessary to find a pair of intersecting
triangles. Then, the collision detection processcdads to the Triangle Bounding Volume R-
tree TBV(A)of each candidate surface from object A (lines Ad 82 of Figure 3). This stage
determines the triangles of objektwho’s bounding volumes intersect the triangle’siropl
AABB of object B.

The final step is to proceed with the intersectietween pairs of candidate triangles (line
13) implemented with Guige and Devillers [2003]aalthm. If there is a pair of intersecting
triangles then the corresponding surfaces is ietirsy.

5. EXPERIMENTAL RESULTS

This section presents the performance evaluatieultse of the novel collision detection
algorithm described in this paper.

Three examples that represent user operationséordy the components of the described
models are used. Case study 1 (Figure 4-a) is $fsensbly process to build a digger
mechanism from D-cubed Ltd. Case study 2 (Figubg,4rom the Sener Company in Spain,
is the building process of an electronic controk fmm an aircraft engine. Case study 3
(Figure 4-c), from UMIST in Manchester, is the asbl/ of a process plant. These test
scenarios are real case applications from maintEnasimulation in virtual prototyping
environments. For example, case study 2 from SEMBRpany in Spain, is part of a real
product development from the aerospace domain, evi®ENER was responsible for
designing connectors, tubing, wire harnesses, btacklips, and accessories for an aircraft
engine electronic control box. It reflects the reaknario and the working environment,
including the complexity of the model and the realiof the activities. The real working
requirement on which the test case is based ontevdemonstrate to the customer that the
electronic control box from an aircraft engine d@nremoved and replaced from the airframe
in less than 60 minutes following the instructiodefined in the standard maintenance
handbook.

Table 1 shows the complexity of the digger, semat process plant environments. The
most complex case scenario, in terms of numberbgots in the scene, is the sener model
with 25 objects (parts). The sener and processt plave about the same complexity when
related to the number of surfaces and the totalb@urof triangles in the scene. The process
plant has a lower number of objects in the scear the sener model. The digger model has a
lower number of surfaces and triangles. Table & ptesents the total number of intersecting
steps for the assembly operations for each cadg.stu

All the experiments run in an Intel Core 2 Duo T@3RGByte of RAM memory at 2GHz.
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@

Figure 4. Test case scenarios: (a) Digger modgSémer Model and (c) Process plant.

Table 1. Complexity of the models used in test csas@arios

Test Case Scenario Digger | Sener | ProcesBlant
Number of Objects 5 25 8

Total Number Surfaces Scenario 109 1250 1073
Total Number Triangles Scenario 2452 25525 24 415
Number of intersecting steps for the entire assgsibiulation 507 980 233

The collision detection implementation can be agunféd to determine first intersecting
surface, all intersecting surfaces or all the sgeting triangles between three-dimensional
components in a virtual prototyping environmentbl€a2 presents these times. The proposed
collision detection algorithm achieves interactikates in real industrial applications as
desired.

It is also important to compare the performancehi$ algorithm with other collision
detection toolkits. Tables 3 and 4 present the gimietained comparing the implementation
described in this paper, named as S--CD (Surfadisi@a Detection), with PQP, RAPID,
OPCODE and Dop Tree. The times presented werenaotan the determination of the first
intersecting triangle (Table 3) and also for ak tintersecting triangles (Table 4). S-CD is
effective in the determination of intersectionenatctively.

Table 5 presents the time obtained when the owargpaxis-aligned bounding box
(OAABB) approach is not used. This table presehts time to find first, all intersecting
surfaces and all intersecting triangles.

Tables 2 and 5 show there is an improvement iropsidnce by using the overlapping axis
aligned bounding box.

This improvement is explained by table 6. The awisfinding collisions depends on
several factors. The choice of type of boundinguu@ influences the number and the cost of
executing bounding volume intersections. For AABBsIk-dops the cost and the number of
updating bounding volumes also influences perfolmeamable 6 shows an effective reduction
in the number of AABBs tests and update boundinigme operations explaining the better
performance obtained by the OAABBSs.
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Table 2. Collision detection time to find intersagtsurfaces

Digger Sener Process
Time in milliseconds per step to determine: 99 Plant
(i) first intersecting surface per step 0.04 0.15 .090
(ii) all intersecting surfaces 0.25 0.55 0.94
(iii) all intersecting surfaces and all intersegtinangles 0.36 0.72 1.26
Table 3. Time to find first triangle intersection
Time to find first triangle intersection (millisecds) . Process
Digger Sener Plant
PQP 0.42 0.32 0.40
RAPID 0.06 0.10 0.12
OPCODE 0.02 0.08 0.04
Dop Tree 0.77 1.25 1.52
S-CD 0.04 0.15 0.09
Table 4. Time to find all triangle intersections
Time to find all triangle intersections (milliseats) Digger Sener Proced3lant
PQP 1.82 157 4.96
RAPID 1.24 1.18 3.62
Dop Tree 5.81 10.48 17.29
OPCODE 0.90 1.73 2.09
S-CD 0.36 0.72 1.26
Table 5. Collision detection time to find intersagtisurfaces (without using OAABB)
Time in milliseconds per step to determine: Digger Sener Procegslant
(i) first intersecting surface per step 0.09 0.38 .280
(ii) all intersecting surfaces 0.34 1.06 1.75
(|[|) all intersecting surfaces and all intersegtin 0.50 123 206
triangles

Table 6. Average number of operations per steeterthine first intersecting surface

Number of

operations: Digger Sener Proced@lant
Using OAABB Yes No Yes No Yes No
AABBs tests 507 754 2256 3942 1263 2915
AABBs updates 39 202 87 825 102 713

Next, S-CD and other collision detection toolkite avaluated using a benchmarking suite
[Trenkel et al 2007] to compare pairwise statidisimin detection algorithms for rigid objects.
This benchmark generates a number of positionsoardtations for a predefined distance in
close proximity. It does not test performance ofligion detection approaches when
intersections occur. Figure 5 shows that S-CD nmbsractively as desired. It should be
regarded that in this benchmark S-CD does not sisdace knowledge and in this way S-CD
does not use all its features to improve performanc
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Figure 5. (a) The grid scene with 414 720 facesRgsults of the benchmark. The x-axis denotes the
relative distance between the objects, where lilteisize of the object. Distance 0.0 means theat th
objects are almost touching but do not collide. @hbreviations for the libraries are as follows:
do=Dop-Tree, pap=PQP, op=Opcode, s-cd=S-CD.

6. CONCLUSION

This paper presents a novel collision detectionoritiyn for supporting assembly and
maintenance simulations in virtual prototyping e€amiments which is publicly available at
http://w3.ualg.pt/~mfiguei. It determines intersegt surfaces between three dimensional
components at interactive rates.

To improve performance, the collision detection susbe overlapping axis-aligned
bounding box approach (OAABB), axis-aligned bougditoxes (AABBs) and the R-tree
structure. The OAABB approach is used effectivelgether with the two level hierarchy of
R-tree structure to reduce the number of updatesciwecks between bounding volumes,
taking the effective advantage of the low costraélisecting AABBs. It is also described a
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novel traversal algorithm that takes effective adage of the two-level R-tree structure. The
use of OAABBs also allows the significant reductiohthe number of bounding volume
intersections and updates.

The approach presented in this paper was testddindtistrial maintenance scenarios of
moderate complexity that were used to test assemdyations, running in an Intel Core 2
Duo T7300 at 2GHz. The proposed approach deterniriessecting surfaces interactively
and effectively addressed the assembly operatiamied on.

REFERENCES

Baciu G. and Wong S., 2003. Image-based TechniquasHybrid Collision DetectolEEE Trans. On
Visualization and Computer Graphic, 8, pp. 254-271.

Bradshaw G. and O’Sullivan C., 2004. Adaptive medidl aproximation for sphere-tree construction.
ACM Transactions on Graphic23 pp. 1-26.

Ehmann S. and Lin M., 2001. Accurate and fast pnityi queries between polyhedra using convex
surface decompositio@omputer Graphics Forun20, pp. 500-10.

Figueiredo, M. and Fernando, T., 2003. An Unifiedrirework to Solve the Broad and Narrow Phases
of the Collision Detection Problem in Virtual Protpé EnvironmentsProc. of International
Conference on Geometric Modelling and Graphi30-136.

Figueiredo M. and Fernando T., 2004. An Efficieardtel Collision Detection Algorithm for Virtual
Prototype Environment®roc. of the Tenth International Conference on Mlataand Distributed
Systemspp. 249-256.

Figueiredo M. et al, 1993. Precise Object Intecagtiusing Solid Modeling Techniqué.oc. of IFIP
TC 5/WG 5.10 Conference on Modeling in Computer Geppp. 157-176.

Gottschalk S. et al, 1996. Obb-tree: A hierarchitalicture for rapid interference detecti®roc. of
ACM Siggraph'96pp. 171-180.

Govindaraju N. et al, 2003. CULLIDE: Interactive lesibn detection between complex models in large
environments using graphics hardwa®eaphics Hardware 20Q3p. 25-32.

Gregory A. et al, 1999. A Framework for Fast anauate Collision Detection for Haptic Interaction.
Proc. of IEEE Virtual Reality Conferengep. 38-45.

Guige P. and Devillers O., 2003. Fast and Robugngte-Triangle Overlap Test using Orientation
PredicatesJournal of Graphics Tools, &, pp. 25-42.

Guttman A., 1984. R-trees: A dynamic index struetfar spatial searchingroc. of the ACM SIGMOD
International Conference On Management of Data. 47-57.

He T., 1999. Fast collision detection using QUOSRE@s.Proc. of the Symposium on Interactive 3D
graphics pp. 55-62.

Held M. et al, 1995. Evaluation of Collision DetectiMethods for Virtual Reality Fly-ThroughBroc.
Seventh Canadian Conference Computer Geonigtpp. 205-210.

Hudson T. et al, 1997. VCollide: Accelerated CollsiDetection for VRML.Proc. of VRML. pp.117-
123.

Klosowski J. et al, 1998. Efficient Collision Detiect using Bounding Volume Hierarchies of k-DOPs.
IEEE Trans. On Visualization and Computer Graphic&,4op. 21-36.

Knott D. and Pai D., 2003. CInDeR: Collision and Ifeaeznce Detection in Real-time using Graphics
HardwareProc. of Graphics Interface 2008p. 73-80.

Larsen E. et al, 1999. Fast Proximity Queries \@tiept Sphere Volume3echnical report TR99-018
UNC.

85



IADIS International Journal on Computer Science brfdrmation Systems

Lin M. and Canny J., 1991. Efficient algorithms focremental distance computatidBEE Conference
on Robotics and Automatippp. 1008-1014.

Murray N. and Fernando T., 2003. Development of lammersive Assembly and Maintenance
Environment. In Proc. Advanced Research in Virtuad &apid Prototyping, Leiria, Protugal, pp.
341-348.

Raabe A. et al, 2006. Space-efficient FPGA-acceddraollision detection for virtual prototypingroc.
of Design, Automation and Test in Europg, 206-211.

Smith A. et al, 1995. A simple and efficient methHod accurate collision detection among deformable
objects in arbitrary motiorRroc. of the IEEE Virtual Reality Annual Symposijm. 136-145.

Terdiman P, 2001. Memory-optimized bounding-volume hierarchies.
http://www.codecorner.com/Opcode.pdf.

Van Der Bergen G., 1997. Efficient Collision Detentiof Complex Deformable Models using AABB
Trees.Journal of Graphics Toolg, 4, pp. 1-13.

Trenkel S. et al, 2007. A Benchmarking Suite forti§t&ollision Detection AlgorithmsJournal of
WSCG - Proceedings of the 15th International Comfegein Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG72a5, pp. 105-110.

Yoon S. et al, 2004. Fast Collision Detection betwbtassive Models using Dynamic Simplification.
Eurographics Symposium on Geometry Procesgipgl136-146.

Zachmann G, 1998. Rapid Collision Detection by Dyradhy Aligned DOP-Treesln Proc. of IEEE
Virtual Reality Annual International Symposium; MBA98, pp. 90-97.

86



