
IADIS International Journal on Computer Science and Information Systems
Vol. 5, No.1, pp. 72-86
ISSN: 1646-3692

72

S-CD: SURFACE COLLISION DETECTION
TOOLKIT FOR VIRTUAL PROTOTYPING

Mauro Figueiredo. Universidade do Algarve.

ABSTRACT

This paper presents an efficient collision detection algorithm designed to support assembly and
maintenance simulation of complex assemblies. This approach exploits the surface knowledge, available
from CAD models, to determine intersecting surfaces. It proposes a novel combination of Overlapping
Axis-Aligned Bounding Box (OAABB) and R-tree structures to gain considerable performance
improvements. This paper also shows an efficient traversal algorithm based on the R-tree structure of
Axis-Aligned Bounding Boxes to determine intersecting objects and intersecting surfaces between three-
dimensional components, for supporting the recognition of constraints in assembly and disassembly
operations in virtual prototyping environments.
The implementation of the proposed collision detection algorithm, known as S-CD (Surface Collision
Detection) toolkit, performs well against moderately complex industrial case studies. Current
experimental results show that S-CD is effective in determining intersecting surfaces at interactive rates
with moderately complex real case studies.

KEYWORDS

Collision detection, virtual prototyping, bounding volume hierarchies.

1. INTRODUCTION

An assembly constraint-based approach is used for simulating physical realism and
interactivity for assembly and disassembly operations in virtual prototyping environments
[Murray and Fernando 2003]. It relies on a set of geometric constraint relationships that are
automatically established or removed as the user manipulates the assembly components. The
functional modules used in this approach are collision detection, constraint recognition,
constraint satisfaction, constraint management and constraint motion. The automatic constraint
recognition process uses collision detection services for various purposes such as (a) to
provide collision response to stop object penetration, (b) to identify colliding surfaces to

S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTOTYPING

73

support the recognition of assembly relationships between the assembly parts, (c) to simulate
constrained motion, (e) to simulate kinematics motion and sliding, thus assisting users to carry
out precise object manipulations.

Real-time recognition of assembly constraints demands an efficient surface-based collision
detection algorithm. Virtual prototyping models, generated by Computer-Aided Design (CAD)
systems, are surface-based. The recognition of constraints for assembly and disassembly
operations relies on the knowledge of the intersecting surfaces. However, current collision
detection algorithms for virtual environments are based on polygonal models and determine
intersecting polygons, disregarding all the surface data of the CAD model. While these
toolkits are useful for supporting physically-based simulation of rigid objects, they do not
support the extra functionalities necessary for supporting assembly simulation, based on an
assembly constraint-based approach. The awareness of all the colliding surfaces is valuable
information to allow the automatic recognition of assembly constraints between surfaces.

This paper presents the S-CD (Surface Collision Detection) toolkit for collision detection
in the narrow phase. It determines intersecting surfaces between three-dimensional
components, for supporting the recognition of constraints in assembly and disassembly
operations in virtual prototyping environments.

The S-CD toolkit uses Axis-Aligned Bounding Boxes (AABBs), the Overlapping Axis-
Aligned Bounding Box (OAABB) concept and a hierarchy of R-trees to improve performance
of the collision detection process.

The OAABB volume was introduced in [Figueiredo et al 1993] for improving performance
in the determination of intersecting polygons. Smith et al [1995] use the same concept but
with an octree data structure for finding intersecting polygons. This paper presents new work
that extends the OAABB concept for surfaces. This paper also shows the novel combination of
OAABB at three different levels: objects, surfaces and triangles. The OAABB is used to
reduce: (i) the number of axis-aligned bounding boxes intersections and (ii) the number of
bounding volume update operations.

This paper also presents new work using R-trees in the narrow phase for speeding up the
collision detection problem. Held et al [1995] implemented a collision detection approach to
find collisions of only one moving object in a virtual environment. They use a binary R-tree to
represent the static scenario. The approach presented is also novel work with R-trees. It allows
any number of moving objects. A novel structure is described where each object is represented
by an R-tree data structure at two-levels. First, for each object, an R-tree of surfaces is built,
grouping neighboring surfaces. Secondly, the set of triangles that represent each surface is
organized in another R-tree structure. The detailed design of an efficient R-tree structure for
the collision detection is presented. It is also described a novel traversal algorithm for collision
detection that takes advantage of this 3D geometry structure.

Together, the OAABB and the R-tree structures, enables the effective reduction of the
number of intersection operations, hence providing considerable performance gains. Results
show that the proposed collision detection achieves interactive rates in real industrial
applications as desired.

The paper is organized as follows. Section 2 presents related collision detection
approaches for the determination of intersecting triangles between two objects. Section 3
presents the design choices and section 4 the implementation of the collision detection
algorithm to compute intersecting surfaces between three-dimensional objects. Section 5
presents the evaluation results. Conclusions are presented in section 6.

IADIS International Journal on Computer Science and Information Systems

74

2. BACKGROUND

Bounding volume hierarchies (BVH) are frequently used to organize the triangles of an object
to improve the performance of the collision detection process, by reducing the number of pairs
of bounding volume tests. The classic scheme for hierarchical collision detection is a
simultaneous recursive traversal of two bounding volumes trees A and B.

Several types of bounding volumes are available. Bounding spheres can be used
[Bradshaw and Sullivan 2004]. SOLID [Van Der Bergen 1997] and OPCODE [Terdiman
2001] uses axis-aligned bounding boxes (AABB). RAPID [Gottschalk et al 1996], V-
COLLIDE [Hudson et al 1997], PQP [Larsen et al 1999], H-COLLIDE [Gregory et al 1999],
use oriented bounding boxes (OBB). QuickCD [Klosowski et al 1998] and Dop-Tree
[Zachmann 1998] uses k-dops; and Swift++ [Ehmann and Lin 2001] uses convex hulls (CH).
There are also hybrid approaches like QuOSPOs [He 1999] that use a combination of OBBs
and k-dops.

It is very difficult to compare different approaches since performance also depends on the
shapes of the models, type of contact, size of the models and others.

Bounding spheres main advantage is that they are faster to intersect and update. The main
disadvantage is that they do not approximate objects tightly.

The main advantage of SOLID, OPCODE and Box-Tree is that AABBs are faster to
intersect. When using AABBs, only six comparisons are required to find out if two axis-
aligned bounding boxes are overlapping. It is also possible to say that two AABBs are disjoint,
in the best case situation, with only one comparison. Another advantage of using AABBs is
that it is simple to update these volumes as an object rotates and translates.

RAPID approximates 3D objects with hierarchies of oriented bounding boxes (OBBs). An
OBB is a rectangular bounding box with an arbitrary orientation so that it encloses the
underlying geometry more tightly. The representation of an oriented bounding box encodes
position, widths and orientation. The main advantage of RAPID is that OBBs are better
approximations to triangles reducing effectively the number of intersecting operations.

V-COLLIDE solves the broad-phase of the collision detection using a sweep-and-prune
operation to find pairs of objects potentially in contact. It uses RAPID to find in the narrow
phase which pairs of objects intersect.

PQP solves the narrow phase and is also based on the RAPID library. It uses oriented
bounding boxes to find intersecting objects. PQP also computes the distance between closest
pair of points using swept spheres.

H-COLLIDE is a framework to find collisions for haptic interactions. It uses a hybrid
hierarchy of uniform grids and trees of OBBs to exploit frame-to-frame coherence. It was
specialized to find collisions between a point probe against 3D objects.

The QuickCD and Dop-Tree implementations build a hierarchy tree of discrete orientation
polytopes. Discrete orientation polytopes, or k-dops, are convex bounding volumes whose
faces are determined by halfspaces whose outward normals come from a small fixed set of k
orientations. The main advantage of using discrete orientation polytopes is that k-dops are
better approximations to the underlying geometry than AABBs with the advantage of its low
cost compared to OBBs. A major drawback of QuickCD is that allows only one moving
object.

Swift++ builds a hierarchy of convex hulls and intersection is tested using a modified Lin-
Canny [Lin and Canny 1991] closest feature algorithm.

S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTOTYPING

75

He [1999] uses a hybrid approach that combines OBBs and k-dops called QuOSPOs. This
approach provides a tight approximation of the original model at each level.

Since collision detection is a very demanding task, researchers are also working in using
existing graphics accelerated boards (GPU) [Baciu and Wong 2003, Knott and Pai 2003,
Govindaraju et al 2003, Yoon et al 2004] or dedicated hardware [Raabe et al 2006] to
accelerate collision detection by hardware.

Algorithms using graphics hardware use depth and stencil buffer techniques to determine
collisions between convex [Baciu and Wong 2003] and non-convex [Knott and Pai 2003]
objects. CULLIDE [Govindaraju et al 2003] is also a GPU based algorithm that uses image-
space occlusion queries and OBBs in a hybrid approach to determine intersections between
general models with thousands of polygons. MRC [Yoon et al 2004] deals with large models
composed of dozens of millions of polygons by using the representation of a clustered
hierarchy of progressive meshes (CHPM) as a LOD hierarchy for a conservative errorbound
collision and as a BVH for a GPU-based collision culling algorithm.

These GPU-based algorithms are applicable to both rigid and deformable models since all
the computations are made in the image-space. Collision detection methods using GPUs have
the disadvantage that they compete with the rendering process, slowing down the overall
frame rate. Furthermore, some of these approaches are pure image based reducing their
accuracy due to the discrete geometry representation.

Collision detection with dedicated hardware acceleration techniques for k-dops bounding
volumes has been experimented [Raabe et al 2006]. An ASIC and a FPGA collision detection
single-chip was developed with two main stages, one for traversing simultaneously a hierarchy
of k-dops and one for intersecting triangles. The ASIC and the FPGA implementations are up
to 1000 and four times, respectively, faster than the software intersection tests on a standard
CPU.

3. DESIGN CHOICES

In this research, a 3D object is defined by a collection of surfaces in the three-dimensional
space. Each surface is tessellated individually and represented as a collection of triangles.

The time to determine collisions between two objects using BVH depends on: (1) the cost
of intersecting and updating bounding volumes; (2) the cost of intersecting triangles; and (3)
on the number of such operations.

3.1. Type of Bounding Volume

The choice of bounding volume type influences performance of the collision detection
process.

The collision detection toolkit presented in this paper uses axis aligned bounding boxes for
four reasons: i) they are fast to intersect; ii) use less memory; iii) hierarchies of AABBs are
faster to build; and iv) faster to update, when compared to oriented bounding boxes and
discrete orientation polytopes.

Axis-aligned bounding box intersection requires in worst-case six comparisons and
theoretically it is three times faster than 18-dops. While the worst-case for intersecting two
OBBs requires the execution of 252 arithmetic operations.

IADIS International Journal on Computer Science and Information Systems

76

Axis-aligned bounding volumes use less memory. An AABB is represented with only six
scalars for representing its extents. An oriented bounding box is represented with fifteen
scalars. Nine scalars to store a transformation matrix, three scalars for position and three for
storing its extent. An 18-dop is represented with eighteen scalars to represent the volume
extent in each one of the nine directions. OBBs and 18-dops require 2.5 and 3 times more
storage than AABBs, respectively.

In some applications it is also necessary to insert and delete 3D models interactively,
without expending too much time re-computing the data structures. Van Der Bergen [1997]
found that building an OBB tree takes three times more time than building an AABB tree.
Furthermore, Van Der Bergen showed that updating an AABB tree as a model is deformed is
significantly faster than in an OBB tree. Hence a bounding volume hierarchy of axis-aligned
bounding boxes also offers the flexibility to develop an efficient collision detection algorithm
for models that can deform with time.

3.2 Bounding Volume Update

In general, each one of the three-dimensional models of a scene graph is represented in its own
local coordinate system and positioned in the world coordinate system using a transformation
matrix. The bounding volume structure of an object that is created for improving the
performance of the collision detection process is also defined in the object’s local coordinate
system. The geometry and the bounding volume structure of each object are defined in its own
local coordinate system. For two objects A and B, two transformation matrices, Mwc

�
A and

Mwc
�

B, are defined that convert the local representation of the two objects into the world
coordinate system.

When two objects are tested for intersection, the collision detection process first checks the
bounding volumes for overlapping. However, for AABBs and k-dops, the bounding volumes
of each object are aligned in different object’s local coordinate systems. To test if two
bounding volumes are overlapping, these volumes must be represented in the same coordinate
system. The operation of transforming the bounding volumes to the same coordinate system,
for performing the overlapping test, is called a bounding volume update.

Two cases can be considered in the choice of a common coordinate system for performing
bounding box intersection. The bounding volumes of objects A and B can be updated into the
world coordinate system, e.g. the BVA(A) and BVB(B) are transformed into BVwc(A) and
BVwc(B); or the bounding volumes BVB(B) of object B, are updated into the coordinate system
of object A, BVA(B). The second approach is better since it performs half of the bounding
volume update operations. Furthermore, the second approach uses the original bounding
volume of object A, which is tighter to the underlying geometry than an updated bounding
volume.

S-CD updates the bounding volumes of object B into the coordinate system of object A.
The axis-aligned bounding volumes of object B, are originally aligned with its own local

coordinate system. When the AABBs of object B are updated to the local coordinate of object
A, they are not aligned with the coordinate system of object A. Therefore, a new AABB, which
is aligned with the coordinate system of object A, needs to be computed for object B.

One approach for computing the new bounding box is to determine the optimal AABB of
the transformed object within the coordinate system of object A, AABBA(B). This requires a
brute force approach that will transform all the underlying geometric primitives of B, into the

S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTOTYPING

77

coordinate system of A, by applying a transformation matrix MA
�

B. The new AABBA(B) is then
built by computing the new minimal and maximal values in the x, y and z axes, defining the
new extents of the bounding volume. This approach has a major drawback. It takes too much
time for interactivity for a large number of underlying primitives. However, the advantage of
this approach is that the resulting bounding volume is an optimal AABB that better encloses
the underlying geometries.

The second approach is to determine a cover AABBA(B), which is an approximation of the
optimal axis-aligned bounding box of B that can be determined with the brute force approach.
Initially, the eight vertices of the transformed AABB of object B are computed into the
coordinate system of A. The extents of the cover AABB are determined by finding the
minimal and maximal values of these transformed eight vertices. The cover AABB volume is
greater than that of the brute force AABB approach, but is faster to compute.

In the implementation of S-CD, both approaches are used. The axis-aligned bounding
boxes in the inner nodes of the bounding volume hierarchy are updated by determining a cover
axis-aligned bounding box. For the leaf nodes of the bounding volume hierarchy, a new
optimal axis-aligned bounding box for the transformed triangles is computed, since it is faster
to do so. This optimal axis-aligned bounding box is found by transforming the triangle and
computing a new AABB from the three vertices of the triangle. A cover AABB transforms the
eight vertices of an AABB and computes a new bounding volume, taking more time.

3.3 R-Tree for the Collision Detection Problem

It was decided to use R-trees [Guttman 1984] to build the bounding volume hierarchies and
organize the 3D geometry of objects for improving the performance of the collision detection
process.

Some important properties of the R-tree can be underlined here that contributed to its
choice: 1) At any level of the tree, each primitive is associated with only a single node; 2) In
an R-tree all leaf nodes appear on the same level; 3) The depth of a R-tree storing n primitives
is logm n , m is the minimum number of children of a node; 4) The total number of primitives

stored in a R-tree equals the number of original primitives.
For the implementation of the collision detection algorithm each object is represented by

an R-tree data structure in its own local coordinate system (Figure 1-a). A hierarchical tree is
built, grouping neighboring surfaces. The leaf nodes of the R-tree point to the geometry of the
surfaces that define the object. For two objects, it checks for collisions between surfaces which
are in the neighborhood, eliminating comparisons with those which are far away.

The same idea is applied for surfaces. Surfaces from a three-dimensional model can be
complex with a large number of triangles. An R-tree can be used to organize the triangles
spatially and hence to quickly reject triangles that cannot intersect (Figure 1-b). In this
approach, an R-tree is computed for each surface, grouping neighboring triangles to eliminate
comparisons with those that are faraway from the area of intersection.

IADIS International Journal on Computer Science and Information Systems

78

S1 S2 S3

Scene Graph

O1 Om.......

Si

R-tree
O1

S'1 S'2 S'3 S' i

R-tree
Om

T1 T2 T3

R-tree O1

S1 Si.......

Tj

R-tree
S1

T'1 T'2 T'3 T'k

R-tree
Si

(a) (b)

Figure 1. (a) Each object of the scene graph is represented by its own R-tree data structure representing
its surfaces. (b) Each surface of the 3D model is also represented by its own R-tree data structure.

3.4 Overlapping Axis-Aligned Bounding Box

The proposed algorithm is based in the use of the Overlapping Axis-Aligned Bounding Box,
OAABB(A, B), of two geometric primitives, to improve the performance of the collision
detection process. Figueiredo et al [1993] introduced this concept for improving performance
in the determination of intersecting polygons. Smith et al [1995] also use the same concept
together with an octree data structure for finding intersecting polygons. S-TCD extends the
OAABB concept for surfaces.

The OAABB is defined as the volume that is common to two axis-aligned bounding boxes
of A and B, AABB(A) and AABB(B), aligned with the coordinate axes.

The OAABB is used to filter out primitives that cannot intersect. Consider the 2D example
of Figure 2. For two polygons in 2D, the collision detection process wants to determine
intersecting edges. Axis-aligned bounding volumes for each edge are used to filter out pairs of
edges that cannot intersect.

S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTOTYPING

79

E1

E2

E3

E4

E'1

E'2

E'3

Polygon A
Polygon B

AABB(B)

AABB(A)

OAABB(A,B)

E'4

E'6

E'5

Figure 2. The Overlapping Axis-Aligned Bounding Box (OAABB) concept shown in 2D.

Two edges, iE and '
jE from polygon A and B respectively, intersect if they also intersect

the overlapping axis-aligned bounding box of the two polygons. In this way, edges whose
AABB do not intersect the OAABB(A,B) are filtered out. Therefore, the first step of a collision
detection algorithm based in the OAABB concept is to test every edge of A and B against the
overlapping bounding volume. The candidate edges that overlap OAABB are passed to the
next stage of the collision detection pipeline.

This approach is more effective in those environments where most of the intersections are
superficial and the OAABB is small compared to objects. If the AABB of one of the objects is
about the same size of the OAABB, this approach does not filter out many edges.

The use of the overlapping bounding volume also reduces the number of bounding volume
update operations.

Initially, the overlapping bounding volume is defined in the coordinate system of A. To
determine the edges of A that intersect the OAABB, it is not necessary to execute any update
operation. To determine the edges of B that intersect the OAABB only one update operation is
required, independent of the number of primitives of B. The OAABB, defined in the
coordinate system of A, is transformed into the coordinate system of B.

4. S-CD TOOLKIT IMPLEMENTATION

This section presents the algorithm for determining intersecting surfaces between a pair of 3D
objects. This paper presents the latest development of some of the initial ideas presented
earlier in [Figueiredo and Fernando 2003] and [Figueiredo and Fernando 2004] and it is the
result of the gathered experience obtained with real industrial case studies. It also describes a
novel implementation of the traversal algorithm for collision detection that takes advantage of
the R-Trees structure.

The algorithm to find intersecting surfaces is presented in Figure 3.

IADIS International Journal on Computer Science and Information Systems

80

The collision detection algorithm, described in the following paragraphs, takes advantage
of the scene graph structure built from 3D data models. In this approach, each 3D model is
defined as a collection of surfaces. Each surface is tessellated individually and represented as a
collection of triangles.

The collision detection process first checks if objects A and B are disjoint (line 1-2 in
Figure 3). The bounding volumes of each object are originally computed in the object’s local
coordinate system, AABBA(A) and AABBB(B), respectively. The transformation matrix that
converts the local representation of object A into the local coordinate system of object B is
defined as MB

�
A. The bounding volume of object A is updated to the coordinate system of

object B, by computing the cover axis-aligned bounding box, AABBB(A). Once the bounding
volumes of each object are in the same coordinate system they can be checked for overlap. If
this pair of AABBs does not overlap, then the corresponding two objects are not intersecting
and the process ends. If they overlap, then the system determines the Overlapping Axis-
Aligned Bounding Box, OAABBB(A,B) of the two objects (line 3 in Figure 3), which is defined
in the local coordinate system of object B.

S-CD_Collide (A, B)
1:AABBB(A)=MB

�
A�AABBA(A)//update Cover BV

2:if (AABBB(A) do not intersect AABBB(B)) return
3:Determine OAABBB(A, B)
4:DescendRtree(SBV(B), OAABBB(A,B))
5:for each surface from SBV(B) intersecting OAABBB(A,B)
6: DescendRtree(TBV(B), OAABBB(A,B))
7: for each triangle T(B) from TBV(B) intersecting OAABBB(A,B)
8: Update triangle T(B) geometry into coord. system of A
9: Compute the new optimal AABBA(T(B)) for T(B)
10: DescendRtree(SBV(A), OAABBA(A,B), AABBA(T(B)))
11: for each surface from SBV(A)
12: DescendRtree(TBV(A), AABBA(T(B)))
13: Intersect T(A) and T(B)

Figure 3. Pseudo-code for finding intersecting surfaces.

The next step of the collision detection process determines the surfaces from object B
intersecting the OAABB (line 4 of Figure 3). As mentioned before, the surfaces of object B are
organized in a Surface Bounding Volume R-tree called SBV(B). The surfaces of B are stored at
the leaf nodes of the SBV(B) R-tree. By descending this R-tree, the surfaces of object B that do
not intersect the OAABBB(A,B) are filtered out. Only the surfaces at the leaf nodes intesecting
the OAABBB(A,B) are candidate for collision.

Each surface of object B is tessellated and represented by a collection of triangles. The
triangles of each surfaces are also represented in its own Triangle Bounding Volume R-tree
data structure, organizing its triangles into sub-regions. The next step of the collision detection
process descends to the Triangle Bounding Volume R-tree TBV(B) of each candidate surface
from object B (lines 5 and 6 of Figure 3). This stage determines the triangles of object B
intersecting the OAABB.

Using the OAABB, the collision detection manager filters out surfaces and triangles of
object B that cannot intersect.

The triangles of object B intersecting the OAABB are transformed into the coordinate
system of object A (line 8). At this point is also determined the triangle’s optimal bounding
volume (line 9). The new optimal AABB is built by computing the new minimal and maximal
values in the x, y and z axes, defining the new extents of the bounding volume. This stage

S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTOTYPING

81

computes the optimal bounding volume, since it is faster than computing the cover AABB.
Furthermore, the optimal AABB encloses the triangle better than a cover AABB.

Then, the collision detection process descends the Surface Bounding Volume SBV(A) R-
tree for object A (line 10 of Figure 3). In this step it finds surfaces of object A intersecting the
OAABB and the triangle’s optimal AABBA(T(B)) of object B.

To determine if a pair of surfaces intersects, it is necessary to find a pair of intersecting
triangles. Then, the collision detection process descends to the Triangle Bounding Volume R-
tree TBV(A) of each candidate surface from object A (lines 11 and 12 of Figure 3). This stage
determines the triangles of object A who’s bounding volumes intersect the triangle’s optimal
AABB of object B.

The final step is to proceed with the intersection between pairs of candidate triangles (line
13) implemented with Guige and Devillers [2003] algorithm. If there is a pair of intersecting
triangles then the corresponding surfaces is intersecting.

5. EXPERIMENTAL RESULTS

This section presents the performance evaluation results of the novel collision detection
algorithm described in this paper.

Three examples that represent user operations to assembly the components of the described
models are used. Case study 1 (Figure 4-a) is the assembly process to build a digger
mechanism from D-cubed Ltd. Case study 2 (Figure 4-b), from the Sener Company in Spain,
is the building process of an electronic control box from an aircraft engine. Case study 3
(Figure 4-c), from UMIST in Manchester, is the assembly of a process plant. These test
scenarios are real case applications from maintenance simulation in virtual prototyping
environments. For example, case study 2 from SENER Company in Spain, is part of a real
product development from the aerospace domain, where SENER was responsible for
designing connectors, tubing, wire harnesses, brackets, clips, and accessories for an aircraft
engine electronic control box. It reflects the real scenario and the working environment,
including the complexity of the model and the realism of the activities. The real working
requirement on which the test case is based on was to demonstrate to the customer that the
electronic control box from an aircraft engine can be removed and replaced from the airframe
in less than 60 minutes following the instructions defined in the standard maintenance
handbook.

Table 1 shows the complexity of the digger, sener and process plant environments. The
most complex case scenario, in terms of number of objects in the scene, is the sener model
with 25 objects (parts). The sener and process plant have about the same complexity when
related to the number of surfaces and the total number of triangles in the scene. The process
plant has a lower number of objects in the scene than the sener model. The digger model has a
lower number of surfaces and triangles. Table 1 also presents the total number of intersecting
steps for the assembly operations for each case study.

All the experiments run in an Intel Core 2 Duo T7300, 2GByte of RAM memory at 2GHz.

IADIS International Journal on Computer Science and Information Systems

82

(a)

(b) (c)

Figure 4. Test case scenarios: (a) Digger model; (b) Sener Model and (c) Process plant.

Table 1. Complexity of the models used in test case scenarios

Test Case Scenario Digger Sener Process Plant

Number of Objects 5 25 8

Total Number Surfaces Scenario 109 1 250 1 073

Total Number Triangles Scenario 2 452 25 525 24 415
Number of intersecting steps for the entire assembly simulation 507 980 233

The collision detection implementation can be configured to determine first intersecting
surface, all intersecting surfaces or all the intersecting triangles between three-dimensional
components in a virtual prototyping environment. Table 2 presents these times. The proposed
collision detection algorithm achieves interactive rates in real industrial applications as
desired.

It is also important to compare the performance of this algorithm with other collision
detection toolkits. Tables 3 and 4 present the times obtained comparing the implementation
described in this paper, named as S--CD (Surface Collision Detection), with PQP, RAPID,
OPCODE and Dop Tree. The times presented were obtained in the determination of the first
intersecting triangle (Table 3) and also for all the intersecting triangles (Table 4). S-CD is
effective in the determination of intersections interactively.

Table 5 presents the time obtained when the overlapping axis-aligned bounding box
(OAABB) approach is not used. This table presents the time to find first, all intersecting
surfaces and all intersecting triangles.

Tables 2 and 5 show there is an improvement in performance by using the overlapping axis
aligned bounding box.

This improvement is explained by table 6. The cost of finding collisions depends on
several factors. The choice of type of bounding volume influences the number and the cost of
executing bounding volume intersections. For AABBs and k-dops the cost and the number of
updating bounding volumes also influences performance. Table 6 shows an effective reduction
in the number of AABBs tests and update bounding volume operations explaining the better
performance obtained by the OAABBs.

S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTOTYPING

83

Table 2. Collision detection time to find intersecting surfaces

Time in milliseconds per step to determine: Digger Sener

Process
Plant

(i) first intersecting surface per step 0.04 0.15 0.09
(ii) all intersecting surfaces 0.25 0.55 0.94
(iii) all intersecting surfaces and all intersecting triangles 0.36 0.72 1.26

Table 3. Time to find first triangle intersection

Time to find first triangle intersection (milliseconds)
Digger Sener

Process
Plant

PQP 0.42 0.32 0.40
RAPID 0.06 0.10 0.12
OPCODE 0.02 0.08 0.04
Dop Tree 0.77 1.25 1.52
S-CD 0.04 0.15 0.09

Table 4. Time to find all triangle intersections

Time to find all triangle intersections (milliseconds) Digger Sener Process Plant
PQP 1.82 1.57 4.96
RAPID 1.24 1.18 3.62
Dop Tree 5.81 10.48 17.29
OPCODE 0.90 1.73 2.09
S-CD 0.36 0.72 1.26

Table 5. Collision detection time to find intersecting surfaces (without using OAABB)

Time in milliseconds per step to determine: Digger Sener Process Plant

(i) first intersecting surface per step 0.09 0.38 0.28
(ii) all intersecting surfaces 0.34 1.06 1.75
(iii) all intersecting surfaces and all intersecting
triangles

0.50 1.23 2.06

Table 6. Average number of operations per step to determine first intersecting surface

Number of
operations: Digger Sener Process Plant

Using OAABB Yes No Yes No Yes No
AABBs tests 507 754 2256 3942 1263 2915
AABBs updates 39 202 87 825 102 713

Next, S-CD and other collision detection toolkits are evaluated using a benchmarking suite

[Trenkel et al 2007] to compare pairwise static collision detection algorithms for rigid objects.
This benchmark generates a number of positions and orientations for a predefined distance in
close proximity. It does not test performance of collision detection approaches when
intersections occur. Figure 5 shows that S-CD runs interactively as desired. It should be
regarded that in this benchmark S-CD does not uses surface knowledge and in this way S-CD
does not use all its features to improve performance.

IADIS International Journal on Computer Science and Information Systems

84

(a) (b)

Figure 5. (a) The grid scene with 414 720 faces. (b) Results of the benchmark. The x-axis denotes the
relative distance between the objects, where 1.0 is the size of the object. Distance 0.0 means that the

objects are almost touching but do not collide. The abbreviations for the libraries are as follows:
do=Dop-Tree, pqp=PQP, op=Opcode, s-cd=S-CD.

6. CONCLUSION

This paper presents a novel collision detection algorithm for supporting assembly and
maintenance simulations in virtual prototyping environments which is publicly available at
http://w3.ualg.pt/~mfiguei. It determines intersecting surfaces between three dimensional
components at interactive rates.

To improve performance, the collision detection uses the overlapping axis-aligned
bounding box approach (OAABB), axis-aligned bounding boxes (AABBs) and the R-tree
structure. The OAABB approach is used effectively together with the two level hierarchy of
R-tree structure to reduce the number of updates and checks between bounding volumes,
taking the effective advantage of the low cost of intersecting AABBs. It is also described a

 0

 2

 4

 6

 8

 0 0.05 0.1 0.15 0.2

tim
e

/ m
ill

is
ec

distance

grid / 414720

do

op

pqp

s-cd

S-CD: SURFACE COLLISION DETECTION TOOLKIT FOR VIRTUAL PROTOTYPING

85

novel traversal algorithm that takes effective advantage of the two-level R-tree structure. The
use of OAABBs also allows the significant reduction of the number of bounding volume
intersections and updates.

The approach presented in this paper was tested with industrial maintenance scenarios of
moderate complexity that were used to test assembly operations, running in an Intel Core 2
Duo T7300 at 2GHz. The proposed approach determines intersecting surfaces interactively
and effectively addressed the assembly operations carried on.

REFERENCES

Baciu G. and Wong S., 2003. Image-based Techniques in a Hybrid Collision Detector. IEEE Trans. On
Visualization and Computer Graphic, 9, 2, pp. 254-271.

Bradshaw G. and O’Sullivan C., 2004. Adaptive medial-axis aproximation for sphere-tree construction.
ACM Transactions on Graphics, 23, pp. 1–26.

Ehmann S. and Lin M., 2001. Accurate and fast proximity queries between polyhedra using convex
surface decomposition. Computer Graphics Forum. 20, pp. 500–10.

Figueiredo, M. and Fernando, T., 2003. An Unified Framework to Solve the Broad and Narrow Phases
of the Collision Detection Problem in Virtual Prototype Environments. Proc. of International
Conference on Geometric Modelling and Graphics, 130-136.

Figueiredo M. and Fernando T., 2004. An Efficient Parallel Collision Detection Algorithm for Virtual
Prototype Environments. Proc. of the Tenth International Conference on Parallel and Distributed
Systems, pp. 249-256.

Figueiredo M. et al, 1993. Precise Object Interactions using Solid Modeling Techniques. Proc. of IFIP
TC 5/WG 5.10 Conference on Modeling in Computer Graphics, pp. 157-176.

Gottschalk S. et al, 1996. Obb-tree: A hierarchical structure for rapid interference detection. Proc. of
ACM Siggraph'96, pp. 171-180.

Govindaraju N. et al, 2003. CULLIDE: Interactive collision detection between complex models in large
environments using graphics hardware. Graphics Hardware 2003, pp. 25–32.

Gregory A. et al, 1999. A Framework for Fast and Accurate Collision Detection for Haptic Interaction.
Proc. of IEEE Virtual Reality Conference, pp. 38-45.

Guige P. and Devillers O., 2003. Fast and Robust Triangle-Triangle Overlap Test using Orientation
Predicates. Journal of Graphics Tools, 8, 1, pp. 25-42.

Guttman A., 1984. R-trees: A dynamic index structure for spatial searching. Proc. of the ACM SIGMOD
International Conference On Management of Data, pp. 47-57.

He T., 1999. Fast collision detection using QuOSPO trees. Proc. of the Symposium on Interactive 3D
graphics, pp. 55–62.

Held M. et al, 1995. Evaluation of Collision Detection Methods for Virtual Reality Fly-Throughs. Proc.
Seventh Canadian Conference Computer Geometry, 3, pp. 205-210.

Hudson T. et al, 1997. VCollide: Accelerated Collision Detection for VRML. Proc. of VRML, pp.117-
123.

Klosowski J. et al, 1998. Efficient Collision Detection using Bounding Volume Hierarchies of k-DOPs.
IEEE Trans. On Visualization and Computer Graphics 4, 1, pp. 21-36.

Knott D. and Pai D., 2003. ClnDeR: Collision and Interference Detection in Real-time using Graphics
Hardware. Proc. of Graphics Interface 2003, pp. 73-80.

Larsen E. et al, 1999. Fast Proximity Queries with Swept Sphere Volumes. Technical report TR99-018,
UNC.

IADIS International Journal on Computer Science and Information Systems

86

Lin M. and Canny J., 1991. Efficient algorithms for incremental distance computation. IEEE Conference
on Robotics and Automation, pp. 1008–1014.

Murray N. and Fernando T., 2003. Development of an Immersive Assembly and Maintenance
Environment. In Proc. Advanced Research in Virtual and Rapid Prototyping, Leiria, Protugal, pp.
341-348.

Raabe A. et al, 2006. Space-efficient FPGA-accelerated collision detection for virtual prototyping. Proc.
of Design, Automation and Test in Europe, pp. 206-211.

Smith A. et al, 1995. A simple and efficient method for accurate collision detection among deformable
objects in arbitrary motion. Proc. of the IEEE Virtual Reality Annual Symposium, pp. 136-145.

Terdiman P., 2001. Memory-optimized bounding-volume hierarchies.
http://www.codecorner.com/Opcode.pdf.

Van Der Bergen G., 1997. Efficient Collision Detection of Complex Deformable Models using AABB
Trees. Journal of Graphics Tools 2, 4, pp. 1-13.

Trenkel S. et al, 2007. A Benchmarking Suite for Static Collision Detection Algorithms. Journal of
WSCG – Proceedings of the 15th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG 2007) 15, pp. 105-110.

Yoon S. et al, 2004. Fast Collision Detection between Massive Models using Dynamic Simplification.
Eurographics Symposium on Geometry Processing, pp. 136-146.

Zachmann G, 1998. Rapid Collision Detection by Dynamically Aligned DOP-Trees. In Proc. of IEEE
Virtual Reality Annual International Symposium; VRAIS ’98, pp. 90–97.

