
IADIS International Journal on Computer Science and Information Systems 
Vol. 5, No.1, pp. 13-25 
ISSN: 1646-3692 

13 

A JAVA BREAD-BOARD SIMULATOR: DIGITAL 
CIRCUIT SIMULATION WITH AN OPEN-SOURCE 
TOOLSET 

Chris Bailey, Department of Computer Science, University of York, Heslington, York, UK 
 

Michael J Freeman, Department of Computer Science, University of York, Heslington, York, UK 

ABSTRACT 

Digital electronics is an area of student learning that benefits substantially from ‘hands-on’ experience. 
Simply simulating circuits at a high level will not instill a full understanding of the pitfalls involved in 
circuit building, testing and design in the real world.  Consequently most electronics related curriculums 
will include practical lab-work to supplement any other activities to be delivered as part of a course 
module. At many UK universities the use of ‘bread-boards’ is common. These are rapid circuit 
construction boards, which allow circuits based upon chips to be wired and tested.  However, it is less 
practical for students to undertake such work unsupervised (due to health and safety legislation), and also 
often not practical for them to undertake this work at home. Consequently, a Digital Bread Board 
simulator to supplement such teaching styles is a valuable teaching aid.  This paper describes the Bread-
Board Simulator developed at the University of York over a number of years, and a new project to 
release the tool-set as an Open-Source Learning Platform.  

KEYWORDS 

Digital Simulation, Bread-Board, Virtual Learning Environments, VHDL Simulation, Open-Source 

1. INTRODUCTION 

The use of bread-board circuit construction is a common methodology for practical digital 
electronics in UK universities.  A Bread-Board is a circuit module that can have chips and 
wires inserted and removed without permanent connection, and thereby allows rapid 
construction and modification of test circuits. As such it presents an ideal medium for teaching 



IADIS International Journal on Computer Science and Information Systems 

14 

of digital circuit design. However it is less convenient for students to make use of this medium 
at home or out of lab hours, and therefore students are limited to the amount of extra work 
they can do if seeking to learn at their own pace. This is especially so where increasing 
pressure to maximize utilization of  lab facilities makes freelance access to facilities 
restrictive.  Consequently, a learning tool that can be used on a computer platform as a 
supplementary learning tool, mirroring the functionality of a bread-board environment, was 
perceived to be a valuable goal by the first author. Subsequently, he established a series of 
student dissertation projects to develop the idea as an extensible platform for digital circuit 
experimentation – the Java Digital Bread-Board (JBB) was thus developed, and is described 
here in this publication.  

Please note that this paper describes in the authors own words, work undertaken over 
number of years by final year dissertation students under his direction, as per the 
acknowledgement at the end of this paper. It then discusses the further extension and future 
open-source development of the platform under a new project initiative. JBB was first 
evaluated in the EU Funded NETPRO Projects [Donazelli 1999, Bailey 2002], and has 
continued to be developed since. 

2. JAVA BREAD-BOARD 

A ‘Bread-Board’ consists of a module (several of which may be interconnected to create 
multiples of larger size), upon which a series of interconnects are provided. Chips may be 
placed in the boards by inserting chip pins into the pin sockets, and extra wires may be added 
to complete a circuit. Typically, test equipment such as an oscilloscope can be used to monitor 
real-time circuit behavior, or Light-Emitting Diodes (LED’s) can be used to monitor circuit 
signals for slower circuit operations. Figure-1 shows an example of a bread-board.  Standard 
components that are used with bread-boards include TTL logic chips, a range of standard logic 
functions, push-switches, for generating test inputs, and light-emitting-diodes (LED’s) for 
displaying signal states on outputs. 

Since the range of TTL logic chips is clearly defined, as are their circuit characteristics, 
then provision of such chips in a simulation environment is a relatively well-defined task.  
However the possibility of new chips being introduced, or of a more complex or custom 
component being required in a learning exercise makes it highly desirable for an extensible set 
of components to be available. In a laboratory this is easily achieved by simply sourcing an 
appropriate component, or programming a configurable device to behave in accordance with 
the requirements.  

However for a simulation environment this is less straightforward. It is undesirable to have 
to rebuild the application for each new device being added to the chips available, and 
especially so when a new chip is being incrementally tested and developed, either by the tutor 
or a student.  Consequently the objective of the Java Bread-Board project was not only to 
provide a convincing and familiar bread-board environment in virtual form, but provide 
relatively easy methods of adding new chips to allow extension of the system beyond its 
original intentions.  This was the basis of our project and will be explored further in this paper. 
However it is best to first introduce the JBB environment and its capabilities before talking 
further about the extensibility and the more advanced features that this has allowed to be 
developed as part of the JBB tool-set.  



A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCE TOOLSET 

15 

Figure 1. Example of  a Bread-Board Circuit 

3. JBB CORE APPLICATION 

Figure-2 shows the Java Bread-Board (JBB) application in use. A Tool-Bar provides access to 
a number of functions, whilst a left-hand panel gives details of the currently selected 
component. The right-hand (main) panel shows the bread-board circuit, and can scroll to 
accommodate much larger circuits. Circuits can of course be loaded and saved, making it easy 
to develop a circuit over a period of several sessions, share and distribute examples, and 
perhaps in some cases, provide an existing circuit for a student to experiment with (perhaps 
verify its operation for example, or identify a design fault and remedy it).  

Figure 2. JBB Application in use (MS Windows) 



IADIS International Journal on Computer Science and Information Systems 

16 

Once a circuit is considered complete, it can be simulated by step or multi-step simulation, 
at various speeds, with circuit chips behaving with the correct circuit delays for their given 
design and specification.  Consequently it is possible to see effects such as propagation of 
signals through successive chips, for instance the ripple-through effect in a counter, and also to 
observe logic glitches as they would be seen in a real circuit. This is important, as a simply 
functional behavior would not be sufficient to allow a true representation of a circuit that 
could be built in a practical lab session and behave the same way as the bread-board virtual 
circuit model.  

Wiring can be color coded, which is not only useful in aiding circuit understanding, but a 
good practice to be employed in real circuit construction.  Similarly there is a choice of several 
LED colors (RED, GREEN, YELLOW) to permit output values to be grouped. For example 
the outputs of a 4-bit adder may be wired to a red LED for the ‘Carry-Out’ signal, whilst four 
green LED’s might be used for the four output sum bits.  

Probes and Traces are also supported, by means of special ‘probe’ components, which can 
be placed on any circuit contact (these appear as small squares with a ‘P’ label). Multiple 
probes can be placed at different circuit locations, and  during simulation, these probe values 
are dumped to a trace file. The examination of the trace file provides a time-stamped logic 
trace of circuit behavior at each simulation step.  This can be examined directly, or a tool 
could be developed to visualize the trace outputs as waveforms, such as a virtual logic 
analyzer or oscilloscope applet.  

4. THE VALUE OF EXTENSIBLE AND OPEN-SOURCE 
DESIGN 

A major design decision, made at the beginning of the JBB project, was to develop the 
platform to be as open as possible to future developments. Although this was not initially 
achieved to 100% satisfaction, the ability to add new chips and other components to the JBB 
library is an important feature of the system.  Later it was realized that the ability to interact 
with some components by double-clicking them would have been useful, and the core 
application code was then modified to allow this [Page 2004]. Subsequently there have been a 
number of developments that make JBB more useful, especially for teaching and learning 
purposes.  This is a feature that we expect to further exploit in new developments (see section 
4.5). 



A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCE TOOLSET 

17 

Figure 3. Chip Creation Routes 

4.1 Creating New Chips in Java 

The primary extension feature of JBB is the ability to add unlimited Java class files into the 
chip directory. These class files must follow a template for a chip, but within that code 
wrapper any Java code can be incorporated. This means that components can be modeled and 
implemented in Java as simple logic gates, or something as complex as a complete 
microprocessor or microcontroller. This feature is of great assistance for the JBB development 
team themselves and for those, such as tutors, who can devote some resources and ingenuity to 
developing a new chip for a given purpose. However students may find this a less friendly 
way to develop new chip functions.  

4.2 Simple Chip Design Tools 

Whilst a Java chip creation methodology provides unrestricted scope for chip creation, the 
average student may wish to do something at a simpler level, without specialist knowledge. 
Additionally the ability to rapidly modify and re-test a student-defined chip is valuable.  In 
order to facilitate this pedagogical need, a new project was initiated as an extension to the JBB 
platform, and resulted in the development of three chip design tools [Halstead 2005]. These 
include a table-based designer, a schematic capture tool, and a state-table entry tool. (see 
Figures 4, 5 and 6 for screenshots). In each case a design can be created and translated into a 
chip description file, used by the ‘Generic’ chip module, which simulates the design behavior. 
Figure-3 shows the various methods for defining or coding chip behavior, including our latest 
project for EDIF files.  

JAVA Source 
Code 

VHDL Source 
Code 

Predefined 

 
 

User Chip Def 

VHDL Sim 

Generic Chip .CHP File 

EDIF File 

Generic Chip 

 
Pre-defined 

User Coded 

 
 

Generic  
uses config  file 

  
VHDL  
uses config  file 
 

Design Tools 

Standard 
FPGA 
Tools 

Under Development 



IADIS International Journal on Computer Science and Information Systems 

18 

4.3 Advanced Chip Design Tools 

The requirements for table-based and schematic-capture design methodologies are provided 
for by the JBB partner tools as described in section 4.2.  However a more recent and 
increasingly dominant design methodology is that of the Hardware Description Language or 
HDL. The most popular being Verilog and VHDL. The JBB system now has an experimental 
module extension that permits simulation of VHDL models for chips, allowing a student to 
design a chip using VHDL source text [Buse 2008]. This places the JBB capabilities closer to 
the FPGA-VHDL design methodology likely to become predominant in teaching electronics 
in the curriculum of most universities. Further work, based upon importing EDIF files from 
FPGA tool-sets is currently ongoing [Pfister 2010].  
 

Figure 4. Truth Table Design Entry 

 

 

 

 

 

 

 

 

 

 

Figure 5. State-Table Design entry 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCE TOOLSET 

19 

Figure 6. Schematic Capture Design Entry 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. VHDL Example (Buse2008) 

##JBB NAME "mem" DESC "mem IC" 
MANU "djb1312" PINS 16 ; 
 
##JBB PINMAP 0=A(2) 1=A(1) 2=A(0) 
8=clk 3=O(2) 4=O(1) 5=O(0) 12=D(2) 
11=D(1) 10=D(0)END PINMAP; 
 
------------------------------------------------------- 
 
 
entity mem is 
 
generic(width: integer:=7; 
 MemItems: integer:=50000); 
 
port( A: in integer; 
 D: in bit_vector(width-1 downto 0); 
 O: out bit_vector(width-1 downto 0); 
 clk: in bit 
); 
 
type datatype is array(MemItems downto 0) 
of bit_vector(width-1 downto 0); 
 
variable data: datatype; 
 
end mem; 
 
 
------------------------------------------------------- 
 
architecture behv of mem is 
begin  
 

O <= data(A); 
 
 

process (clk) 
begin 
 

     data(A) := D; 
 

end process; 
 
end behv; 
 



IADIS International Journal on Computer Science and Information Systems 

20 

In order for a VHDL description to be used for a chip, a specialized chip was developed in 
Java which interprets VHDL code from a source file, and generates the expected pin behavior. 
This includes any internal storage, such as memory arrays, which means that a VHDL model 
of something as complex as a microcontroller could be modeled on the JBB. The VHDL 
interpreter has been built to be further developed. Its parser structure means that a full and 
complete VHDL syntax could eventually be provided.  However its current capabilities are 
still good, the VHDL code in Figure-7 illustrates this: the simulator can deal with generic 
parameters and arrays, making quite a range of possible designs compatible [Buse 2008].  
Figure-7 also shows the first lines of the VHDL file including a special chip pin-map section 
which is used to allow the VHDL to be configured as a bread-board chip item. 

4.4 Test and I/O Functions 

Features not yet described in this paper include some specialized chip and component modules 
which are worthy of  mention. In particular there are 7-Segment display modules, and a hex-
keypad ‘chip’ which allows the user to click and bring up a key-pad for data entry (see Figure-
8), as developed by Rob Page [Page 2004].  This is analogous to the sort of basic input facility 
likely to be found in a lab. Simpler dip-switch inputs are  however provided for a more 
traditional approach. Memory chips (as used in Figure-2) are also available. 

Figure 8. Seven-Segment Displays and Hex Keypad with Header chip 

4.5 Future Extensions 

The Scope for extensions to JBB is very wide, and only limited to the developer’s own 
ingenuity. Particular areas of interest do however come to mind. First of all, the ability to 
emulate a small FPGA component from a manufacturer’s standard device family would be 
extremely useful. This would allow a standard design toolset such as Xilinx Web-PackTM to be 
used to generate circuit models that could then be ‘loaded’ into the FPGA emulator chip. To 



A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCE TOOLSET 

21 

date the experimental work on developing test and measurement virtual equipment has not 
been fully satisfactory. However this work at least confirms it should be feasible to develop 
new modules with GUI interfaces that mimic test equipment such as logic probes, 
oscilloscopes, and logic analyzers. Examples of other developments that are envisaged for  
future development include:- 
 

1. Emulation of FPGA Netlist output at component level (e.g. CLBs) -under 
development 

2. DSP workbench using chips as DSP sub-modules 
3. Standard CPU Emulation via JBB chips 
4. CPU WorkBench using chips as internal simplified CPU components  -under 

development 
 

Some of these intentions are driven by current programme developments at the University 
of York. The CPU work-bench, for example, is envisaged to support first-year computer 
architecture delivery. This has been taught previously through the ‘paper’ evolution of an 
imaginary machine from a basic register and adder through to a full CPU design. Having a 
simulation environment that can operate at the level of block-components would be very 
desirable, as it allows a hands-on low-level appreciation to be retained in the lab-style, whilst 
considering relatively abstract levels of machine architecture in lecture delivery. 

The DSP workbench would allow individual chips to communicate via single-wire serial 
data (e.g. 16 bits per input source). This would be utilized as Java Bread-Board does not 
support analogue signals. The ability to link DSP units together via single wire inputs and 
outputs would permit an abstract level of DSP formulation. Modules might include filters, 
oscillators, mixers, and so-on, providing an audio or radio-frequency context for 
experimentation with techniques such as modulation and band-filtering.   

Emulation of FPGAs (Field Programmable Gate-Arrays) will be possible by taking output 
from industry standard tools (of which many are available free to all types of users), and 
simulating the behavior of the design components known as ‘CLB’s (configurable Logic 
Blocks).  Consequently a chip’s behavior can be defined using industry standard tools, such as 
XILINX Web-PackTM and even potentially make use of standard design libraries that may pre-
exist in the community. Provided that a tool can generate an EDIF netlist, then VHDL, 
VERILOG, possibly even Handel-C and other Hardware Description Languages could be used 
in the future. This particular extension is under development at present [Pfister2010] , a 
screen-shot of an initial EDIF ASIC Chip being used in the bread-board is shown in Figure-9.  



IADIS International Journal on Computer Science and Information Systems 

22 

 

Figure 9. ‘ASIC’ Chip Example 

Whatever extensions may be developed, the important point to note here is that any of 
these suggested new developments would be achievable simply by independent development 
of new chips. JBB will recognize these automatically and the software suite does not need to 
be rebuilt each time a new chip is added. Therefore from the point of view of software 
development, the individuals undertaking the work require only a very limited knowledge of 
the JBB internal functionality at the chip-level interface.   

During our current HEA/JISC funded open-source initiative the Chip-Interface class has 
been completely revised, as compared to the first JBB toolset development releases. The new 
Interface class (see Figure-10) allows a more flexible approach to chip creation, allowing any 
chip to be augmented by derivatives simply by adding a new sub-class. For example, a TTL 
chip 7400 may be supplied as a Generic type, but we may wish to add derivatives such as  
74LS00, 74AC00, and so-on, as illustrated by an example in Figure-11. 



A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCE TOOLSET 

23 

Figure 10. ‘IntegratedCircuit’ Interface Class  
Figure 11. Example of Chip derivative Extension 

Further extensions to JBB Tools are also considered worthwhile, but require a more 
controlled open-source development approach. There are many improvements that could be 
made to JBB simply for current use as a digital circuit simulator. Additional extensions such 
as a logic analyzer for instance have been attempted in previous student projects. The level of 
work required to meet a supportable end-product release does however require substantially 
more work, something we hope will be supported by open-source communities with an 
interest in electronics teaching and learning. Again, extension without rebuilding the full 
software (ie a plug-in methodology) is being developed, such that a community of users can 
obtain individual features and install them in their own local software setup interchangeably. 
Tool developers can independently develop modules without needing to co-ordinate with each 
other (since the main application is untouched). Naming conventions for chips and tools are 
given in the user guides to prevent naming conflicts. This model of development is extremely 
important if an independent community of JBB contributors is to be facilitated, as envisaged 
by the open source initiative being undertaken now.  

5. OPEN-SOURCE INITIATIVE 

Currently, new funded work is being completed at York under the HEFCE/JISC Open 
Educational Resources Pilot Initiative1. The OER programme seeks to develop existing 
learning resources for open distribution via the JORUM learning repository 2. The Java Bread-
Board project is being placed in this repository as part of the initiative, allowing a collective 
learning resource library to be developed by contributors (for example learning tutorials, 

                                                 
1 OER :  www.heacademy.ac.uk/ourwork/learning/opencontent 
2 Jorum repository: www.jorum.ac.uk  



IADIS International Journal on Computer Science and Information Systems 

24 

exercises, and mini-projects). We also intend to develop an open source repository for the 
software itself – allowing significant community involvement in future JBB extensions and 
developments. The JBB team is currently considering use of SourceForge3  and GPL licensing 
as a medium to fulfill this aim. This has included some rationalization of the tool set and its 
internal structure, such as plug-in integration of design tools with the JBB main menus (in fact 
the facility to call up any supplementary tool placed in the ‘Tools’ directory now exists).  The 
new ‘ChipInterface’ class and a ‘Design Tool’ interface class now allows third parties to 
independently develop both chip content and tool extensions without needing to rebuild the 
rest of the Java Bread-Board toolset. This is important if JBB is to be used widely by a 
community with varied levels of knowledge, as new developments can be supplied simply as 
‘plug-ins’. 

6. CONCLUSIONS 

Java Bread-Board is an open-ended software platform, which we now hope will become an 
open-source tool-set and open-learning resource. This requires involvement of learners and 
teachers to be successful, and effort from the open-source development community.  The 
potential of JBB is far larger than has been realized to date, with a single familiar environment 
it should be possible to cover a wide range of electronics and computer-architecture related 
topics in a learning context.  

Perhaps the greatest success of JBB is the fact that it was students themselves who have 
developed this resource, creating a path for open development that we hope to continue to 
follow in future projects, including the Current OER funded project, and beyond. 

ACKNOWLEDGEMENTS 

As mentioned earlier, the JBB project was conceived by the author, and undertaken under his 
direction by project students in the University of York Computer Science Department, as a 
series of final year dissertation projects. The Author therefore gratefully acknowledges the 
work undertaken in realizing the JBB tool-Set, and in particular by the following former York 
University Students: Nicholas Glass, Shaun Gilbert, Rob Page, Stephen Halstead, and Darren 
Buse. The latest student contributions for the FPGA netlist emulator chip are being carried out 
by Kevin Pfister at the time of writing.  
The recent open-source revisions and developments were funded under the HEA/JISC/HEFCE 
Open Educational Resources Programme (OER). The original Java Bread-Board tools are still 
available at www.cs.york.ac.uk/netpro/bboard whist a new site is under development at 
www.cs.york.ac.uk/jbb at the time of writing.   
 
 
 

                                                 
3 Source Forge url :- www.sourceforge.net  



A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCE TOOLSET 

25 

REFERENCES 

Conference paper or contributed volume 
Donazelli et al1999,  Learning Electronic Systems Design with a Project Based Course on  the Network , 

Proceedings of the 1999 ENABLE Conference, Helsinki, pages 114-121, ISBN 951-647-001-7, 
Evitech Digital Press 

Bailey 2002, Enabling Network Based Learning , Proceedings  of the 13th EAIEE 2002, York, ISBN 1-
85911-009-6 

Other 
Glass 2002,  Java Digital BreadBoard Simulator: A Simulator for an educational electronics 

environment,  Final year project report, University of York, Dept. of Computer Science,  2002 
Page 2004, Extending and Upgrading the Java Breadboard Simulator Tool, Final Year Report, 

University of York, Dept. of Computer Science,  2005 
Halstead 2005, Circuit Design Tools for a Breadboard Simulator, Final year project report, University of 

York 2005 
Buse 2008, VHDL Simulator Tool for the Java BreadBoard, Darren Buse, University of York 2005 
Pfiister2010, Final year project report, University of York, Dept. of Computer Science,  March 2010 


