IADIS International Journal on Computer Science and Information Systems
Vol. 5, No.1, pp. 13-25
ISSN: 1646-3692

A JAVA BREAD-BOARD SIMULATOR: DIGITAL
CIRCUIT SIMULATION WITH AN OPEN-SOURCE
TOOLSET

Chris Bailey,Department of Computer Science, University of York, Hedlington, York, UK

Michael J Freemamepartment of Computer Science, University of York, Heslington, York, UK

ABSTRACT

Digital electronics is an area of student learning that benefits substantially from ‘*hands-on’ experience.
Simply simulating circuits at a high level will not instill a full understanding of the pitfalls involved in
circuit building, testing and design in the real world. Consequently most electronics related curriculums
will include practical lab-work to supplement any other activities to be delivered as part of a course
module. At many UK universities the use of ‘bread-boards’ is common. These are rapid circuit
construction boards, which allow circuits based upon chips to be wired and tested. However, it is less
practical for students to undertake such work unsupervised (due to health and safety legislation), and also
often not practical for them to undertake this work at home. Consequently, a Digital Bread Board
simulator to supplement such teaching styles is a valuable teaching aid. This paper describes the Bread-
Board Simulator developed at the University of York over a number of years, and a new project to
release the tool-set as an Open-Source Learning Platform.

KEYWORDS

Digital Simulation, Bread-Board, Virtual Learning Environments, VHDL Simulation, Open-Source

1. INTRODUCTION

The use of bread-board circuit construction is a common methodology for practical digital
electronics in UK universities. A Bread-Board is a circuit module that can have chips and
wires inserted and removed without permanent connection, and thereby allows rapid
construction and modification of test circuits. As such it presents an ideal medium for teaching

13

IADIS International Journal on Computer Science brfdrmation Systems

of digital circuit design. However it is less conient for students to make use of this medium
at home or out of lab hours, and therefore studergslimited to the amount of extra work
they can do if seeking to learn at their own paliais is especially so where increasing
pressure to maximize utilization of lab facilitierakes freelance access to facilities
restrictive. Consequently, a learning tool thah ¢ee used on a computer platform as a
supplementary learning tool, mirroring the functbity of a bread-board environment, was
perceived to be a valuable goal by the first autlBubsequently, he established a series of
student dissertation projects to develop the idearaextensible platform for digital circuit
experimentation — the Java Digital Bread-Board (JB@s thus developed, and is described
here in this publication.

Please note that this paper describes in the auttmwn words, work undertaken over
number of years by final year dissertation studentgler his direction, as per the
acknowledgement at the end of this paper. It theoudses the further extension and future
open-source development of the platform under a pesyect initiative. JBB was first
evaluated in the EU Funded NETPRO Projects [Dotiaz899, Bailey 2002], and has
continued to be developed since.

2. JAVA BREAD-BOARD

A ‘Bread-Board’ consists of a module (several ofichmay be interconnected to create
multiples of larger size), upon which a series m@kiconnects are provided. Chips may be
placed in the boards by inserting chip pins int® pin sockets, and extra wires may be added
to complete a circuit. Typically, test equipmentisias an oscilloscope can be used to monitor
real-time circuit behavior, or Light-Emitting Diosl§LED’s) can be used to monitor circuit
signals for slower circuit operations. Figure-1\whan example of a bread-board. Standard
components that are used with bread-boards indidelogic chips, a range of standard logic
functions, push-switches, for generating test iapaind light-emitting-diodes (LED’s) for
displaying signal states on outputs.

Since the range of TTL logic chips is clearly defin as are their circuit characteristics,
then provision of such chips in a simulation envirent is a relatively well-defined task.
However the possibility of new chips being introdd¢ or of a more complex or custom
component being required in a learning exerciseandtkhighly desirable for an extensible set
of components to be available. In a laboratory ihisasily achieved by simply sourcing an
appropriate component, or programming a configeraldvice to behave in accordance with
the requirements.

However for a simulation environment this is lesaightforward. It is undesirable to have
to rebuild the application for each new device beadded to the chips available, and
especially so when a new chip is being incrementalited and developed, either by the tutor
or a student. Consequently the objective of thea Bread-Board project was not only to
provide a convincing and familiar bread-board emwinent in virtual form, but provide
relatively easy methods of adding new chips tovalkxtension of the system beyond its
original intentions. This was the basis of ourjecband will be explored further in this paper.
However it is best to first introduce the JBB eomiment and its capabilities before talking
further about the extensibility and the more adegnteatures that this has allowed to be
developed as part of the JBB tool-set.

14

A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCETOOLSET

»
»

5 i= 5
[u} n]
E E
F F

me—To

-

Figure 1. Example of a Bread-Board Circuit

3. JBB CORE APPLICATION

Figure-2 shows the Java Bread-Board (JBB) apptindti use. A Tool-Bar provides access to
a number of functions, whilst a left-hand panel egivdetails of the currently selected
component. The right-hand (main) panel shows treadyboard circuit, and can scroll to
accommodate much larger circuits. Circuits cancafrse be loaded and saved, making it easy
to develop a circuit over a period of several sessi share and distribute examples, and
perhaps in some cases, provide an existing cifouia student to experiment with (perhaps
verify its operation for example, or identify a @dgsfault and remedy it).

Component Hams
EreadBoard

JBEreadBoard library narme:
BreadBoard.class

Figure 2. JBB Application in use (MS Windows)

15

IADIS International Journal on Computer Science brfdrmation Systems

Once a circuit is considered complete, it can bmukited by step or multi-step simulation,
at various speeds, with circuit chips behaving witl correct circuit delays for their given
design and specification. Consequently it is gissio see effects such as propagation of
signals through successive chips, for instanceipipde-through effect in a counter, and also to
observe logic glitches as they would be seen iaah circuit. This is important, as a simply
functional behavior would not be sufficient to alla true representation of a circuit that
could be built in a practical lab session and behidve same way as the bread-board virtual
circuit model.

Wiring can be color coded, which is not only usefubiding circuit understanding, but a
good practice to be employed in real circuit camgton. Similarly there is a choice of several
LED colors (RED, GREEN, YELLOW) to permit outputluas to be grouped. For example
the outputs of a 4-bit adder may be wired to alied for the ‘Carry-Out’ signal, whilst four
green LED’s might be used for the four output suts. b

Probes and Traces are also supported, by meapechik‘probe’ components, which can
be placed on any circuit contact (these appeamad| squares with a ‘P’ label). Multiple
probes can be placed at different circuit locati@ml during simulation, these probe values
are dumped to a trace file. The examination oftthee file provides a time-stamped logic
trace of circuit behavior at each simulation stephis can be examined directly, or a tool
could be developed to visualize the trace outpstsvaveforms, such as a virtual logic
analyzer or oscilloscope applet.

4. THE VALUE OF EXTENSIBLE AND OPEN-SOURCE
DESIGN

A major design decision, made at the beginninghef dBB project, was to develop the
platform to be as open as possible to future devedmts. Although this was not initially
achieved to 100% satisfaction, the ability to aé@vrchips and other components to the JBB
library is an important feature of the system. elcat was realized that the ability to interact
with some components by double-clicking them woblve been useful, and the core
application code was then modified to allow thiage 2004]. Subsequently there have been a
number of developments that make JBB more usefyde@ally for teaching and learning
purposes. This is a feature that we expect thduréxploit in new developments (see section
4.5).

16

A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCETOOLSET

, Design Tools ----~, e o
-

VHDL Source

1.0
VHDL Sim

&
N OO0
.CHP File | :> Generic Chip

Code |:>

---------------------------------- B Predefined
Standard = = —Li E l:::,j User Coded
FPGA - =EE ':> EDIF File | | Coooad Generic
Tools | | uses config file
; I (oo VHDL
£ XILINX. e : uses config file

Figure 3. Chip Creation Routes

4.1 Creating New Chipsin Java

The primary extension feature of JBB is the abildyadd unlimited Java class files into the
chip directory. These class files must follow a pdate for a chip, but within that code
wrapper any Java code can be incorporated. Thisigribat components can be modeled and
implemented in Java as simple logic gates, or duimgtas complex as a complete
microprocessor or microcontroller. This featurefigreat assistance for the JBB development
team themselves and for those, such as tutorscamaevote some resources and ingenuity to
developing a new chip for a given purpose. Howetadents may find this a less friendly
way to develop new chip functions.

4.2 Simple Chip Design Tools

Whilst a Java chip creation methodology providesestricted scope for chip creation, the
average student may wish to do something at a smieVel, without specialist knowledge.
Additionally the ability to rapidly modify and rest a student-defined chip is valuable. In
order to facilitate this pedagogical need, a nesygut was initiated as an extension to the JBB
platform, and resulted in the development of thoki design tools [Halstead 2005]. These
include a table-based designer, a schematic capbote and a state-table entry tool. (see
Figures 4, 5 and 6 for screenshots). In each cassign can be created and translated into a
chip description file, used by the ‘Generic’ chipdale, which simulates the design behavior.
Figure-3 shows the various methods for definingaing chip behavior, including our latest
project for EDIF files.

17

IADIS International Journal on Computer Science brfdrmation Systems

4.3 Advanced Chip Design Tools

The requirements for table-based and schematiexmaptesign methodologies are provided
for by the JBB partner tools as described in sacda2. However a more recent and
increasingly dominant design methodology is thathef Hardware Description Language or
HDL. The most popular being Verilog and VHDL. THBBIsystem now has an experimental
module extension that permits simulation of VHDL dats for chips, allowing a student to

design a chip using VHDL source text [Buse 2008jisTplaces the JBB capabilities closer to
the FPGA-VHDL design methodology likely to becomegominant in teaching electronics

in the curriculum of most universities. Further Wobased upon importing EDIF files from
FPGA tool-sets is currently ongoing [Pfister 2010].

uth Table Editor
File Help

B State Table Editor

File Help

in1_| Initial State |_outl | out2 | outz | outd | Newtiotate
int in2 in3 ind | oufl o

o Starting State
i 1

Please selectthe
initial state in

swhich the chip will
start on power-up

Chip Label QR4 Chip Description

13
Four input OR gate 1a
Manufacturer e]

Click on output pin celis to toggle values. Double-click column headers to change pin labels.

WideChip O Yes: ® No

Chip Delay /ns 50

Figure 4. Truth Table Design Entry

Wide Chip) Yes @ Mo Chip Description

ChipLabel — [counts
Manufacturer |je

fClick on output pin cells to toggle values. Double-click column headers to change pin labels.

Four bit binary counter ‘

Chip Delay /ns 50

Figure 5. State-Table Design entry

18

A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-

Fle Edit Insert Wire Help

& WAl oo e £

Chip Label Chip Description

Wide Chip () es @ Mo

Manufacturer | arufacturer Chip Delay /ns 50

"\Mling Mode: Click to start wire; click to hend wire; double-click to end wire; click pointer icon to exit wiring mode

Figure 6. Schematic Capture Design Entry

19

SOURCETOOLSET

##JBB NAME "mem" DESC "mem IC"
MANU "djb1312" PINS 16 ;

##JBB PINMAP 0=A(2) 1=A(1) 2=A(0)
8=clk 3=0(2) 4=0(1) 5=0(0) 12=D(2)
11=D(1) 10=D(0)END PINMAP;

entity memis

generic(width: integer:=7;
Memltems: integer:=50000);

port(A: ininteger;
D: in bit_vector(width-ldownto 0);
O: out bit_vector(width-1downto 0);
clk: in bit

)i

type datatypds array(Memltemsdownto 0)
of bit_vector(width-1downto 0);

variable data: datatype;

end mem;

ar chitectur e behvof memis

begin
O <= data(A);
process (clk)
begin
data(A) := D;
end process,
end behv;

Figure 7. VHDL Example (Buse2008)

IADIS International Journal on Computer Science brfdrmation Systems

In order for a VHDL description to be used for ap¢ha specialized chip was developed in
Java which interprets VHDL code from a source filed generates the expected pin behavior.
This includes any internal storage, such as meraoays, which means that a VHDL model
of something as complex as a microcontroller cdeddmodeled on the JBB. The VHDL
interpreter has been built to be further developedparser structure means that a full and
complete VHDL syntax could eventually be provideHowever its current capabilities are
still good, the VHDL code in Figure-7 illustratesig the simulator can deal with generic
parameters and arrays, making quite a range ofiljesdesigns compatible [Buse 2008].
Figure-7 also shows the first lines of the VHDLefihcluding a special chip pin-map section
which is used to allow the VHDL to be configuredaasread-board chip item.

4.4 Test and 1/0O Functions

Features not yet described in this paper includeesspecialized chip and component modules
which are worthy of mention. In particular there &-Segment display modules, and a hex-
keypad ‘chip’ which allows the user to click andingrup a key-pad for data entry (see Figure-
8), as developed by Rob Page [Page 2004]. Thisakgous to the sort of basic input facility

likely to be found in a lab. Simpler dip-switch g are however provided for a more

traditional approach. Memory chips (as used in FEeR) are also available.

Briorceyrad IIIR=TEY
0 1 2 3
4 5 G ¥
8 9 A B
C D E F

Figure 8. Seven-Segment Displays and Hex Keypau Méader chip

4.5 Future Extensions

The Scope for extensions to JBB is very wide, anty dimited to the developer’'s own
ingenuity. Particular areas of interest do howes@me to mind. First of all, the ability to
emulate a small FPGA component from a manufactrstidndard device family would be
extremely useful. This would allow a standard desaplset such as Xilinx Web-Pdtkto be

used to generate circuit models that could thefidaeled’ into the FPGA emulator chip. To

20

A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCETOOLSET

date the experimental work on developing test amdsurement virtual equipment has not
been fully satisfactory. However this work at leaghfirms it should be feasible to develop
new modules with GUI interfaces that mimic test ipment such as logic probes,

oscilloscopes, and logic analyzers. Examples oérottevelopments that are envisaged for
future development include:-

1. Emulation of FPGA Netlist output at component level (e.g. CLBS) -under
devel opment

2. DSP workbench using chips as DSP sub-modules

3. Standard CPU Emulation via JBB chips

4. CPU WorkBench using chips as internal simplified CPU components -under
devel opment

Some of these intentions are driven by current ianogne developments at the University
of York. The CPU work-bench, for example, is engié to support first-year computer
architecture delivery. This has been taught preshothrough the ‘paper’ evolution of an
imaginary machine from a basic register and adderugh to a full CPU design. Having a
simulation environment that can operate at thell@feblock-components would be very
desirable, as it allows a hands-on low-level appteEm to be retained in the lab-style, whilst
considering relatively abstract levels of machirehdecture in lecture delivery.

The DSP workbench would allow individual chips mmmunicate via single-wire serial
data (e.g. 16 bits per input source). This wouldutitzed as Java Bread-Board does not
support analogue signals. The ability to link DSRtaitogether via single wire inputs and
outputs would permit an abstract level of DSP fdatian. Modules might include filters,
oscillators, mixers, and so-on, providing an audio radio-frequency context for
experimentation with techniques such as modulaimhband-filtering.

Emulation of FPGAs (Field Programmable Gate-Arraysl be possible by taking output
from industry standard tools (of which many areilatde free to all types of users), and
simulating the behavior of the design componentswkn as ‘CLB’s (configurable Logic
Blocks). Consequently a chip’s behavior can bénéefusing industry standard tools, such as
XILINX Web-PacK™ and even potentially make use of standard de#igaries that may pre-
exist in the community. Provided that a tool camegate an EDIF netlist, then VHDL,
VERILOG, possibly even Handel-C and other Hardwescription Languages could be used
in the future. This particular extension is undewvelopment at present [Pfister2010] , a
screen-shot of an initial EDIF ASIC Chip being usrthe bread-board is shown in Figure-9.

21

IADIS International Journal on Computer Science brfdrmation Systems

i 1
| £ Java BreadBoard Simulator | = =] 3 |

File Edit Insert Wire Simulation Trace Tools Help

EEESEILOOCTIC DR

Far Pin Layout and design
Information, please
deuble-click on the chip.

Compﬂneml\lame'
ASIC: Z4bitadder

Description
General purpose ASIC chip
configured via a netlist file

Manufacturer:
Design by "synplicity, inc.”

K

Figure 9. ‘ASIC’ Chip Example

Whatever extensions may be developed, the impopgainit to note here is that any of
these suggested new developments would be achéesabply by independent development
of new chips. JBB will recognize these automaticalhd the software suite does not need to
be rebuilt each time a new chip is added. Therefosm the point of view of software
development, the individuals undertaking the warguire only a very limited knowledge of
the JBB internal functionality at the chip-leveldrface.

During our current HEA/JISC funded open-sourceidtiite the Chip-Interface class has
been completely revised, as compared to the BB tholset development releases. The new
Interface class (see Figure-10) allows a more lillexapproach to chip creation, allowing any
chip to be augmented by derivatives simply by agidimew sub-class. For example, a TTL
chip 7400 may be supplied as a Generic type, bumag wish to add derivatives such as
74L.S00, 74ACO00, and so-on, as illustrated by amgsea in Figure-11.

22

A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-

SOURCETOOLSET

[l chipAccess [integratedCircuit <interface>>
[IntegratedCircuit " 46 Chiphlodel
- | — @ .

A
pins [0..*
HlnputPin =Pin E NotConnectedPin
— k——— [Gent400

|5 PowerPin / EfoutputPin N

/ T ISNT4Ac00 Elsr4ra0 EIsn7aLsn

ElinputOutputPin S ClockOutputPin|

Figure 10. ‘IntegratedCircuit’ Interface Class

Figure 11. Example of Chip derivative Extension

Further extensions to JBB Tools are also considevetthwhile, but require a more
controlled open-source development approach. TAsremany improvements that could be
made to JBB simply for current use as a digitatigirsimulator. Additional extensions such
as a logic analyzer for instance have been attahiptprevious student projects. The level of
work required to meet a supportable end-produeiase does however require substantially
more work, something we hope will be supported Iperesource communities with an
interest in electronics teaching and learning. Agaixtension without rebuilding the full
software (ie a plug-in methodology) is being depelt, such that a community of users can
obtain individual features and install them in thaivn local software setup interchangeably.
Tool developers can independently develop modul#sowt needing to co-ordinate with each
other (since the main application is untouched)mitg conventions for chips and tools are
given in the user guides to prevent naming coflithis model of development is extremely
important if an independent community of JBB cdnitors is to be facilitated, as envisaged
by the open source initiative being undertaken now.

5. OPEN-SOURCE INITIATIVE

Currently, new funded work is being completed atrkrainder the HEFCE/JISC Open
Educational Resources Pilot InitiativeThe OER programme seeks to develop existing
learning resources for open distribution via th&kIM learning repository. The Java Bread-
Board project is being placed in this repositorypag of the initiative, allowing a collective
learning resource library to be developed by cbuotdrs (for example learning tutorials,

1 OER : www.heacademy.ac.uk/ourwork/learning/opatemt
2 Jorum repository: www.jorum.ac.uk

23

IADIS International Journal on Computer Science brfdrmation Systems

exercises, and mini-projects). We also intend teettgp an open source repository for the
software itself — allowing significant communityvimlvement in future JBB extensions and
developments. The JBB team is currently considemseof SourceForgeand GPL licensing
as a medium to fulfill this aim. This has includggime rationalization of the tool set and its
internal structure, such as plug-in integratiome$ign tools with the JBB main menus (in fact
the facility to call up any supplementary tool @edn the ‘Tools’ directory now exists). The
new ‘Chiplinterface’ class and a ‘Design Tool iritere class now allows third parties to
independently develop both chip content and toé¢msions without needing to rebuild the
rest of the Java Bread-Board toolset. This is irgdrif JBB is to be used widely by a
community with varied levels of knowledge, as neevelopments can be supplied simply as
‘plug-ins’.

6. CONCLUSIONS

Java Bread-Board is an open-ended software platfatmch we now hope will become an
open-source tool-set and open-learning resourcis rElguires involvement of learners and
teachers to be successful, and effort from the @oemce development community. The
potential of JBB is far larger than has been redlito date, with a single familiar environment
it should be possible to cover a wide range oftedaics and computer-architecture related
topics in a learning context.

Perhaps the greatest success of JBB is the facitthvas students themselves who have
developed this resource, creating a path for opareldpment that we hope to continue to
follow in future projects, including the Current QEunded project, and beyond.

ACKNOWLEDGEMENTS

As mentioned earlier, the JBB project was conceiwgdhe author, and undertaken under his
direction by project students in the UniversityMafrk Computer Science Department, as a
series of final year dissertation projects. Thehduttherefore gratefully acknowledges the
work undertaken in realizing the JBB tool-Set, angarticular by the following former York
University Students: Nicholas Glass, Shaun Gilbedb Page, Stephen Halstead, and Darren
Buse. The latest student contributions for the FR@#ist emulator chip are being carried out
by Kevin Pfister at the time of writing.

The recent open-source revisions and developmears funded under the HEA/JISC/HEFCE
Open Educational Resources Programme (OER). ThaaliJava Bread-Board tools are still
available at www.cs.york.ac.uk/netpro/bboard whastnew site is under development at
www.cs.york.ac.uk/jbb at the time of writing.

% Source Forge url :- www.sourceforge.net

24

A JAVA BREAD-BOARD SIMULATOR: DIGITAL CIRCUIT SIMULATION WITH AN OPEN-
SOURCETOOLSET

REFERENCES

Conference paper or contributed volume

Donazelli et al1999, Learning Electronic Systenesin with a Project Based Course on the Network ,
Proceedings of the 1999 ENABLE Conference, Helsinki, pages 114-121, ISBN 951-647-001-7,
Evitech Digital Press

Bailey 2002, Enabling Network Based Learnirfgyoceedings of the 13th EAIEE 2002, York, ISBN 1-
85911-009-6

Other

Glass 2002, Java Digital BreadBoard Simulator: A (ator for an educational electronics
environment, Final year project report, Universifyyork, Dept. of Computer Science, 2002

Page 2004, Extending and Upgrading the Java BreadibSamulator Tool, Final Year Report,
University of York, Dept. of Computer Science, 2005

Halstead 2005, Circuit Design Tools for a Breadb@&irdulator, Final year project report, Universify o
York 2005

Buse 2008, VHDL Simulator Tool for the Java BreadBo&xaren Buse, University of York 2005

Pfiister2010, Final year project report, UniversifyYork, Dept. of Computer Science, March 2010

25

