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ABSTRACT

For the Radio Channel Allocation (RCA) of wirelesswarks, how to efficiently allocate the limited
number of channels to achieve high throughputdealenging problem. The major difficulty in solgn
the RCA problem is tanaximize the throughput of the entire network udimg min-max optimization
scheme. Usually, it is solved by using various hstigrmethods, which are known to be NP-hard and
have unknown computational scales. In this paperamalyze a typical RCA algorithm for IEEE 802.11
based wireless networks including wireless LANs AMs) and wireless mesh networks, namely, the
distributed heuristic algorithm (DHA) [2], by usirgpth analytical and statistical analysis in teohthe
computational scale (CS) of the method. The CS ddlgarithm is defined as the number of channel
reallocation times until the network reaches a eogence state. By extensive simulations, we
demonstrate that DHA reaches the convergence Btafmite steps. The total number of channel
reallocations is a log-logistic distribution. Basmuall the possible network configurations, we depe
method to estimate the CS. We find that the oveigtler limit of the CS for a network is p(wherel

is the number of access points (APs) or mesh reuteat are responsible for allocating the available
radio channels.
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1. INTRODUCTION

The RCA of the IEEE 802.11 WLANs with multiple assepoints (APs) is an important

problem since the standard only provides a limitachber of radio channels. How to allocate
the limited number of channels dynamically andcégfitly has not been well investigated.
Usually, the RCA problem is formulated as a min-nog@timization problem with respect to

channel utilization [1], [2]. The difficulty in seing the min-max optimization problem is that
it is NP-hard and has no analytical solution. Tfares variousheuristic algorithms have been

proposed, including centralized [3] and distribusdgbrithms [4].

It is known that channel allocations of a WLAN angpacted by many factors, the two
most important of which are the number of APs ia tletwork and the number of stations
associated with an AP. The latter is normally chitee load of an AP. For a centralized
heuristic algorithm (CHA), a network needs to hare overall control center to conduct
channel allocations. The channel allocation antlaeation decisions are made by the control
center based on the load information gathered leydintrol center for each AP. For a
distributive heuristic algorithm (DHA), the networdoes not rely on a control center to
allocate channels. Each AP collects its own loddrination and makes channel reallocation
decisions independently.

In this paper, we compare the DHA to the CHA in §Jd prove that the DHA performs
equally well or even better than the CHA in thersg@s considered in [6]. We further study
the computational scale of the DHA. A theoreticablgsis is given and compared to the
simulation results. Estimates of other cases amagolated by using a statistical method and
by sorting the network settings into several défeérgroups. Finally we present our overall
studies on the computational scales of the DHA.

2. DHA ALGORITHMS

For a WLAN, the coverage area of the network idddig intol sub-areas. For simulation
purpose, the | sub-areas are arranged in a mdtik mws byN columns, wheré = NxN.
Each sub-area is a square with an AP placed atehter of square. Thus there &r&Ps in
the network. We assume that there ar@n-overlapping channels, indexedjbye 1; = {1, 2

. . ., J} available for the APs and stations in the netwdfkr example,) = 3, for the IEEE
802.11g standard based networks. We also assuntethiwse areM stations uniformly
deployed in each sub-area. Each station is fornzagociated with only one AP at the center
of the square and thus assigned with one radionehdny the AP.
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Figure 1. The Coverage Area of an AP

The interference region within an AP is definedlss area between its radio range and a
co-located square area within the radio range,hasvis in Fig. 1. The interference region,
denoted by C1, consists of four parts that belanfptir immediate neighbors of the central
AP. The transmission of any station inside C1,siing the same channel as the central AP,
will cause enough interference to defer the AP&hdmitter or cause collision in the AP’s
receiver.

The load of the AR in channelj is denoted by_ij . It is comprised of two parts: the

number of stations formally associated with the (kPthe square area) plus the number of
stations in the interference region that sharectiennelj with the AP. The RCA goal is to
effectively allocate) non-overlapping channels tcAPs in a distributed fashion such that the
following objective function can be achieved:

m.inm_ax{Lij}, for i1, jOI;
] |

The objective function is to assign the channelshsthat the load of the most heavily
loaded AP is minimized. The min-max operation weult in more resources available for the
most heavily loaded AP during each channel allocagieriod. As the channel is dynamically
allocated and reallocated, the overall networkughput will be improved.

The algorithm should ensure that the following wemditions are satisfied:

1) The traffic demand for an AP from all its assodiagtations should be less than the

maximum data rate the AP can provide.

2) All the traffic can be sent eventually. Therefone thannels are not jammed all the

time.

Since the RCA is a global optimization problem,istusually formulated as an ILP
problem, which is found to be NP-complete or NPdharo avoid the NP-hard problem, we
develop distributive heuristic algorithms to findaboptimal solution locally, namely we seek
to find:

min{L'}, for eachiOl,, jOlI,,
]

where it is assumed that each AP first operategsomaximum throughput by choosing an
optimal window size in terms of the #t4 value [2]. Then, each AP runs the DHA periodically
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and independently. It periodically scans all avd#achannels and maintains a record for each
channel. It will then stay at the channel thabisrid to be locally optimal.

2.1 DHA OQOutline

The DHA can be summarized as follows [2].
1) Randomly assign each AP one of the availablaméla.
2) Based on its current channel assignment, eacbafd@lates its load. The load AP, is
denoted by
3) EachAP, computes the loads of operating on the other titavreative channels. Select
the minimum load and the corresponding channel mumbtenoted bym and Ch,
respectively.
4) If m < n;, AP, switches its channel Gh.
5) Apply Step 3 and Step 4 when an AP senses aapgehof channel among its
neighbors. It can also periodically reallocatedchannels for changing traffic load.
It is noted that we do not consider the possibiligt an AP reallocates to an equal loaded
channel in Step 4. This is a simplification to greblem without losing generality.
The pseudocode of the DHA is listed below:

Part I: Initialization
Comments:  There are | APs in the networkZ NxN, i.e., N columns by N rows)
for {i from 1 tol}
do {
Randomly assign AR channel.
Randomly assign the neighbors of; &R interference relationship vector.
}
Part I1: Main
Comments.  There are) non-overlapping channels available for allocation.
Load(i,j) := the load of APwhen it operates at chanijel
while {At least one AP changes its Channel}
do {
for {i from 1 tol}
do {
for {j from 1 toJ}
do {
CalculateLoad(i,j)

Allocate ARPchannej, which minimized_oad(i,j) amongjs.

}

Part I11: Dynamic Adaption

Comments: A Load(i,j) := the change of the load of A§ince the last channel allocation.
a o:= a predefined constant that indicates the QOSimegent of the network.

Periodically calculate theoad(i,j)

while { A Load(i,j)= a o}

do {
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Repeat the Main progress.

}
Part 1V: End.

2.2 Network Relationship Model

In this section, we reveal the essential relatigndietween an AP and its neighbors by
assigning interference coefficients to its neiglsbdihe network has | APs arranged in an NxN
matrix. In this way, any AP has four neighbors, eptcfor those APs in the network edge.

Suppose the four neighbors of one AP have intarferefactors that can be ranked in

ascending order as: < b < ¢ < d, as shown in Fig 2These coefficients just indicate the

strength of the influence of the neighbors and dbneed to be exactly the number of nodes
that fall into the corresponding regions.

Factor ¢ Neighbor

| Contral |
|Factor b Neighbor AT

Factor & Neighbor

Factor d Newghhor

Figure 2. The neighboring APs of an AP.

We can model the one-one (e.g. a v.s. b), and tveo{®.g. a+tb v.s. ¢) relationship
between the central AP’s four neighbors to be 58siiide combinations. We do not consider
two-two relationship (e.g. a+c v.s. b+d) and thoee- relationship (e.g. atb+c v.s. d) since
those relationships will not affect the way the tcain AP reallocating its channel. For
example, if we have ¢ < atb < d, then the centilIvill reallocate its channel to share the
channel with the neighbor that has the interferefiactor "c”. However, suppose we have
neighbors "a” and "c” share one channel while "bida’d” share another, whether a + ¢
greater than, equal to or less than b + d, theaefP will switch to the third channel.

All the possible combinations are shown in TabldHe first column shows the sequence
numbers of the neighbor relationships. The secamdthe eighth columns show the
relationships between the four neighbors. Note tfyatneans greater than, “e” means equal,
and “I"” means less than. For the purpose of conmmpsitaulation, we need to digitize the
relationships. We assiga, b, ¢, d each an integer value according to their relatigpss
specified by the previous 7 columns. The last fmlumns show the digitized result.
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Table 1. Digital 1-1/1-2 neighbor relationship &bl

a b c atkattatcbtca b ¢ d ab c attattatcb+ca b ¢ d

VS VS VS VS VS VS VS VS VS VS VS VS VS VS

b ¢c dc d d d b ¢c dc d d d
1 e e e g g g g 1 11 28 | | e 1 I I 1 1 2 4
2 1 e e e e e g 0 1 1 p 27 e | e e 1 1 2 3
3 g g 9 g 1 2 2 2 28 e | g g 2 2 4 5
4 e | e | I e e 0 0 1 1 29 g | I I 2 2 3 6
5 I | g g 2 2 5 H 30 g | e e 2 2 3 5
6 e e g g 1 1 2 ¢ 31 g | g g 3 3 5 7
7 g 9 9 g 2 2 3 3 32 g e 9 g 2 2 3 4
8 e e | e | | I 0 0 0 1 33 g g g g 3 3 4 5
9 g e e e 1 1 1 p 3 1| I 1 | I I 1 3 5 9
10 g | I I 1 1 1 4] 35 I I Il e 1 3 5 8
111 1 e | I e g 0 1 2 2 36 I I Il g 1 3 5 7
12 I I g g 1 2 4 4 37 I I e g 1 3 5 6
13 e e g g 1 2 3 3 38 I I g g 2 3 6 7
14 g 9 9 g 2 3 4 4 39 e | I I 1 3 4 8
151 e | e | I I 0 1 1 3| 40 e | I e 1 3 4 7
16 e | I e 0 1 1 22 41 e | I g 1 3 4 6
17 g | I I 1 2 2 5| 42 e | e g 1 3 4 5
18 g | I e 1 2 2 4 43 e | g g 2 3 5 6
19 g | I g 2 4 4 7| 44 g | I I 2 3 4 8
20 g e e g 1 2 2 3 45 g | Il e 2 3 4 7
21 g 9 g g 2 3 3 4 46 g | Il g 2 3 4 6
22 e | | | I I I 0 0 1 2| 47 g | e g 3 4 5 8
23 I I Il e 1 1 3 5| 48 g | g g 3 4 6 8
24 I I e e 1 1 3 4 49 g e g g 2 3 4 5
25 I I g g 2 2 6 7 50 g g g g 3 4 5 6

It is natural that there is more than one way fresent a single relationship with integer
vectors. For example, thd 8ow represents the relationships= b, b=c,c<d,a+b=c, a
+b<d,a+c<d,b+c<dThis row may be digitized to 0, 0, 0, 1 or 0002. To simplify
the digitization result, we select the smalleségatr vector, which is 0, 0, 0, 1. Similarly, the
g row represents the relationships: a = b,
b=c,c<d,a+tb>c,a+b=d,a+c=d,b€=d. Clearly, it may be digitized to 1, 1, 1,
2 or 2, 2,2, 4. We once again select the smallestor 1, 1, 1, 2 among all the candidate
vectors.

2.3 Computational Scale Estimation based on the Central Limit
Theorem

In this section, we make an attempt to analyzesitmplest relationship between the neighbors
resulting in the analytical probability of the uppienit of the computational scale. The focus
is placed on case No. 8.

116



STUDIES ON THE COMPUTATIONAL SCALE OF A DISTRIBUTED RCALGORITHM

The simplest network setting of case No. 8 has faighbor factora =b=c=0,d = 1.

In this case the central AP’s channel selectioworily affected by the one neighbor with
relation factor 1. The relationships between thes ABn be sorted into three basic classes as
follows.

1) Paired: two APs have the relation factor “1"eath other.

2) Dependent on Paired: the AP’s factor “1” is goasred AP.

3) Other.

These three classes are examined one by one fallineing.

For the first class, two APs have the relationdacil” on each other. Since we do not
consider the APs on the border and each AP hamfitghbors, theR(AP is one of the paired
APs) = 1/4

Initially, every AP is randomly assigned a charfinein the three independent channels (1,
6, 11), namely R, G, B. Then every AP searcheghallthree channels and stays with its
original channel with a probability denoted BY0|l), meaning O change under the initial
condition. Accordingly, it changes its channel vatiprobabilityP(1|l).

Since the number of channels is three, the twoedafPs share the same channel with
probability 1/3. Only one of them needs channelaeation.

We haveP(1]l, classl) = 1/3 x 1/2 = 1/6 andP(Q|l, class1) = 1 — P(1|l, class1) = 5/6 .
There will not be more than one channel reallocatuithin the pair.

For the second class, central AP’s neighbor ofofatt” is one of the paired APs. We
should exclude the paired APs, so we select franrebt 3/4 APs. The probability of having a
paired AP as the factor “1” neighbor is 1/4. Thhs proportion of the second class APs is
calculated by 1/4& 3/4 = 3/16.

In this classP(0|l, class2) = 2/3 andP(1]1, class2) = 1/3.

Besides the reallocation under the initial conditid one AP’s neighbor of factor “1”
reallocates its channel (with probabilB(1|l, class 1)) to share the same channel with the
central AP (with probability 1/2, for reallocatioanly two other channels are available), the
central AP has to reallocate (again). The probgbitif that situation, defined as the
reallocation due to the neighbor of factor “1”sllecation, is calculated by(1|NR, clas?)
= P(1l, classl) x 1/2=1/12.

Then we can calculate the probability of 0/1/2 etedmeallocation(s) of one AP in class 2.

1) P(O|class2) =P(Q|l, class2) x (1 - P(1|NR, clas))=2/3x (1-1/12) = 11/18.

2) P(1jclass2) =P(1]l, class2) x (1 — P(1|NR, clas)) +P(Q|l, class2) x P(1NR, clas)
= 13/36.

3) P(2|class2) =P(1]l, class2) x P(1INR, clas?) = 1/36.

For the third class, we hawO|l, class3) = 2/3andP(1]l, class3) = 1/3 as in the second
class, whileP(1|NR, class3) = 1/2x P(1]1, class3) = 1/6.

Since the probability is very small for an AP torfpem three or more channel
reallocations in this sparse network setting, weuas there are no more than three
reallocations for one AP.

We summarize and enter the results in Table 2.



IADIS International Journal on Computer Science brfdrmation Systems

Table 2. Neighbor relationship case 8 study table

Number of Channel Class 1 Class 2 Class 3 Total Simulation
Reallocations P=1/4 P=3/16 P=9/16 probability result

0 5/6 11/18 5/9 0.635 0.6436

1 1/6 13/36 7118 0.328 0.3208

2 0 1/36 1/18 0.0365 0.0340

The Central Limit Theorem enables us to estimagupper limit of the computational
scale of a network purely tied together by theti@tships encompassed by case No. 8. The
average number of channel allocation of one ARlisutated by

2
X =) (X;xP(X;)) = 0401
i=0
where X; = 0,1, 2. The variance is obtained as

2
o= Z(Xi ~X)2xP(X;) =0.5596
i=0
For the network ol APs, the average computational scale may be appated by a
normal distributionv (0.401,0.5596/ \/T). The upper limit of the 95% confidence interval

(Cl) is (0.401 + 1960 %,[1).

To verify this analysis, we simulate with a netwosith 50 x 50 APs. The neighbor
relation vector is selected to be [0 0 0 1].r&move the effects of the border, we choose the
lines from 11 to 40, thereby resulting in 900 AR#nlg included. We fit the simulation results
to a normal distribution model as shown in Fig. 3.

16.2526

15r £\ — S SUMdata |]

=

oF i

—_

Density

0 . . .
035 04 0.45 0.5
Average Number of Channel Reallocations for One AP

Figure 3. Normal fit of the computation scale ofe#No. 8

The fitted values are shown in Table 3. It can éensthat the simulation results are in
exceedingly good agreement with the analytical lteslihe minor error is mainly due to the
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assumption that one AP can take two channel altotatat most. The error does not
significantly affect our results and therefore bameglected.

Table 3. Statistical fit results of the average patational scale of case No. 8

Parameter Estimate Std. Err. Analy. Result
u 0.393866 0.000257736 0.401
o 0.0257736 0.000182261 0.0187

It is extremely difficult to analyze all 50 relatiships. Therefore, we study the property of
other relationships by simulation only. The simigiatresults are discussed in the Appendix.
Notice that the maximum mean and variance are sghchthe last group witha<b <c<c, a
+ b > ¢, whergu = 0.7483 ando = 0.0326.

However, it is recognized that a simple network posed of only one relationship does
not exist. We simulate 35 groups of network settirigpr each AP, we randomly choose one
relationship vector out of the fifty relationshifgs remove the border effects, which decrease
the average mean and variance of the computattmadé, we only count the 36 nodes in the
center (namely rows 3 to 8 and columns 3 to 8). Atwe plots of the computational scale of
the thirty five groups are shown in Fig. 4.

Values

0 5 10 15 20 25 30 35
Column Number

Figure 4. The box plot of total computational saaf&5 groups

We use the one-way ANOVA (analysis of variancejigtiastool in MATLAB to verify
that different initial neighbor relationships ofetPs will not affect the distribution of the
computational scales. One-way analysis of varigA®OVA) tests allow the determination if
one given factor, such as the initial neighbortrefeships of the APs, has a significant effect
on the results, such as the computational scalgsv@lueresulting from a one-way ANOVA
test indicates whether the testing factor is sigaift or not. The ANOVA test enables all
groups to be compared with each other simultangaather than individually by thietests.

The null hypothesis of the ANOVA test states tlnetreé are no differences between means
of different groups. In the case under considenatice consider the null hypothesis to be that
the computational scales of all the groups are fitoensame distribution. Since we choose the
number of instances to be a very large numberrahdom errors are supposed to follow a
normal distribution and hence satisfy the one-wdOVA assumption.

The Matlab ANOVA function produces the results fabed in Table 4. The contents of
each column in the table are described as follows:

1) The first column shows the source of the variapilit
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2) The second column shows the sum of squares (SShodegch source. Rows signify
the pertinent quantities between groups, whereasr Brefers to the pertinent
guantities within groups.

3) The third column shows the degrees of freedomgsdpciated with each source.

4) The fourth column shows the mean squares (MS) dh esource, which is equal to
the ratio SS9 df.

5) The fifth column shows the F statistic, which ie tiatio of the mean squares.

6) The sixth column shows the- value which is derived from the cumulative
distribution function of F.

If the p-valueis smaller than a certain limit, say 0.05, thel fylpothesis is rejected.

Otherwise, the null hypothesis is accepted wittbphility p.

The results appear in Table 4 confirms that theprdgational scales of all 36 APs in every

group are of the same distribution.

Table 4. ANOVA table of 35 mix-relationship groups

Source SS df MS F Pr>F
Rows 1252.05 34 36.825 1.08 0.3463
Error 11950934 349965 34.1489
Total 11952186 349999

To achieve more accurate results, we integratéhall35 groups and fit the result with a
statistical model. In this study, a log-logistic deb is selected and the quantile plot is shown
in Fig. 5.

12 ——Simulation Data
| | ==Log-Logistic Fit |
)
Zo0s
0.8}
0.4
02 04 08 08 1

Probability
Figure 5. The Quantile Plot of the Pooled Data

It is observed that the result agrees nicely wlid simulation work reported in [6]. The
computation scale of mixed relationship is a logidtic distribution rather than a normal
distribution. This is because the means and vaemraf different relationship groups are
different. The APs with small mean values tenditts lthe probability density function curve
to the left from a normal distribution.

Our goal is to find out an upper limit of the cortgttion scale. It is natural that

CSmixedreIationslip < CSmax(singlerelationslip)
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whereCSstands for computational scale. Hence, the upper dif the DHA is the upper limit
of the 95% CI of the computation scale which is rmed by the integer ceiling

of (0.7438x | + :I.96><0.0326/T) , Wherel is the number of APs in the network.

3. CONCLUSION

In this paper, we analyze the computational scke typical RCA algorithm, namely DHA,
and compare it with the simulation results. Then deenonstrate the effectiveness of the
statistical method in predicting the computatioszdle of DHA. For a network dfAPs, by
extrapolating the simulation results based onsdiedil analysis, we find that the upper limit of
the 95% CIl of the computation scale of the netwigkbounded by integer ceiling

of (0.7438x 1 +196xo.0326/T). This estimate is within the region 6{1) and is much
smaller than the complete combination, nan@(y).

APPENDI X

In this appendix, we present a simplification of gtatistics model for the relationship matrix.
The relationship matrix includes 50 rows, correspog to 50 different relationships.
However, in calculating the computational scalansaelationships yield similar results and
therefore can be combined as one case. The MATL@#Bvare tool, ANOVA, is used to
analyze the statistical properties of the differeglationships. Those relationships having
similar properties are combined. The results amersarized in Table 5.

Table 5. ANOVA test result of combining similaragbnship cases

Group No. 1 2 3 4 5 6 7 8 9

Combined cases 44-50 39-43 34-38 29-33 26-2¢ 2328 1721 1516 9,10

ANOVA testresul 0.807 0.788 0.955 0.055 0.455 0.921 0.892 0.441 0.456
(p-value)

No more cases can be combined. Consequently, we thev simplified 22 groups as
shown in Table 6.
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Table 6. Simplified relationship groups

a b c a+b a+c b+c a b c¢ atb atc b+c

VS VS VS VS VS VS L o VS VS VS VS VS VS U o

b ¢ d c d d b ¢ d ¢ d d
1 e e e g 0.600.018 12 e 0.680.026
2 | e e e 0.520.014 13 g 0.720.028
3 g 0.67 0.023 14 | e I e 0.580.019
4 e | e | e 0.60 0.023 15 g 0.720.029
5 I g 0.68 0.025 16 e I I I | 0.60 0.024
6 e 0.66 0.024 17 | eg 0.680.025
7 g 0.69 0.026 18 e 0.670.025
8 e e | e 0.390.015 19 g 0.720.029
9 g 0.67 0.023 20 | I I I 0.71 0.028
10 | 1 e | e 0.66 0.026 21 e 0.700.028
11 I g 0.70 0.027 22 g 0.750.033
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