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ABSTRACT 

For the Radio Channel Allocation (RCA) of wireless networks, how to efficiently allocate the limited 
number of channels to achieve high throughput is a challenging problem. The major difficulty in solving 
the RCA problem is to maximize the throughput of the entire network using the min-max optimization 
scheme. Usually, it is solved by using various heuristic methods, which are known to be NP-hard and 
have unknown computational scales. In this paper, we analyze a typical RCA algorithm for IEEE 802.11 
based wireless networks including wireless LANs (WLANs) and wireless mesh networks, namely, the 
distributed heuristic algorithm (DHA) [2], by using both analytical and statistical analysis in terms of the 
computational scale (CS) of the method. The CS of an algorithm is defined as the number of channel 
reallocation times until the network reaches a convergence state. By extensive simulations, we 
demonstrate that DHA reaches the convergence state in finite steps. The total number of channel 
reallocations is a log-logistic distribution. Based on all the possible network configurations, we develop a 
method to estimate the CS. We find that the overall upper limit of the CS for a network is O(I), where I 
is the number of access points (APs) or mesh routers that are responsible for allocating the available 
radio channels. 
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1. INTRODUCTION 

The RCA of the IEEE 802.11 WLANs with multiple access points (APs) is an important 
problem since the standard only provides a limited number of radio channels. How to allocate 
the limited number of channels dynamically and efficiently has not been well investigated. 
Usually, the RCA problem is formulated as a min-max optimization problem with respect to 
channel utilization [1], [2]. The difficulty in solving the min-max optimization problem is that 
it is NP-hard and has no analytical solution. Therefore, various heuristic algorithms have been 
proposed, including centralized [3] and distributed algorithms [4]. 

It is known that channel allocations of a WLAN are impacted by many factors, the two 
most important of which are the number of APs in the network and the number of stations 
associated with an AP. The latter is normally called the load of an AP. For a centralized 
heuristic algorithm (CHA), a network needs to have an overall control center to conduct 
channel allocations. The channel allocation and reallocation decisions are made by the control 
center based on the load information gathered by the control center for each AP. For a 
distributive heuristic algorithm (DHA), the network does not rely on a control center to 
allocate channels. Each AP collects its own load information and makes channel reallocation 
decisions independently. 

In this paper, we compare the DHA to the CHA in [6] and prove that the DHA performs 
equally well or even better than the CHA in the scenarios considered in [6]. We further study 
the computational scale of the DHA. A theoretical analysis is given and compared to the 
simulation results. Estimates of other cases are extrapolated by using a statistical method and 
by sorting the network settings into several different groups. Finally we present our overall 
studies on the computational scales of the DHA. 

2. DHA ALGORITHMS 

For a WLAN, the coverage area of the network is divided into I sub-areas. For simulation 
purpose, the I sub-areas are arranged in a matrix of N rows by N columns, where I = NxN. 
Each sub-area is a square with an AP placed at the center of square. Thus there are I APs in 
the network. We assume that there are J non-overlapping channels, indexed by j, j∈ IJ = {1, 2 
. . ., J} available for the APs and stations in the network. For example, J = 3, for the IEEE 
802.11g standard based networks. We also assume that there are M stations uniformly 
deployed in each sub-area. Each station is formally associated with only one AP at the center 
of the square and thus assigned with one radio channel by the AP. 
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Figure 1. The Coverage Area of an AP 

The interference region within an AP is defined as the area between its radio range and a 
co-located square area within the radio range, as shown in Fig. 1. The interference region, 
denoted by C1, consists of four parts that belong to four immediate neighbors of the central 
AP. The transmission of any station inside C1, if using the same channel as the central AP, 
will cause enough interference to defer the AP’s transmitter or cause collision in the AP’s 
receiver. 

The load of the AP i in channel j is denoted by j
iL . It is comprised of two parts: the 

number of stations formally associated with the AP (in the square area) plus the number of 
stations in the interference region that share the channel j with the AP. The RCA goal is to 
effectively allocate J non-overlapping channels to I APs in a distributed fashion such that the 
following objective function can be achieved: 

JI
j
i

ij
IjIiL ∈∈ ,for,}{maxmin  

The objective function is to assign the channels such that the load of the most heavily 
loaded AP is minimized. The min-max operation will result in more resources available for the 
most heavily loaded AP during each channel allocation period. As the channel is dynamically 
allocated and reallocated, the overall network throughput will be improved. 

The algorithm should ensure that the following two conditions are satisfied: 
1） The traffic demand for an AP from all its associated stations should be less than the 

maximum data rate the AP can provide. 
2） All the traffic can be sent eventually. Therefore the channels are not jammed all the 

time. 
Since the RCA is a global optimization problem, it is usually formulated as an ILP 

problem, which is found to be NP-complete or NP-hard. To avoid the NP-hard problem, we 
develop distributive heuristic algorithms to find a suboptimal solution locally, namely we seek 
to find: 

,,eachfor  ,}{min JI
j
i

j
IjIiL ∈∈  

where it is assumed that each AP first operates on its maximum throughput by choosing an 
optimal window size in terms of the its M value [2]. Then, each AP runs the DHA periodically 
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and independently. It periodically scans all available channels and maintains a record for each 
channel. It will then stay at the channel that is found to be locally optimal. 

2.1 DHA Outline 

The DHA can be summarized as follows [2].  
1) Randomly assign each AP one of the available channels. 
2) Based on its current channel assignment, each AP calculates its load. The load of APi is 

denoted by ni. 
3) Each APi computes the loads of operating on the other two alternative channels. Select 

the minimum load and the corresponding channel number, denoted by mi and Chi, 
respectively. 

4) If mi < ni, APi switches its channel to Chi。 

5) Apply Step 3 and Step 4 when an AP senses any change of channel among its 
neighbors. It can also periodically reallocate the channels for changing traffic load. 

It is noted that we do not consider the possibility that an AP reallocates to an equal loaded 
channel in Step 4. This is a simplification to the problem without losing generality. 

The pseudocode of the DHA is listed below:  
  
Part I: Initialization  
Comments:  There are I APs in the network (I = NxN, i.e., N columns by N rows) 
for  { i  from 1 to I} 
do { 

Randomly assign APi a channel. 
Randomly assign the neighbors of APi an interference relationship vector. 

} 
Part II: Main 
Comments:  There are J non-overlapping channels available for allocation. 
  Load(i,j) := the load of APi when it operates at channel j. 
while {At least one AP changes its Channel} 
do { 
 for { i  from 1 to I} 

do  { 
for  { j  from 1 to J} 
do  {  

Calculate Load(i,j) 
} 

        Allocate APi channel j, which minimizes Load(i,j) among js. 
        } 

} 
Part III: Dynamic Adaption 
Comments:  ΔLoad(i,j) := the change of the load of APi since the last channel allocation. 

α0:= a predefined constant that indicates the QOS requirement of the network. 
Periodically calculate the Load(i,j) 
while {ΔLoad(i,j )≥α0} 
do { 
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 Repeat the Main progress. 
} 

Part IV: End. 

2.2 Network Relationship Model 

In this section, we reveal the essential relationship between an AP and its neighbors by 
assigning interference coefficients to its neighbors. The network has I APs arranged in an NxN 
matrix. In this way, any AP has four neighbors, except for those APs in the network edge. 
Suppose the four neighbors of one AP have interference factors that can be ranked in 
ascending order as: a ≤ b ≤ c ≤ d, as shown in Fig 2. These coefficients just indicate the 
strength of the influence of the neighbors and do not need to be exactly the number of nodes 
that fall into the corresponding regions.  
 

 

Figure 2. The neighboring APs of an AP. 

We can model the one-one (e.g. a v.s. b), and two-one (e.g. a+b v.s. c) relationship 
between the central AP’s four neighbors to be 50 possible combinations. We do not consider 
two-two relationship (e.g. a+c v.s. b+d) and three-one relationship (e.g. a+b+c v.s. d) since 
those relationships will not affect the way the central AP reallocating its channel. For 
example, if we have c < a+b < d, then the central AP will reallocate its channel to share the 
channel with the neighbor that has the interference factor ”c”. However, suppose we have 
neighbors ”a” and ”c” share one channel while ”b” and ”d” share another, whether a + c 
greater than, equal to or less than b + d, the central AP will switch to the third channel. 

All the possible combinations are shown in Table 1. The first column shows the sequence 
numbers of the neighbor relationships. The second to the eighth columns show the 
relationships between the four neighbors. Note that “g” means greater than, “e” means equal, 
and “l” means less than. For the purpose of computer simulation, we need to digitize the 
relationships. We assign a, b, c, d each an integer value according to their relationships 
specified by the previous 7 columns. The last four columns show the digitized result. 
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Table 1. Digital 1-1/1-2 neighbor relationship table 

 a 
vs 
b 

b 
vs 
c 

c 
vs 
d 

a+b
vs 
c 

a+b
vs 
d 

a+c
vs 
d 

b+c
vs 
d 

a b c d  a 
vs 
b 

b 
vs 
c 

c 
vs 
d 

a+b
vs 
c 

a+b
vs 
d 

a+c
vs 
d 

b+c
vs 
d 

a b c d 

1 e e e g g g g 1 1 1 1 26 e l l e l l l 1 1 2 4 
2 l e e e e e g 0 1 1 1 27    e l e e 1 1 2 3 
3    g g g g 1 2 2 2 28    e l g g 2 2 4 5 
4 e l e l l e e 0 0 1 1 29    g l l l 2 2 3 6 
5    l l g g 2 2 5 5 30    g l e e 2 2 3 5 
6    e e g g 1 1 2 2 31    g l g g 3 3 5 7 
7    g g g g 2 2 3 3 32    g e g g 2 2 3 4 
8 e e l e l l l 0 0 0 1 33    g g g g 3 3 4 5 
9    g e e e 1 1 1 2 34 l l l l l l l 1 3 5 9 
10    g l l l 1 1 1 4 35    l l l e 1 3 5 8 
11 l l e l l e g 0 1 2 2 36    l l l g 1 3 5 7 
12    l l g g 1 2 4 4 37    l l e g 1 3 5 6 
13    e e g g 1 2 3 3 38    l l g g 2 3 6 7 
14    g g g g 2 3 4 4 39    e l l l 1 3 4 8 
15 l e l e l l l 0 1 1 3 40    e l l e 1 3 4 7 
16    e l l e 0 1 1 2 41    e l l g 1 3 4 6 
17    g l l l 1 2 2 5 42    e l e g 1 3 4 5 
18    g l l e 1 2 2 4 43    e l g g 2 3 5 6 
19    g l l g 2 4 4 7 44    g l l l 2 3 4 8 
20    g e e g 1 2 2 3 45    g l l e 2 3 4 7 
21    g g g g 2 3 3 4 46    g l l g 2 3 4 6 
22 e l l l l l l 0 0 1 2 47    g l e g 3 4 5 8 
23    l l l e 1 1 3 5 48    g l g g 3 4 6 8 
24    l l e e 1 1 3 4 49    g e g g 2 3 4 5 
25    l l g g 2 2 6 7 50    g g g g 3 4 5 6 

 
It is natural that there is more than one way to represent a single relationship with integer 

vectors. For example, the 8th row represents the relationships: a = b, b = c, c < d, a + b = c, a 
+ b < d, a + c < d, b + c < d. This row may be digitized to 0, 0, 0, 1 or 0, 0, 0, 2. To simplify 
the digitization result, we select the smallest integer vector, which is 0, 0, 0, 1. Similarly, the 
9th row represents the relationships: a = b,  
b = c, c < d, a + b > c, a + b = d, a + c = d, b + c = d. Clearly, it may be digitized to 1, 1, 1, 
2 or 2, 2, 2, 4. We once again select the smallest vector 1, 1, 1, 2 among all the candidate 
vectors. 

2.3 Computational Scale Estimation based on the Central Limit 
Theorem 

In this section, we make an attempt to analyze the simplest relationship between the neighbors 
resulting in the analytical probability of the upper limit of the computational scale. The focus 
is placed on case No. 8. 
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The simplest network setting of case No. 8 has four neighbor factors a = b = c = 0, d = 1. 
In this case the central AP’s channel selection is only affected by the one neighbor with 
relation factor 1. The relationships between the APs can be sorted into three basic classes as 
follows. 

1) Paired: two APs have the relation factor “1” on each other. 
2) Dependent on Paired: the AP’s factor “1” is on a paired AP. 
3) Other. 
These three classes are examined one by one in the following. 
For the first class, two APs have the relation factor “1” on each other. Since we do not 

consider the APs on the border and each AP has four neighbors, then P(AP is one of the paired 
APs) = 1/4 . 

Initially, every AP is randomly assigned a channel from the three independent channels (1, 
6, 11), namely R, G, B. Then every AP searches all the three channels and stays with its 
original channel with a probability denoted by P(0|I), meaning 0 change under the initial 
condition. Accordingly, it changes its channel with a probability P(1|I). 

Since the number of channels is three, the two paired APs share the same channel with 
probability 1/3. Only one of them needs channel reallocation.  

We have P(1|I, class 1) = 1/3 × 1/2 = 1/6 and P(0|I, class 1) = 1 − P(1|I, class 1) = 5/6 . 
There will not be more than one channel reallocation within the pair. 

For the second class, central AP’s neighbor of factor “1” is one of the paired APs. We 
should exclude the paired APs, so we select from the rest 3/4 APs. The probability of having a 
paired AP as the factor “1” neighbor is 1/4. Thus the proportion of the second class APs is 
calculated by 1/4 × 3/4 = 3/16. 

In this class, P(0|I, class 2) = 2/3 and P(1|I, class 2) = 1/3. 
Besides the reallocation under the initial condition, if one AP’s neighbor of factor “1” 

reallocates its channel (with probability P(1|I, class 1)) to share the same channel with the 
central AP (with probability 1/2, for reallocation, only two other channels are available), the 
central AP has to reallocate (again). The probability of that situation, defined as the 
reallocation due to the neighbor of factor “1”’s reallocation, is calculated by P(1|NR, class 2) 
= P(1|I, class 1) × 1/2 = 1/12. 

Then we can calculate the probability of 0/1/2 channel reallocation(s) of one AP in class 2. 
1) P(0|class 2) = P(0|I, class 2) × (1 − P(1|NR, class 2)) = 2/3 × (1 − 1/12) = 11/18. 
2) P(1|class 2) = P(1|I, class 2) × (1 − P(1|NR, class 2)) + P(0|I, class 2) × P(1|NR, class 2) 

= 13/36. 
3) P(2|class 2) = P(1|I, class 2) × P(1|NR, class 2) = 1/36. 
For the third class, we have P(0|I, class 3) = 2/3 and P(1|I, class 3) = 1/3 as in the second 

class, while P(1|NR, class 3) = 1/2 × P(1|I, class 3) = 1/6.  
Since the probability is very small for an AP to perform three or more channel 

reallocations in this sparse network setting, we assume there are no more than three 
reallocations for one AP.  

We summarize and enter the results in Table 2. 
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Table 2. Neighbor relationship case 8 study table 

Number of Channel 
Reallocations 

Class 1 
P=1/4 

Class 2 
P=3/16 

Class 3 
P=9/16 

Total 
probability 

Simulation 
result 

0 5/6 11/18 5/9 0.635 0.6436 
1 1/6 13/36 7/18 0.328 0.3208 
2 0 1/36 1/18 0.0365 0.0340 

 
The Central Limit Theorem enables us to estimate the upper limit of the computational 

scale of a network purely tied together by the relationships encompassed by case No. 8. The 
average number of channel allocation of one AP is calculated by 

401.0))((
2

0

=×=∑
=

ii
i

XPXX  

where 210 ,,X i = . The variance is obtained as 

55960)()( 2
2

0

.XPXX ii

i

=×−= ∑
=

σ  

For the network of I APs, the average computational scale may be approximated by a 

normal distribution )559604010( I/.,.N . The upper limit of the 95% confidence interval 

(CI) is )9614010( I.I. ×+ σ . 

To verify this analysis, we simulate with a network with 50 × 50 APs. The neighbor 
relation vector is selected to be [0  0  0  1]. To remove the effects of the border, we choose the 
lines from 11 to 40, thereby resulting in 900 APs being included. We fit the simulation results 
to a normal distribution model as shown in Fig. 3. 

 
Figure 3. Normal fit of the computation scale of case No. 8 

The fitted values are shown in Table 3. It can be seen that the simulation results are in 
exceedingly good agreement with the analytical results. The minor error is mainly due to the 



STUDIES ON THE COMPUTATIONAL SCALE OF A DISTRIBUTED RCA ALGORITHM 

assumption that one AP can take two channel allocations at most. The error does not 
significantly affect our results and therefore can be neglected.  

Table 3. Statistical fit results of the average computational scale of case No. 8  

Parameter   Estimate    Std. Err. Analy. Result 
μ           0.393866   0.000257736 0.401 

σ      0.0257736   0.000182261 0.0187 

 
It is extremely difficult to analyze all 50 relationships. Therefore, we study the property of 

other relationships by simulation only. The simulation results are discussed in the Appendix. 
Notice that the maximum mean and variance are reached in the last group with a < b < c < c, a 
+ b > c, where µ = 0.7483 and σ  = 0.0326. 

However, it is recognized that a simple network composed of only one relationship does 
not exist. We simulate 35 groups of network settings. For each AP, we randomly choose one 
relationship vector out of the fifty relationships. To remove the border effects, which decrease 
the average mean and variance of the computational scale, we only count the 36 nodes in the 
center (namely rows 3 to 8 and columns 3 to 8). The box plots of the computational scale of 
the thirty five groups are shown in Fig. 4. 

 

 
Figure 4. The box plot of total computational scale of 35 groups 

We use the one-way ANOVA (analysis of variance) statistics tool in MATLAB to verify 
that different initial neighbor relationships of the APs will not affect the distribution of the 
computational scales. One-way analysis of variance (ANOVA) tests allow the determination if 
one given factor, such as the initial neighbor relationships of the APs, has a significant effect 
on the results, such as the computational scales. A p-value resulting from a one-way ANOVA 
test indicates whether the testing factor is significant or not. The ANOVA test enables all 
groups to be compared with each other simultaneously rather than individually by the t-tests. 

The null hypothesis of the ANOVA test states that there are no differences between means 
of different groups. In the case under consideration, we consider the null hypothesis to be that 
the computational scales of all the groups are from the same distribution. Since we choose the 
number of instances to be a very large number, the random errors are supposed to follow a 
normal distribution and hence satisfy the one-way ANOVA assumption. 

The Matlab ANOVA function produces the results tabulated in Table 4. The contents of 
each column in the table are described as follows:  

1) The first column shows the source of the variability. 
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2) The second column shows the sum of squares (SS) due to each source. Rows signify 
the pertinent quantities between groups, whereas Error refers to the pertinent 
quantities within groups. 

3) The third column shows the degrees of freedom (df) associated with each source. 
4) The fourth column shows the mean squares (MS) for each source, which is equal to 

the ratio SS / df. 
5) The fifth column shows the F statistic, which is the ratio of the mean squares. 
6) The sixth column shows the p- value, which is derived from the cumulative 

distribution function of F. 
If the p-value is smaller than a certain limit, say 0.05, the null hypothesis is rejected. 

Otherwise, the null hypothesis is accepted with probability p. 
The results appear in Table 4 confirms that the computational scales of all 36 APs in every 

group are of the same distribution. 

Table 4. ANOVA table of 35 mix-relationship groups 

Source SS df MS F Pr > F 
Rows 1252.05 34 36.825 1.08 0.3463 
Error 11950934 349965 34.1489   
Total 11952186 349999    

 
To achieve more accurate results, we integrate all the 35 groups and fit the result with a 

statistical model. In this study, a log-logistic model is selected and the quantile plot is shown 
in Fig. 5. 

    

Figure 5. The Quantile Plot of the Pooled Data 

It is observed that the result agrees nicely with the simulation work reported in [6]. The 
computation scale of mixed relationship is a log-logistic distribution rather than a normal 
distribution. This is because the means and variances of different relationship groups are 
different. The APs with small mean values tend to bias the probability density function curve 
to the left from a normal distribution. 

Our goal is to find out an upper limit of the computation scale. It is natural that 

ip)relationsh (singlemaxiprelationsh mixed CSCS <  
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where CS stands for computational scale. Hence, the upper limit of the DHA is the upper limit 
of the 95% CI of the computation scale which is bounded by the integer ceiling 

of )0326096174380( I..I. ×+× , where I is the number of APs in the network. 

3. CONCLUSION 

In this paper, we analyze the computational scale of a typical RCA algorithm, namely DHA, 
and compare it with the simulation results. Then we demonstrate the effectiveness of the 
statistical method in predicting the computational scale of DHA. For a network of I APs, by 
extrapolating the simulation results based on statistical analysis, we find that the upper limit of 
the 95% CI of the computation scale of the network is bounded by integer ceiling 

of )0326096174380( I..I. ×+× . This estimate is within the region of O(I) and is much 

smaller than the complete combination, namely O(3I). 

APPENDIX 

In this appendix, we present a simplification of the statistics model for the relationship matrix. 
The relationship matrix includes 50 rows, corresponding to 50 different relationships. 
However, in calculating the computational scale, some relationships yield similar results and 
therefore can be combined as one case. The MATLAB software tool, ANOVA, is used to 
analyze the statistical properties of the different relationships. Those relationships having 
similar properties are combined. The results are summarized in Table 5. 

Table 5. ANOVA test result of combining similar relationship cases 

Group No. 1 2 3 4 5 6 7 8 9 
Combined cases 44–50 39–43 34–38 29–33 26–28 23–25 17–21 15,16 9,10 

ANOVA test result
 (p-value) 

0.807 0.788 0.955 0.055 0.455 0.921 0.892 0.441 0.456 

 
No more cases can be combined. Consequently, we have the simplified 22 groups as 

shown in Table 6. 
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Table 6. Simplified relationship groups 

 
a 
vs 
b 

b 
vs 
c 

c 
vs 
d 

a+b 
vs 
c 

a+c 
vs 
d 

b+c 
vs 
d 

μ σ  
a 
vs 
b 

b 
vs 
c 

c 
vs 
d 

a+b 
vs 
c 

a+c 
vs 
d 

b+c 
vs 
d 

μ σ 

1 e e e g   0.60 0.018 12    e   0.68 0.026 
2 l e e e   0.52 0.014 13    g   0.72 0.028 
3    g   0.67 0.023 14 l e l e   0.58 0.019 
4 e l e l e  0.60 0.023 15    g   0.72 0.029 
5    l g  0.68 0.025 16 e l l l  l 0.60 0.024 
6    e   0.66 0.024 17    l  eg 0.68 0.025 
7    g   0.69 0.026 18    e   0.67 0.025 
8 e e l e   0.39 0.015 19    g   0.72 0.029 
9    g   0.67 0.023 20 l l l l   0.71 0.028 
10 l l e l e  0.66 0.026 21    e   0.70 0.028 
11    l g  0.70 0.027 22    g   0.75 0.033 
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