IADIS International Journal on Computer Science brfdrmation Systems
Vol. 4, No. 3, pp. 82-98
ISSN: 1646-3692

USING “SOCIAL ACTIONS” AND RL-
ALGORITHMS TO BUILD POLICIES IN DEC-
POMDP

Thomas VincentEquipe MAIA LORIA UHP NANCY 1 BP 239 54506 Vand®eL®s Nancy,
France.
Vincent.Thomas@loria.fr

Akplogan MahunaNRA, UR 875 BIA F-31326 Castanet-Tolosan, France.
Mahuna.Akplogan@toulouse.inra.fr

ABSTRACT

Building individual behaviors to solve collectiveoptems is a major stake whose applications are
found in several domains. To do so, Dec-POMDP le&n lproposed as a formalism for describing
multi-agent problems. However, solving a Dec-POMDIed out to be a NEXP problem. In this
study, we introduced the original concept of soeietion to get round the inherent complexity of
Dec-POMDP and we proposed three decentralized oreinent learning algorithms which
approximate the optimal policy in Dec-POMDP. Thiticke analyses the results obtained and
argues that this new approach seems promising dtonetic top-down collective behavior
computation..

KEYWORDS

Multi-agent systems, Markov decision processesfosiement learning, interaction.

1. INTRODUCTION

Multi-agents systems are defined as groups of aumonis entities, called agents, which
are set in a shared environment and can interaét this environment and with each
other. These systems constitute a new way of asidgegproblems by focusing on

decentralized control and have many applicatioomfnetwork, to distributed control of

process (Van Parunak 1994). However, building ittisted control among agents is still
an open question due to the complexity of considgttie interactions among agents.

82

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-
POMDP

This article focuses more precisely on cooperatiwelti-agent systems whose
efficiency is assessed by a global utility functidihe objective of the work is to propose
new directions to control these systems while tgkotal and practical constraints into
account: agents have only a local view of the systéhey cannot directly assess the
global utility function and can only have few logalormation exchanges.

These constraints lead us to investigate decezghlireinforcement learning
approaches. The originality of this paper liesha introduction of explicit interactions,
called social actions, among agents. With the bélgocial actions, agents can consider
the other agents and can reason on a more co#etgixel. This work presents also
several original algorithms based on reinforcenieatning and two heuristics to take
advantage of social actions and make the ageritergginize.

This article is organized as follows. Section 2adibgs the Dec-POMDP formalism.
It presents some of the existing approaches tod bedlllective behaviour and their
drawbacks. Section 3 proposes a new formalism baisddkc-POMDP with the addition
of the social action concept. It describes decépé@ learning algorithms based on
social actions so that the agents can take the agents into account. Section 4 presents
two specific problems on which these algorithmsenheen applied and compares the
results obtained by our algorithms to the resuitgioed by other decentralized learning
approaches. Section 5 highlights the interestshefptroposed approach and Section 6
concludes.

2. BACKGROUND

2.1 Dec-POMDP Formalism

The Dec-POMDP (Decentralized Partially Observablearkdv Decision Process)
formalism is a MDP extension that has been propdsedBernstein et al 2002) to
formalize multi-agent decision problems. A Dec-PORIEdr two agents is defined by a
tuple SALA,, TRy, R, G1,G, ,0> where
« Sis afinite set of states
« Ay, A are finite sets of actions
e Tis a transition probability tabl@(s, a, &, s’) gives the probability to reach
states’ from states when agents take actioasanda,
« Ris areward functionR(s,a,a,) gives the immediate reward earned by the
system when agents execute actiananda, from states
* G; andG, are sets of observations
» Ois the observation function giving for each agémbbservation depending
on the state.

A Dec-POMDP defines the possible actions for adirag as well as the dynamics of
the process. The main characteristic of a Dec-POMBPthat its execution is
decentralized: each agent can make decision ontlgebasis of local perception history.

Moreover, the transition matrix is a function ottactions of the agents. Because of
that, an agent cannot predict the global effedtsfction since this effect depends also
on the action taken by the other agent. The astminthe agents can then only be
interpreted as influences exerted by the agentsouify the trajectory of the process.

83

IADIS International Journal on Computer Science brfdrmation Systems

2.2 Solving Dec-POMDP Problem

The behaviour of an agent is characterized by &yallefined as a function giving an
action for each observation history. Solving a [P€aMDP consists then in finding the
local policies of the agents so that they maxintiee cumulated reward received during
their execution. This problem has been proven tdNBXP (Bernstein et al 2002) and
several directions have been followed to reduceinterent complexity, like taking
advantage of the structure of some problems (Guoesttral 2002 and Becker et al 2003)
or using approximation techniques (Szer et al 208&)wever, most of the existing
works focus on centralized approaches in whicltctimestruction of behaviours is done by
a single system with global knowledge.

This article has made the choice of a more prdqgiciat of view. Indeed, the issue of
solving a Dec-POMDP is too complex to be tackledeatly, even with a centralized
approach. So, we preferred to search approximéiéicats and to focus on decentralized
adaptive solutions. In these solutions, each apast to adapt itself to an initially
unknown system and to the other agents. This l¢éada recursive problem where
learning the best action for an agent depends @t thie other agents learn.

Nevertheless, we think that these approaches areiging since it is often difficult to
have access to the whole system to centralize bmlraconstruction. In the next
sections, we will first focus on how to build anagtive agent by using a reinforcement
learning approach called Q-learning, then consiaav reinforcement learning behaves
in multi-agent systems and what are the currergsidions to solve the raised issues.

2.3 Q-learning Algorithm

Q-learning is a reinforcement learning method (Westlet al 1992) that can compute
optimal policies in single agent problems. Therefoit constitutes a solid basis for
adaptive behaviour and will be used by our approach

In Q-learning, the policy of the agent is paraniggzt by Q-values(s,awhich gives
the expected cumulated reward when the agent dd@ma in states. Q-valuesare
updated online after each action of the agent ¢orporate its whole experience. This
update is made according to the following formudadd on dynamic programming.

Q(sa) - 1-a)Q(sa)+a(r +ymax, Q(s', a))

After each actioma leading from states to states’, the new expected cumulated
reward froms corresponds to a combination (due to the alphameter) between the
previous expectation fromand the new assessment made from the new experi€his
assessment corresponds to the immediate remwphds the discounted expected reward
from arrival states’.

This update has been proven to lead to the exaactations if some conditions are
met : the world need to be stationary, each co(g# must be visited an infinite number
of times and the alpha parameters must have cestaperties depending dnWatkins
et al 1992). Thus, once the@evalueshave been learnt, they can be used to produce the
optimal behaviour of selfish agents put alone enaironment. The agent in stadas
only to select the actiomwith highestQ-values(s,a)

84

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-

POMDP

2.4 Multi agent Reinforcement Learning

However, when agents learn together, they havade fiew issues like

conflicts between collective and individual interests (Hardli968),
explained by the fact that local individual maxiatibns does not lead to
global maximization,

co-adaptation, the fact that the best behaviour for an agenedép on the
behaviour of the others agents,

and credit assignment issuethe fact that an agent cannot determine with
certainty which agent is responsible for a taskaadement and for the
earning of a reward (Weiss 1996).

(Busoniu et al 2008) presented a survey of mukdirag reinforcement learning
approaches. Most of the approaches need agentsaimgutetely observe the system and
there are still few works that focus on Dec-POMDIPére agents have only access to a
local observation of the state). These works aesgnted in the following and the results
of our algorithms will be compared to some of them.

(Sen et al 94) proposed to usedependent learner agentsruled by
reinforcement learning to produce adaptive ageuntstis approach shows
rapidly its limits due to the co-adaptation issue.

(Schneider et al 1999) proposBistributed value function where agents
try to maximize a balanced sum of its own reward #re rewards of its
neighbours. Thus, each agent can consider théagaiis of the other agents
while computing its behaviour. But the way rewasdlistributed is static and
made by the conceiver before the learning phase.

(Guestrin et al 2002) propose@oordination based methods taking
advantage of the structure of the problem, butdbeputation of policies
requires constant communications.

(Chades et al 2002) propos€d-evolution to deal with co-adaptation issue.
In this algorithm, each agent successively plamadtions while the policies
of the other agents remain constant. But, this rdlgn needs a global
coordination mechanism and only leads to localoati

(Buffet et al 2007) proposethcremental learning where agents are
confronted to more and more difficult situationsptmgressively learn how
to improve their collective behaviour but this apgeh requires work from
the conceiver to propose situations of incremestaiplexity.

In order to do decentralized learning, we propaséntroduce interactions among
agents. Each agent could then explicitly consitlerelationships with the other agents
and decide how it interacts with them.

Thus, the first contribution of this article isa0dd a new concept to the Dec-POMDP
formalism in order to model interactions: the cqtcef social action. The second
contribution is to introduce two heuristics to loudollective behaviours on the basis of
reinforcement learning and these social actions.

85

IADIS International Journal on Computer Science brfdrmation Systems

3. SOCIAL ACTIONS AND RL-ALGORITHMS

3.1 Formalization of “Socials Actions”

We first propose to represent interactions amormgesgas social actions. gocial action

is defined as a local joint action which is trigggrby a specific agent and involves two
agents. It can be formally defined by a couple afoas: an individuabriginal action
with an associated individuaymmetric action. When ager performs a social action,
it executes the original action while agéhis forced to carry out the symmetric action.
Thus, the execution of a social action by an agemistrains the actions of the other
agent.

For instance, let us consider a social action @alexchanging resource X'. This
social action can be formally defined as the ja@iation {PuttingDown(X), Taking(¥)
When agenA performs this social action, it executes the oagjactionPuttingDown(X)
and agenB is forced to execute the symmetric actitaking(X) The resourc& is thus
transferred from agewt to agenB.

Our algorithms will consider Dec-POMDPs with theddin of social actions as
pairs of{original action, symmetric actionjThe Dec-POMDP problem is then changed
in this way:

e The set of possible actions for agens the set of individual actions from the
Dec-POMDP plus the set of social actions. At edep,san agent has to execute
an individual or a social action.

e The global reward can be broken down into addithdividual rewards. These
rewards are locally perceived by the agents. Theative goal is to optimize the
discounted sum of global rewards over time.

Since the execution of a social action generatesstcaints for one agent, the

execution of a social action must be negotiatedhsytwo involved agents. The next
section details how this negotiation is made.

3.2 Decision about a Social Action

To correctly decide if the social action has anaadageous effect for the group, agents
have to exchange information about perceptiond|sskpast and future actions. In
reinforcement learning, th@-valuesintegrate useful information regarding the taskeo
done, so we made the assumption that wQeraluesare judiciously exchanged, they
can convey enough relevant information for makimg tollective decision.

Therefore, the execution of a social action is tieggd on the basis of two heuristics
involving Q-values The aim of the first heuristic (section 3.2.1jasassess the utility of
social actions in order to compare them to othéipas. The aim of the second heuristic
(section 3.2.2) is to distribute the gain of a abeiction among the agents so that the
agents might learn to trigger and to reproduce fi@aksocial action in the future.

3.2.1 Assessing the Utility of a Social Action

In a single-agent case, the agent chooses itsnaaticording to its utility. The utility of
performing an action is defined by the sum of immattreward and the discounted sum

86

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-
POMDP

of future expected rewards from the arrival s&teé\s explained in section 2.3, when the
agent is alone in the environment, it can corretglyrn itsQ-valuesgiving for each
couple(s,a)the utility of the actiora from states. V(s)is defined as the utility associated
to states and equals tenax, Q(s,a)- If Q-valuesare correctly learnt, when the agent takes

actiona fromsto s’, the difference between the obtained cumulatecré\wy arriving in
s’and the expectations frosirorresponds t@ + v (s)) - V(9 and is null by definition.

However, when the agent executes a social actig social action involves another
agent and the agent may arrive in a certain satghich is not the state in which it
would arrive if it was alone. The previous diffecerbetween it§Q-valuefrom start state
s and its expected utility from arrival’ is not null anymore. This difference is the
consequence of the influence of the other agemtived in the social action.

a) Individual action b) Social action involving agent B

Figure 1. Example of a difference between individurad social action.

In casea, agent A can assess its individual action on #sgbof its own individual Q-
values

whereas in casb, it has to consider the action made by agent Bitgato a new
state.

This is illustrated by Fig.1. In this example, agAncan decide to take an individual
‘také action (casen) or a social exchangeaction (caséb). The individual ‘take’ action
leads the agent to a new state but, this statekentinto account in its individual Q-
values it has learnt alone when it was alone inaheironment. However, the social
action leads to a stag® due to the symmetric action exerted by agent B fidceived
reward does not correspond anymore to what agentight have learnt while it was
alone.

We defined thegain of a social actionas this difference(s + p (s) - V(9. It

represents the gain obtained by an agent whenottial sxction is executed rather than
any individual action. This gain determines theiast an agent has in using this specific
social action.

In order to explain what is this gain, let us cdesia firemen problem with two
agents A and B whose goal is to extinguish a fifig 2.). The agent B can receive a
reward of 5 by extinguishing a small fire wheregerg A can receive a reward of 10 if it
extinguishes the main fire. Both agents need wa¢ronly B has some. If B uses the
“Exchange(water)” social action with A. B will givilne water to A, A will take it and
benefit from this acquisition. A can then expedtitare gain of rewards of 10 whereas B
can expect a loss of 5. Each agent can assessritbygthe difference:

87

IADIS International Journal on Computer Science brfdrmation Systems

O Exchange (water) m
€

4501 & +1o

gain, =[r, + W,(s,") — V(sy] =[0 +1*10-0] =10
gaing =[rg * Wg(S5) — Vi(8] =[0 +1*0 -5] =5
Figure 2. Example of firemen problem

Once computed, this gain must be shared amongghetaso that both agents are
aware that this social action can be beneficials Tistribution is made through social
rewards described in the next section.

3.2.2 Distributing the Social Rewards

The aim of social rewards is to stimulate otherndégéo reproduce a situation where a
specific social action might be interesting. Theads intuitive: when an agent has an
interest in a specific social action, it will give part of his gain to the other agent
involved in this social action. This gain is tragséd through a social reward so that the
agents can add their social rewards to their imatediewards and learn them by the
same reinforcement learning method.
The way social reward is computed is the secondidieu of our algorithm. It

consists in equally sharing the gains of a socidiioa and is made according to the
following equation (with lambda equal to 0.5):

I, a = —0ain,+A(gain,+ gaing), ryg= - gaing+A(gain,+ gaing
For the firemen problem, A will give a part of @ain to B. This social reward equals
to 7.5 (5+0.5*%(10-5)) in this case and will compatesthe loss of reward of agent B for

giving its water. On the contrary, this social resdvavill be deduced to agent A expected
cumulated rewards which will still be positive.

3.3 Algorithms

Three slightly different algorithms have been prgmb on the basis of these two
heuristics. Each one of these algorithms tries d¢onpute Q-values associated to
individual and social actions by a decentralizedrdeng. All these algorithms are
constituted by two phases. In the first phase, eagnt is put alone in the environment
and builds an individual policy by using Q-learnialgorithm. In the second phase, all
the agents are put in the same environment. Theynow interact and they use one of
the following algorithms to assess and update tiiEas of social actions and if needed,
the utilities of individual actions.
* In SimpleIncomeExchangethe agents do not learn social action. Howevey t
can use a social action during exploitation. Thktybf a social action is then
assessed online when it is needed.

88

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-
POMDP

Q(s.b sb A- SocAct

7(3) < arg ma)é{ri + V(5)+gain; si b SocAt

* In IncomeExchange] the agents learn simultaneously the utilitiesndividual
and social actions by exchanging social rewardswvé¥er, only the utility of
social actions is updated according to the utditié individual actions. In other
words, agents cannot consider executing severalsmtions.

Quoe (S 8) « (1=a) Qu (5, @ +a(r+rg;+ymax,Q;(s',b))
Q(s,b sibd A- SocAct
Qgoc (15 B si b SocAg

* In IncomeExchange?2 the agents learn simultaneously the utilitiesnoividual
and social actions. But the utilities of soddlID individual actions are assessed
according to the social rewards and utilities ofufa individual AND social
actions. Agents can now consider executing secalgnseveral social actions
and they estimate the reciprocal influence of $agid individual actions.

Qsot;(si’ q) h (1—0’) Qsog:(ﬁ' "11)“’({+ r's,i +ymaXstot;(Sli’b))

7(§) < argmax Q.. , b)

All these algorithms are decentralized: the agkyamn simultaneously the@-values
without needing a global coordination mechanismesgh algorithms only require
exchanges of local information during the executidrsocial actions to locally update
the utilities of social actions.

Once this learning is done, each agent usé3-italuesto decide the best individual
or social action. Even if th@-Valuesdo not correspond to the exact expected cumulated
rewards as in single-agent Q-learning, we hope theynevertheless give a good policy.

To asses that, the next section presents the expatal studies on which we carried
out our algorithms.

7T (s) < arg maﬁ{

4. EXPERIMENTAL EVALUATION

4.1 Cage of Meal Problem

Two agents (Fig 3) are locked up in a room and reassfy their needs. Their levels of
hunger and thirst increase at each step but thetsgan choose to consume a resource in
order to reduce the pain related to their statdisgatisfaction. The resources are meals
and drinks and the agents must spend energy teateem. Agent 1 spends more energy
for fetching a drink than a meal, whereas Agenta® bomplementary skills. The two
agents have a common zone where they could stdrgetrresources.

The goal of this problem is to build the local p@s of agents, so that they can have
both meals and drinks without losing too much eperg

89

IADIS International Journal on Computer Science brfdrmation Systems

Meals

/
getMeal getMeal
¢ [l

\A
\+ 4'/' A
I
getDrink \ / getDrink
\ /
/7
7’

Drinks

Figure 3. Cage of meal problem

This problem defines a cooperation problem in whdabh agent has a partial control
on the system.

State: The state of each agent is characterized by 4hlasavhich areHunger(an
integer in [0;3], Thirst (an integer in [0;3]) HasMeal (a Boolean true/false) and
HasDrink (a Boolean true/false)

The global stateS of the corresponding Dec-POMDP is constituted tgy state of
Agent 1, the state of Agent 2 and the presencéserece of meals/drinks in the common
zone.

Observation: Each agent can only have access to its variabled te
presence/absence of meals and drinks in the conmooe. Thus, the evolution of the
world seen by an agent is neither stationary néerdenistic: meals can appear on the
common zone due to the action of the other agent.

Action and transition: Each agent can choose one of the following actigesviea)
getDrink eat, drink, putDrink, takeDrink putMeal getMeal When an agent drinks (eats)
and has the corresponding resource, its thirstgégrs reset to @yetMealandgetDrink
are always successful: when an agent executes bileese actions, it receives the
resource but looses energgkeDrinkandputDrink consist in taking or putting a drink on
the common zone and are always successful if the@mmn zone contains the
corresponding resource. Finally, at each time stephunger and the thirst of the agents
increase.

Social actions:Two social actions have been identifieckchangeDrink={putDrink,
takeDrink} and exchangeMeal={putMeal, takeMeal}Vhen they are chosen, the agent
which executes the social action drops the resoomcéhe common zone while the other
agent takes it.

Reward: The reward function of the system is the sum ofitidvidual rewards of
the two agents. The reward of an agent is the dulmreaewards associated to its hunger,
to its thirst and to its actions (energy lossdetDrinkgetMea). The table 1 presents the
reward functionX andY correspond to global parameters, each valuXof) defines a
new problem.

90

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-

POMDP
Table 1. Rewards function
Agents Rewards of hunger Rewards of thirst get Dri nk [get Meal
Hunger/Thirst 0 1 2 3 0 1 2 3
Agent 1 0 -1 -2 X 0 -1 -2 X Y -1
Agent 2 0 -1 -2 X 0 -1 -2 X -1 Y

4.2 Comparative Analysis

We first used a centralized MMDP Value Iteratiogaalthm proposed by (Boutilier
1999) to build the optimal policies for differerdrdigurations(X,Y) This study enabled
us to fix two interesting configurations of the @ function to assess the quality of our
solutions:

1. For X=-50,Y=-50, the problem corresponds to an egstic situation where the

optimal policy consists in not exchanging any reseu

2. For X=-50, Y=-5, the problem corresponds to an altruistic situationwhere

the optimal policy consists in exchanging both wmeses and the optimal
individual policies must be synchronized.

For each configuration, our algorithms have bestete Our results were compared
to the results obtained with other decentralizegragches:Q-learning with global
reward Q-learning with local rewardgSen et al 1994)Eco-evolution(Chades et al
2002) andDistributed value functiofSchneider et al 1999).

More precisely, each learning algorithm has beesceted during several episodes
(1Ep. = 1000 lterations) with a sigmadelgreedy policy. After that, we exploited the built
policies for 1000 iterations. The execution of thgmlicies produces cyclic collective
behaviour. Tables 2 and 3 present the resultsraataior 50 experiments. They present
means of sizes, sums of rewards and the numbexabfaages for the obtained cycle.
They also present the mean of the sum of the resxfardhe 1000 iterations.

4.2.1 Egoistic Configuration

For the egoistic configuration, the optimal polidges not need any exchange and the
learning task is quite easy because there is néulusegeraction among agents. The
results of the various approaches are presentefable 2 and showed that all the
approaches managed to build egoistic policies withay exchange.

91

IADIS International Journal on Computer Science brfdrmation Systems

Table 2. Comparison for egoistic configuration, fin& line presents the optimal policy found by
Value iteration. Columns respectively represent Atgm, learning duration, number of exchange,
size, sum of rewards and its mean by cycle, discfaetor, mean of sum of rewards for 1000
iterations and policy found.

Algorithms Nb.it Characteristics of cycle ZH’T Policy
Nb.exch Size R.ycke Ry Y

VI (Boutilier 99) 175 0 6 -422 -70.33 0.99| -6887.46 Egoistic
Q-learning (G) 600Ep. 0 16.8) -1736.3 -102.5 0.9{ -10174.29 -
Q-learning (Sen et al 94) 600Ep. 0 6.24 -440.45 440 0.99 -6898.83 Egoistic
Eco-evol. (Chades et al 02) 700 0 6 -422 -70.33 90.9 -6887.49 Egoistic
DVF (Schneider et al 99) 600Ep. 0 5.68 -602.37 896 | 0.99 | -10430.77 -
Smpl-IncEx 400Ep. 0 6 -422.0 -70.33 0.99 -6887.47 Egoistic
IncEx-1 450Ep. 0 6 -422.0 -70.33 0.99| -6887.47 Egoistic
IncEx-2 500Ep. 0 6 -422.0 -70.33 0.99| -6887.47 Egoistic

Nevertheless, experiments showed first that everhd task is

easy, a direct

decentralized Q-learning approach with a global revard failed to produce an efficient
behaviour. Indeed, this algorithm faced the problefircredit assignmenand cannot
correctly assign the earned rewards to the coaetains.

Also, Distributed value function cannot correctly approximate the optimal policy.
This is because the method uses the satisfactitineofieighbours to update the agents’
Q-value and is not precise enough if the dynamicsammunicated Q-values is too
fluctuating.

Finally, the results obtained ur algorithms, approximate very well the optimal
policy. These results showed that the heuristiop@sed do not lead to the execution of a
social action if it is useless.

4.2.2 Altruistic Configuration

For the altruistic configuration, results showedttmone of the existing algorithms
managed to build an altruistic policy. (see Tabjle 3

Eco-evolution cannot lead to the optimal policy because, the agents need to
simultaneously change their behaviour in order htaim the best policy and eco-
evolution requires a policy to be fixed.

For direct Q-learning with global reward, agents are confronted to credit
assignment issue like previously. When agents la@eess tdocal rewards, they can
solve the credit assignment issue but do not th&esatisfaction of the other agent into
account and their policy can only converge to sklfines.

The main goal ofistributed Value function was to adapt the local reward Q-
learning approach by making each agent considesdtisfaction of the other agent. Each
agent maximizes a balanced sum ofQtvaluesand theQ-valuesof the other agents.
However, this approach gives bad results here,usecas Schneider pointed out, it is
implicitly based on the mean of ti@-valuesof the other agent, but this information
hides the real state of the other agent and ifiuctuant to be informative enough.

92

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-
POMDP

Table 3. Comparison for altruistic configuratiore first line presents the optimal policy found by
Value iteration. Columns respectively represent Atgm, learning duration, number of exchange,
size, sum of rewards and it mean by cycle, disctaator, mean of sum of rewards for 1000 it and

policy found.

Algorithms Nb.it Characteristics of cycle 271000 . Policy

Nb.exch | Size Rcycle Ry Y
VI (Boutilier 99) 175 2 10 -112 -11.2 0.99 -1105.74 Altruistic
Q-learning (G) 600Ep. 0 6.55 -87.4p -13.17 0.9 -1299.32 -
Q-learning (Sen et| 600Ep. 0 2.2 -26.53 -12.04 0.99 -1179.87 Egoistic*
al 94)
Eco-evol. (Chades| 700 0 2 -24.0 -12.0 0.99| -1176.15 Egoistic*
et al 02)
DVF (Schneider et| 600Ep. - 5.65 | -74.51 -12.81 0.9 -1265.42 Egoistic*
al 99)
Smpl-IncEx 400Ep. 2 8 -94.0 -11.75 0.9] -1154.73 Altruistic
IncEx-1 450Ep. 1 4 -47.0 -11.7% 0.9§ -1154.59 Altruistic
InCEXx-2 500Ep. 1 4.31 -51.16 -11.87/ 0.9 -1166.38 Altruistic

On the contrary, in the same contextty algorithms offer a better approximation of
the optimal policy. FoBimplelIncomeExchangethere are two exchanges of resources in
one behavioural cycle. This is because the agemificitly exchange their observations
during the exchange of gain. Thus, they have mdm@mation on the state of the system
and their decision is consequently more rational.

For IncomeExchange land IncomeExchange 2,there is one exchange in a
behavioural cycle. Indeed, agents are not surbebehaviour and the state of the other
agent when they are learning. So, they preferrégép the resource rather than to give it
to the other agent whose behaviour and rewardsrarertain. Both algorithms managed
nevertheless to make the agents cooperate by graragsource (on the two available).

4.3 Cage of Meal with Three Agents

4.3.1 Presentation of the Cage of Meals Problem wita Mediator

Now that we have shown that our algorithms can teacboperative policies, they have
been tested on a variation of the cage of mealsl@moin order to highlight their various

efficiencies. From now on, the task to be solvedoives three agents and several
possible interactions.

93

IADIS International Journal on Computer Science brfdrmation Systems

Meals

/
‘/'> mea *\A ‘/'> mea “\A

Agent Agen
A B

getMeal

Figure 4. The cage of meals problem with a medi@gent B)

In this collective task (Fig. 4), the two agentstlad extremities (agents A and C)
suffer both from an increasing hunger. The agerntherleft (agent A) has a direct access
to meals at low cost, whereas the agent on the ¢agent C) cannot access directly to
meals. Between them, a third agent (agent B), theiaior, does not feel any hunger but
participates to the task since it can help agetut &cess food.

Agents A and B can exchange food in the same maasén the classical Cage of
meal problem through a common zone and two soctadres: an exchange from agent A
to B ExchangeABFood = {PutFoodRight,GetFoodLeftld an exchange from agent B to
agent A. Agent B and C can also exchange food tiircanother zone and two other
social actions. Thus, the only way for agent Cdoess food requires a sequence of two
social actions: agent A has first to exchange fadtth agent B and in a second time,
agent B has to exchange this food with agent C.

Hence, the objective of this problem is to investiighow the proposed algorithms
behave when the task must be distributed among ragemts than the two agents
involved in only one interaction.

More formally, the problem can be described a®fadl:

State: the state of the system is characterized byHinegervariables of agent A and
agent C (an integer in [0;)8and theHasMealvariables (a Boolean true/false) of agents
A, B and C.

Observation: each agent can observe its own state and the jpefabsence of meals
in the closest common zone (agent B can observg.bot

Action: each agent can choose an action betvgatMealandeat but the agent A is
the only agent to find food when its actiomgetMeal

Social action: four social actions are possible depending on ftineciibn of the
exchange and the agents impliedExchangeABFood, ExchangeBAFood
ExchangeBCFood and ExchangeCBFo0d course, each agent can only perform one of
the social actions in which it is involved.

Rewards: the reward is still defined as the sum of individiewards. These rewards
depend on the hunger of agent A and agent C andattiethat agent A had made a
getMealaction (as illustrated in table 4).

94

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-
POMDP

Table 4. Rewards for the cage of meals with medjatoblem.
X means that the action has no significant resultrao reward.

Agents Rewards of hunger get Meal
Hunger/Thirst 0 1 2 3

Agent A 0 -1 -2 -5 -1

Agent B 0 0 0 0 X

Agent C 0 -1 -2 -5 X

4.3.2 Analysis of the Results of our Algorithms

As in section 4.2, we have first computed the oatipolicy by a centralized MMDP
Value Iteration algorithm (Boutilier 1999) to det@ne the optimal collective policy.
This policy corresponds to a cooperative behaviatiere

- agent A fetches food and sometimes gives it to 8Besr sometimes consumes

it;

- agent B gets food from A whenever possible andgjitveo C;

- agent C gets food from B when it is possible antsames it.

In this behaviour, both agents are eating and dloel fis equally distributed among
agent A and agent C. When the hunger of agent Aleqo 1, it gives its food to B
whereas when this hunger equals to 3, agent A coesits food. Thus, agent C can eat
and the hunger of both agents remain low.

The results obtained with our three algorithms areimed up in Table 5. For each
algorithm, a first individual learning phase is slated with an individual value iteration
(it converges after 100 iterations). Then 300 @gés of 1000 steps are performed to
learn social Q-values (even if they stabilize faitan that). During these steps, the alpha
parameter is set constant to 0.7.

Table 5. Results obtained on the cage of mealsméttiiator problem.

Algorithms Nb.it Characteristics of cycle 271000 /R Policy
Nb.exch | Size
X 12 Rcycle Rcycle ¥
VI (Boutilier 99) 3501t 2 4 -18 -4.5 0.99| -446.21 Altruistic
Smpl-IncEx 350It 0 2 -12 -6 0.99 -588.07 Egoistic
IncEx-1 3501t+300Ep| O 2 -12 -6 0.99 -588.07 Egoistic
IncEXx-2 350It+300Ep| 2 4 -18 -4.5 0.9 -446.21 Altruistic

For the SimplelIncomeExchangealgorithm, the behaviour of agent A is selfish: it
gets food but keeps it for him. The hunger of ageimcreases to reach a maximum of 3
and reduces the global reward of the system. Téparithm converged to this behaviour
because the utilities of exchanges are assessatk anly on the basis of previously
learnt individualQ-values However, in individual Q-learning, without consithg any
interaction, agent B cannot earn anything from ihgna meal and all its individual Q-
values correspond to 0 whether it has a meal ar Moteover, agent A has always a
selfish interest in keeping its food to reducehiimger. Thus, the utility of exchanging a
food from A to B is always negative since it leadthe loss of a meal for the agent A
without any advantage for B. Due to that, the neddgyent C are hidden by the presence
of agent B.

95

IADIS International Journal on Computer Science brfdrmation Systems

For IncomeExchange lalgorithm, the behaviour of agent A is also shlfésd the
optimal behaviour is not found. This case is simitathe previous one. The-valuesof
social actions are learnt and not only assessethbutare only based on actiQavalues
Agent A assesses the utility of an exchange onlgdnsidering the direct benefit of the
food exchange with agent B. The fact that agenaBalso exchange with C is taken into
account into agent B’s soci&)-valuesbut not into its actiorQ-values Thus, in this
context, the exchange between C and B cannot le@ tako account to assess the utility
of exchanging food between A and B.

At last, IncomeExchange 2algorithm leads to the optimal policy. In this catiee
update of social Q-values depends on the actiorparttie social action®-values This
makes the agents consider the next social actimiscdan occur in the system while
assessing any action. Moreover, the exchange aélsmmvard propagates individual
rewards among interacting agents. Thus, agent Aiders that agent B can make a
future exchange with agent C and that it can haviatarest in the future.

The next section details more deeply how this iearis made.

4.3.3 Analysis of IncomeExchange2 Algorithm Results

Even if all the learning processes dfhicomeExchange2 algorithm are made
simultaneously, these learnings can be understedallaws:

* In a first time, agent C learns that it can earwarel by consuming a meal
whenever it manages to access to one due to ekplor®8y experimentingat
action, itsQ-valuesfor the states in which it possesses a meal isetea

* Once it is done, agent B can learn that exchangimgeal with C has an interest.
Indeed, the utility of these exchanges involve tQevalues of agent C
corresponding to states where it has a meal. Tiliy aif an exchange with C is
hence positive. Thus, exchanges between agent B CGanwill occur more
regularly. In return, agent C will give to agentaBpart of this social utility
through a social reward. This is translated asr@nease of the agent B’'s Q-
values of the states corresponding to the possesdi@ meal. From now on,
Agent B will try to reach one of those states.

« Finally, the utility of exchanges from A to B inases since the Q-values of B
have previously increased. Agent A will learn tbathanging with B can have
an interest when the utility of this exchange ighleir than the utility of iteat
action.

It must be noted that tHacomeExchangeZ2algorithm manages to learn the correct
directions of exchanges and their transitivity. ®wrer, the exchanges with B are
synchronised since the utility of an exchange iedly linked with the individual
rewards defining the problem. Thus, when agent #lyeneeds food, the competition
between individual action and social action leads to keep it, whereas when agent A is
not hungry, the way the social reward is distriduteakes agent A to exchange with
agent B. This algorithm constitutes a responsehto dredit assignment problem by
correctly distributing the individual rewards inetlylobal system through the possible
interactions.

Thus, IncomeExchange?2 algorithm manages in thidl $ask to adequately take into
account the several interactions that can occtinénsystem. The agents by considering
their social Q-values consider the other agentk which they can interact even if they
do not know precisely their state and if they dbdicectly interact with them.

96

USING “SOCIAL ACTIONS” AND RL-ALGORITHMS TO BUILD POLICES IN DEC-
POMDP

5. DISCUSSION

Our learning algorithms are at their firsts stepd face many limitations: they were only
applied on some specific tasks with a few differeotfigurations. Moreover, they are
constituted by few heuristics and their applicagiane limited due to the absence of proof
convergence. Finally, the social actions need tptagletermined by the conceiver as
couples of existing individual actions before appdyany algorithm.

Nevertheless, despite these current limitatiores aihproach seems promising. First of
all, we must stress the problem we wanted to taisklery difficult. It consists to make
agents learn in a decentralized way their behavigquconsidering the other agent. The
results showed this algorithm can distinguish timbgl situations characterized by a
global reward function. The agents can then adeghselves to these different situations
whereas they have only access to a local perceptithe problem through local rewards.

Secondly, this algorithm proposes a new way toeshatask among the agents. This
sharing is done with the help of social rewardsclwhire automatically computed and
integrated by the agents during execution. Thisardwsharing is only based on the
problem to solve and seem to be quite generiantapnstitute a first response to credit
assignment problem.

Ultimately, on a very simple task, this algoritheems to perform better than the
existing approaches that have been tested. Onpéeifis cage of meal problem, it
manages to take interactions among agents intouatdmetter than distributed value
function by being more precise in the Q-values exged, better than Eco-evolution by
authorizing simultaneous behaviours learning, aetieb than decentralized Q-learning
by solving credit assignment issue. In particutae IncomeExchange2 algorithm gave
good result when it was applied in a more comploblem where several agents must
interact through several interactions.

Thus, we speculate this approach can be a pragnissearch direction even if, up to
now, it is only based on experimental works. Itrsedhat this approach can be a first
step to intelligently distribute individual rewara@sd to build adaptive agents that can
consider the other ones.

6. CONCLUSION

In this article, we introduced a formalism to makteractions explicit in Dec-POMDPs
by using social actions and we proposed three itthgas based on heuristics to take into
account the other agents while respecting locaigstraints. The results have shown
that each agent can automatically adapt itselhéo dlobal context of the system in a
specific task.

One of the many remaining questions is how to otiyeshare the gain of a social
action among agents. We plan to investigate moeplglethis question by addressing
simpler problems and analyzing how planning cambeée on the same basis of what we
have proposed. Another interesting approach woeldobtake inspiration from works
done by (Guestrin et al) to see if our approachtake advantage of MDP factorizing to
determine what are the correct social actions tsicier.

97

IADIS International Journal on Computer Science brfdrmation Systems

REFERENCES

Bernstein, D. and Givan, R. and Immerman, N. anderditein, S., 2002, The Complexity of
Decentralized Control of Markov Decision Procesdé¢athematics of Operations Research
Vol 27, pp. 819-840

Becker, R. and Zilberstein, S. and Lesser, V. andd@ah, C., 2003, Transition-independent
decentralized markov decision proces$eMAS '03: Proc of the int joint conf on Autonomous
agents and multiagent systerpp. 41-48

Boutilier, C., 1999, Sequential optimality and coasation in multiagent systemdJCAI99
Proceedings of the Sixteenth International Joint fémmnce on Artificial IntelligenceSan
Fransisco, USA, pp 478-485

Busoniu, L. and Babuska, R. and De Schutter, B., 200&omprehensive Survey of Multiagent
Reinforcement LearnindEEE Transactions on Systems, Man, and Cyberndtiag C 38(2),
pp. 156-172

Buffet, O. and Dutech, A. and Charpillet, F., 200ha@ng multi-agent systems with gradient
reinforcement learnin@@utonomous Agents Multi Agent Systeoi 15, N.2, pp 197-220

Chades, |. and Scherrer, B. and Charpillet, F., 2808 uristic approach for solving decentralized-
POMDP: assessment on the pursuit problEmaceedings of the 2002 ACM symposium on
Applied computingMadrid, Spain, pp 57-62.

Guestrin, C. and Lagoudakis, M. and Parr, R., 2@@drdinated Reinforcement LearninGML-
2002 The Nineteenth International Conference on Mexliearning Sydney, Australia, pp.
227-234

Hardin, G., 1968, The tragedy of the comm®@sencespp 1243-1248.

Schneider, J. and Wong, W. and Moore, A. and Riddmi\l., 1999, Distributed Value Functions,
Proceedings of the 16th International ConferencéMachine Learningpp. 371-378

Sen, S. and Sekaran, M. and Hale, J., 1994, LaatnitCoordinate without Sharing Information,
Proceedings of the Twelfth National Conference onfigidl Intelligence Seattle, WA, pp.
426-431

Szer, D. and Charpillet, F., 2006, Point-based DyoaPtogramming for DEC-POMDP21st
National Conference on Atrtificial Intelligence AAAIOS, Boston, USA, pp 1233-1238

Parunak V., 1994, Application of distributed inigdince in industryFoundations of distributed
artificial intelligence chap 4

Watkins, C. J. C. H. and Dayan, P., 1992, Techniot#:rQ-learningMachine learningvol 8, pp
279-292

Weiss G., 1996, Adaptation and learning in muleéstgsystems: Some remarks and a bibliography,
Lecture Notes in Computer SciengeJume 1042/1996, pp. 1-21.

98

