
IADIS International Journal on Computer Science and Information Systems
Vol. 4, No. 3, pp. 39-50
ISSN: 1646-3692

39

TOWARDS BRIDGING THE GAP BETWEEN
INTUITIVE AND FORMAL REPRESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

Eric Simon. Institut du management de l’information, Université de Neuchâtel, Switzerland.
eric.simon@unine.ch

Kilian Stoffel. Institut du management de l’information, Université de Neuchâtel, Switzerland.
kilian.stoffel@unine.ch

ABSTRACT

In systems life cycle management (SLCM), a gap exists between the informal methodologies for systems
development and the mathematical formalisms needed for the automatic validation of systems properties
and correctness proofs. This paper presents a model based on finite state machines and its translation into
Petri nets, a mathematical representation with the desired degree of provability in this context. We argue
that the model effectively bridges the gap between the intuitive representation of development processes
on one hand, and the formal model necessary for validation on the other hand, by allowing users without
scientific or technical background to represent their activities and all their key features using simple
automata, by applying a systems thinking approach to problem solving, instead of having to express the
model in a more complicated representation from the start. Also, this model shows very promising
results in other domains routinely modelled as activities, using other formalisms, like business processes.

KEYWORDS

State machine, Petri net, life cycle

1. INTRODUCTION

In the context of systems life cycle management (SLCM), a clear gap exists between the
methodologies devised to develop and manage such systems on one hand, and the formalisms
used to represent and analyse the involved processes on the other hand.

First, the methodologies applied by development teams are meant as guidelines rather than
celarly defined processes, even though some are very strict and follow the philosophy of “big

IADIS International Journal on Computer Science and Information Systems

40

design up front”, like the waterfall model (Royce, 1970). Other take into account the iterative
nature of software development, like the spiral model (Boehm, 1986), or are based on adaptive
models, like rapid application development (RAD) (Martin, 1991), and the many methods
grouped under the general denomination of “agile” (Beck, 2001), in which case they are even
more informal and subject to interpretation.

Second, in the technical context of software development, formalisms to model software or
at least some of its key features with sound mathematical foundations give the possibility to
validate systems properties and do correctness proofs. Automata theory in general, and
particularly the theory of virtual finite state machines and event driven finite state machines,
allow the execution of a software specification from a formal representation. These techniques
are often used to develop either safety critical applications or control software. In the same
domain, Petri nets (Petri, 1962) are routinely applied to represent and analyse concurrent or
real time systems, in order to ensure a high level of reliability. Other formalisms were
developed for systems software with inherent complexity and strong reliability requirements,
such as embedded systems or safety critical applications, often with accompanying toolkits,
like the Vienna Development Method (VDM), and its specification language VDM-SL and
later VDM++ (Bjørner, 1978), Raise, i.e. Rigorous Approach to Industrial Software
Engineering (Raise Method Group, 1995) and its specification language: the Raise
Specification Language (RSL) (Raise Method Group, 1992) or the B-Method (Abrial, 1996),
derived from Z notation (Abrial, 1980), now an ISO standard (ISO/IEC 13568:2002).
Formalisms inspired by first order logic have been appearing in publications as well (Martin,
2004). These formalisms share a common denominator: they are too complicated for people
without computer science or engineering background, what we refer to as “non-specialists” in
the remainder of this document.

There lies the essence of the gap between these two worlds. Nothing exists to formalise the
actual processes involved in the life cycle of the systems while being simple enough for non-
specialists to use. A step towards formalisation has been taken by large organisations or
administrations, where the need for such standards is critical, with documents such as the US
Department of Justice definition of SDLC or the ISO/IEC 12207 Standard for Information
Technology for SLCM (ISO/IEC, 1995). These standards suffer from two main disadvantages
resulting from their sheer complexity though: First, they’re very difficult to follow to the letter
as such, and second, they are very difficult, if not impossible, to validate.

The idea presented in this article is to take one step further in bridging the gap between
system development methodologies on one side, and the mathematical models for validation
or proofs on the other side. To achieve this goal, a simple representation with the minimum
elements is proposed to give non-specialists the ability to model well known or custom SLCM
methodologies easily by enforcing a systems thinking approach to problem solving. This
representation is then mapped into a well-established formalism with the desired properties for
validation: Petri nets. Section 2 presents the representation based on finite state machines and
Section 3 proceeds by showing that the mapping to Petri nets is straightforward. An example
illustrating the key features of the model is presented in Section 4 and Section 5 concludes
with applications, limitations and future work.

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL REPRESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

41

2. A MODEL BASED ON FINITE STATE MACHINES

A representation and formalism based on finite state machines (FSM) has been proposed
(Simon, 2007) to model the processes involved in systems life cycle management. It extends
state machines in general and the social protocols defined by Picard (2005; 2006) that inspired
it in particular in two respects: with scalability, and with a synchronisation mechanism. This
section introduces finite state machines and its limitations in the context of life cycle processes
representation and proceeds by presenting the two proposed extensions the model, one for
synchronisation, which is outside the model itself, and one for scalability, which is formally
defined.

2.1 Finite State Machines

The theory of finite state machines, or finite state automata, is a well-known model ideal for
the representation of linear behavioural processes. Without going into formal details or
classifications, which are extensively described in the appropriate literature (Gill, 1962;
Ginsburg, 1962; Carroll, 1989), it consists in a set of states, and transitions indicating a change
of state triggered by a certain condition. The model is well suited to represent linear processes
with alternatives, such as the ones involved in systems life cycle management, but lacks two
important properties to be applied in this context:

It doesn't allow the representation of parallel processes, which is essential in the
development of complex systems by whole teams of developers, managers etc.

It is not scalable, in the sense that it is very difficult to break down a complex process
involving many states and transitions into simpler components. This becomes even more
critical when the users involved lack a strong background in the systems thinking approach to
problem solving, which is often the case for people without scientific or engineering training,
people we referred to in Section 1 as non-specialists.

We propose two extensions of the model to allow the representation of all systems life
cycle processes:

Synchronised state machines
Component-based state machines

2.2 Synchronised State Machines

This extension is a simple “rendezvous” type of synchronisation mechanism to model parallel
activities and hold subsequent dependant activities until the completion of all the pre-
requisites. Note that it is different from the real rendezvous in the context of parallelism,
which synchronises threads (processes) that continue after having met at that point. In our case
the parallel processes themselves do not continue, it is the whole process that is held until the
parallel processes all reach a final state. The synchronisation is represented by an AND
between the set of final states of the synchronised automata and the set of source states of the
dependant activities. It is not formally part of the mathematical model itself, but only a
convenient way for non-specialists of representing concurrent activities using state machines.
Figure 1 shows an example of such a synchronisation and the chosen notation. The arrows are
dashed to emphasise the fact that the arcs are not transitions of the state machine and do not
carry meaning about a role or an action. In this particular example we have a whole automaton

IADIS International Journal on Computer Science and Information Systems

42

composed of states S1 to S7, that is itself composed of two components, the red and the blue
automata respectively. The synchronisation is two-fold: first S2 and S3 are triggered by an
AND with two outbound arrows, and second S4 and S6 must both be reached in order to
proceed to the final state S7. The red and blue state machines are therefore parallel activities
that can be conducted separately, but must both be finished before the whole process can
continue.

Note that there is no need for an OR, as an alternative is of course already part of the state
machine theory: a state with multiple outbound arcs represents such an alternative, dependant
on the conditions expressed by said arcs.

Figure 1. Synchronisation between two parallel automata: The AND on the left means that both red and
blue state machines are started after S1. The AND on the right means that both final states of the red and
blue state machines must be reached in order to proceed to the final state S7 of the whole process. The

dashed arrows emphasise the fact that those arcs are not part of the model.

2.3 Component-based State Machines

This extension can be seen as a sort of recursive definition, similar in essence to that of
recursive state machines (Alur, 2005), which allows the replacement of activities (arcs) in a
FSM by another FSM. In other words, it allows the viewing of an activity as a simple
transition, or as a more detailed process. It is much simpler than the definition of a recursive
state machine, and based on the semantic equivalence of two different state machines seen at
different levels of detail. In this sense it is more appropriate to speak of “zooming” or
“scalability”, so we use the terminology “scalable state machine” (SSM) and “component
state machine” (CSM) in the remainder of this document when we refer to the extended FSM.

Intuitively, as a prelude to a more formal definition of the model, there are two conditions
to satisfy for this property to hold:

The source states (entry nodes) and the destination states (exit nodes) must be univocally
identified and respectively identical for the considered transition T and the component FSM it
stands for. This corresponds to the requirement of a well-defined interface in the definition of
a recursive state machine, with the limitation that we consider only one entry state and one
exit state.

The role associated with an arc must be in phase with the “overall role” of the component
automaton. A certain freedom exists as to how to define this “overall role”, depending on the
semantics of the process.

Definition. A scalable state machine Σ is a finite state machine),,,,(TASsS dstsrc :

S is the set of all states

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL REPRESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

43

Sssrc ∈ is the source state, or entry state

SSdst ⊆ is the set of destination states, or exit states

A is the set of activities
SAST →×: is the state-transition function

Definition. An activity A∈α is a tuple (role, action). A role r is a label; it identifies the
users or entities that performs the action. Note that a role can be an abstract thing played by
many users (a team) or software agents. An action a is the execution of a task in the context of
SLCM. Usually such a task produces a deliverable, such as a document or a piece of software.

Definition. A component state machine is a scalable state machine Σ with exactly one

source state Sssrc ∈ and exactly one destination state Ssdst ∈ .

Definition. A scalable state machine),,,,(TAssS dstsrc=Σ is semantically equivalent

to another scalable state machine Σ′ where the transition Tsst t
dst

tt
src ∈=),,(α has been

replaced by a component state machine),,,,(ΚΚΚΚΚ=Κ TAssS dstsrc if and only if the

following conditions hold:
Source and destination states respectively are identical for the CSM Κ and the transition

t it replaces: Κ= src
t
src ss and Κ= dst

t
dst ss .

A meaningful overall role Κr and a meaningful overall action Κa of the SSM Κ that

correspond respectively to the role tr and action ta in activity),(ttt ar=α can be

defined.
Condition 1 implies the uniqueness of the destination state. An arc has exactly one source

and one destination state. In effect, the overall process can be represented as a SSM, with
multiple destination states, but any activity itself is only represented by a CSM, i.e. it must
have only one destination state. This makes sense in our context. A process can very well have
two distinct destination states, one for success and one for failure for example, but any arc in
itself must lead to a well-defined, unique state, else the composition doesn’t make sense.

In general, condition 2 always holds as a role is only a label and one can define a meta-role
capturing the semantics of all the roles involved in the new SSM Κ replacing transition t , or
simply use the last activity completing the task, i.e. the last arc reaching the destination state
of Κ . The same holds for the action.

Using the full definition of recursive state machines would allow for much more flexible
compositions. However, for the problem at hand, it is not necessary. The semantics behind the
SLCM activities is about producing deliverables or results, and alternative destination states
can therefore always be combined into one single ending state which signifies the acceptance
of the considered process after some possibilities that would otherwise be considered as final
states have been reached. In other words, a scalable state machine (with multiple destination
states) can be transformed into a component state machine (with only one destination state)
with no loss of functionality. In the success/failure example, one possibility consists in
defining another state meaning the end of the project and making it the only final state.

Furthermore, as stated in the introduction, the idea is to keep the formalism as simple as
possible for a non-specialist, and combining automata with interfaces of multiple entry and
exit states recursively is far more complicated, even though it is mathematically much more

IADIS International Journal on Computer Science and Information Systems

44

elegant and powerful than the proposed model.

3. GOING FORMAL

The strength of the model presented in Section 2, its simplicity for non-specialists, is also its
weakness. The two extensions are not really part of the mathematical system itself, so in order
to represent explicitly these processes and validate system properties or do correctness proofs
another model is needed that satisfies the following properties:

The model must take into account the possibility of parallel activities, while retaining the
other features of SSM/CSM.

A mapping must exist between the proposed SSM and the model that doesn’t break any
condition or include new information requiring human intervention.

Petri nets are a well-defined formalism that allows the representation of parallel activities
and synchronisation. Section 3.1 presents briefly Petri nets and compares them to other
formalisms that can be applied in this domain. Section 3.2 then proceeds by showing that the
model proposed in Section 2 can be mapped directly to Petri nets.

3.1 Petri nets

As mentioned in the Introduction, Petri nets, also often referred to as place/transition nets,
were proposed as a mathematical language and representation for discrete distributed systems,
where concurrency and causal dependencies must be represented explicitly. Their application
to workflow management in particular has been investigated extensively by Aalst (1998).

Without going into formal definitions, which like in the case of state machines are
extensively described in the relevant literature (Petri, 1968), a Petri net is composed of places
and transitions. In the simplest case, which concerns us, a single token is moving from place to
place by being consumed and produced by the corresponding enabled transition.

Other possibilities to represent our model with a sound mathematical language have been
investigated: Conceptual Graphs (Sowa, 1976) and Description Logic. They possess sound
mathematical foundations and are very expressive languages, but that very last feature is what
rules them out. The complete argument is beyond the scope of this paper, but to state it in one
sentence: Representing processes using conceptual graphs, description logic (e.g. as ontologies
in OWL-DL) or any other static model or language like first-order predicate logic adds the
burden of representing dynamic activities explicitly, while Petri nets were designed from the
ground up to fulfil that very requirement while being very simple to represent graphically and
be comprehensible by human beings.

There also exists a refinement of social protocols using the coloured Petri defined by
Jensen (1992) as a mathematical language (Picard, 2008). The purpose of the development of
social protocols is to model human-to-human interactions over a network from the ground up,
while retaining a strong mathematical foundation, and explore the possibilities offered by
successive refinements of the model, for example a direct structural validation (Picard, 2007).
Our approach is quite different in that it is inspired by very pragmatic concerns: The purpose
is to give non specialists the simplest possible representation language for SLCM, and then
transform it into a sound mathematical model allowing the verification of certain system
properties, the validation of the processes and automatic correctness proofs. Petri nets are

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL REPRESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

45

mathematically sound and offer such possibilities (Reisig, 1985). Furthermore, the mapping of
our extension of FSM to a Petri net is straightforward, as showed in Section 3.2.

Coloured Petri nets were ruled out because the semantics of what is being produced is
attached to the states themselves. Adding types would permit the explicit representation of
what is being produced, a specific document or a software module for example, but this
information would have to be also explicit in the simple representation of the processes on the
side of the users, i.e. in the SSM/CSM, and that would add unnecessary complexity and
burden to the users, and make the proposed model more complicated.

3.2 Mapping the Model

It is well known that FSM can be seen as a special case of Petri nets, where each transition,
now represented as a box, can have one and only one incoming arc and one and only one
outgoing arc. The mapping of a FSM to a Petri net is then trivial as it goes from the more
specific to the more general model. The following two sections show that the extensions
presented in Section 2, synchronisation and scalability, do not break any property that would
prevent such mapping.

3.2.1 Synchronisation

What happens when we represent as a Petri net the synchronisation mechanism (“rendezvous”
or AND) between the set of the destination states of some SSM on one side and the triggering
of initial states of other SSM on the other side? In the theory of Petri nets, such a
synchronisation is simply a transition (a rectangle) with multiple incoming arcs, one for each
of the place (state) that has to contain a token in order to enable the transition, and where the
outgoing arcs, possibly only one or even none, enables the places (states) that have to be
activated. The example in Figure 2 shows an AND in a finite state machine and the
corresponding Petri net notation where the AND becomes transition T1 with corresponding
inbound and outbound transitions. The numbers on the arcs mean that one token is consumed
(inbound arc) or produced (outbound arc) by the transition.

Figure 2. The logical AND shown on the left is mapped as a new transition T1 with multiple incoming
and outgoing arcs in the corresponding Petri net on the right. Note the tokens in the two final states on

the left, symbolised by red numbers 1 in parenthesis, meaning that the transition is ready to fire, i.e. to be
executed.

IADIS International Journal on Computer Science and Information Systems

46

3.2.2 Scalability

In the mapping of FSM to Petri nets, a state-transition (an arc) of the FSM becomes a
transition in the Petri net. Since scalability deals only with the (semantic) equivalence of two
SSM at two different level of detail, a SSM where a transition has been replaced by a CSM is
nothing more than a special case of FSM and as such can be mapped directly to another Petri
net.

Note that it cannot be said that this second Petri net is equivalent to the first one, as the
equivalence of Petri nets is something completely different that has to do with the way the nets
behave (isomorphism) and implies among other things that two equivalent systems always
have the same number of cases, events and steps, which is clearly not the case here.

In practice and in other words, the Petri net used for validation is simply the (automatic)
mapping of the whole state machine, result of the combination and synchronisation of as many
components as the design required.

4. EXAMPLE

This section illustrates the application of the model and it’s mapping to Petri nets using an
activity defined in the ISO/IEC 12207 document (ISO/IEC, 1995). It encompasses a much-
simplified version of activity 5.1.1 “Acquisition process” (by the role “acquirer”), which was
reduced to the SSM shown in Figure 3, retaining only those properties necessary to illustrate
scalability and synchronisation. It is evident that real processes are rather more complex than
the one presented in this paper, which serves only as an illustration. The arcs are sub-activities
as defined in the reference document. For instance, in this particular case, there is an
alternative between two activities to reach the final state, corresponding to either developing
the software in-house (5.1.1.2 using 5.3), or buying it from a third-party (5.1.1.2 outsourced
and 5.1.1.3) respectively. The mapping to the corresponding Petri net is straightforward.

Figure 3. Activity 5.1.1 expressed as a SSM and as the corresponding Petri net. This is a much-simplified
version of the actual process described in ISO/IEC 12207. The arcs correspond to sub-activities and are

labelled accordingly.

A single token is present in the first place S1 of the Petri net, showing that the transition
T0 corresponding to activity 5.1.1.1 is enabled. The token itself carries no meaning. The

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL REPRESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

47

semantics of the state of the system is dependent only on the place (state) it is in and what is
being produced: a deliverable, document, report, piece of software, or several of those items.
The numbers on the inbound and outbound transitions of each activity are the number of
consumed or produced tokens, respectively. In our case, this number is always one. Note that
including several tokens in one single state of a given process would carry no meaning in this
particular case, the processes being in essence completed when the next place in the diagram is
reached.

The example diagrams were produced using a prototype built to validate the model, which
uses automatic layout engines provided by open-source libraries, and usually produces
different orderings for FSM and Petri nets. Colours were added manually to the diagrams to
improve legibility.

4.1 Scalability

In Figure 3, activity 5.1.1.2 in red is meant to be executed using activity 5.3, which defines a
development procedure inspired by the waterfall model. This is why 5.3 has been included in
parenthesis in the example automaton. This information is meaningless for the mapping itself:
it is intended only to render the labels more precise. The first strength of the model is that it
allows someone without many skills to take the SSM in Figure 3 and replace activity 5.1.1.2 in
red by some development process: either 5.3 or a custom tailored one. Figure 4 shows a
possible CSM that could be devised to perform activity 5.1.1.2, which would replace the
corresponding transition in a more detailed view. The states S2 and S4 are retained, as they are
the same for both the SSM in Figure 3 and Figure 4, fulfilling the conditions expressed in
Section 2.3.

Figure 4. A possibility for activity 5.1.1.2 expressed with a higher level of detail, as a SSM and as the

corresponding Petri net. States S2 and S4 are the same as the corresponding S2 and S4 in Figure 3.

IADIS International Journal on Computer Science and Information Systems

48

Figure 5. The whole state machine and corresponding Petri net when replacing the arrow (transition)
in red in Figure 3 by the component state machine (Petri net) of Figure 4, also in red.

Finally, Figure 5 illustrates the state machine and Petri net obtained by such replacement,
which is the essence of the ability to zoom on an arrow.

4.2 Synchronisation

To illustrate the mapping when synchronisation is used, a new activity “feasibility study” is
added in parallel to activity 5.1.1.1. This activity must take place after state S1, and before
state S2. Figure 6 illustrates the new SSM with the synchronisation, and its corresponding
Petri net.

Figure 6. Activity 5.1.1 as a synchronised SSM, with the addition of a parallel activity “feasibility study”
in blue and the synchronisation mechanism, and the corresponding Petri net

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL REPRESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

49

5. CONCLUSION

The model presented in this article is a first step towards bridging the gap between an intuitive
representation for systems life cycle processes on one hand, and a formal representation suited
for validation of such processes on the other hand.

The main contribution is the clear definition of a representation for SLCM processes,
which cannot be used as such for validation of systems properties, but which can be mapped
easily to a more general and expressive representation that has the desired properties: Petri
nets. The model has the advantage that it enforces a systems thinking approach to problem
solving from the start, while being simple enough for non-specialists. It therefore sacrifices
mathematical elegance to usability, and has a certain trade-off between expressiveness and
simplicity, which we argue is not a limitation in our case.

This method has been successfully applied to some basic processes inspired from the ISO
12207 document, but the main application seems to be beyond that of systems life cycle
processes only. Indeed, the model was used to represent business processes representing legal
and administrative documents (Coţofrei, 2008). The method needs to be refined as the
mapping is not entirely straightfoward, but even the simple proof of concept using the
prototype written to validate our idea showed very promising results. We were able to
invalidate a lot of otherwise accepted administrative processes, and it seems that the mistakes
found would have escaped traditional methods such as Pi calculus.

Most mistakes were actually directly visible using only the representation of the state
machines instead of the business process modelling language diagrams themselves. Some very
important properties, like the generation of useless documents, potentially endless cycles or
contradictions were visible with a simple graphical simulation of the Petri net.

Future work is necessary in the actual analyses that can be done on the generated Petri
nets, most algorithms used to analyse systems properties in this context (reachability,
liveliness, boundedness, cycle detections etc.) being at least exponential, unless the graphs are
constrained in some ways. A complete analysis of the properties of the generated graphs and
state diagrams needs to be conducted to show the applicability of such methods.

ACKNOWLEDGEMENT

This Work was sponsored by the Hasler Foundation, Switzerland: project ManCOM 2085.

REFERENCES

van der Aalst, W.M.P., 1998. The Application of Petri Nets to Workflow Management. In The Journal of
Circuits, Systems and Computers, Vol. 8 No. 1, pp. 21-66.

Abrial, J.R. et al, 1980. On the Construction of Programs. Cambridge University Press, UK.
Abrial, J.R., 1996. The B-Book: Assigning Programs to Meanings. Cambridge University Press, UK.
Alur, R. et al, 2005. Analysis of Recursive State Machines. ACM Transactions on Programming

Languages and Systems, Vol. 27 No. 4, pp. 786-818.
Beck, K. et al, 2001. Manifesto for Agile Software Development. URL: http://agilemanifesto.org/.

IADIS International Journal on Computer Science and Information Systems

50

Bjørner, D. and Jones, C.B., 1978. The Vienna Development Method: The Meta-Language. In Lectures
Notes in Computer Science, Vol. 61, Springer-Verlag, Berlin Heidelberg, Germany.

Boehm, B., 1986. A Spiral Model of Software Development and Enhancement. ACM SIGSOFT Software
Engineering Notes, Vol. 11.

Carroll, J. et al,1989. Theory of Finite Automata with an Introduction to Formal Languages. Prentice
Hall, Englewood Cliffs.

Coţofrei, P. and Stoffel, K., 2008. Business Process Modelling for Academic Virtual Organizations. In
Pervasive Collaborative Networks, Springer, Boston, pp. 213-220.

Gill, A., 1962. Introduction to the Theory of Finite-state Machines. McGraw-Hill.
Ginsburg, S., 1962. An Introduction to Mathematical Machine Theory. Addison-Wesley.
International Organization for Standardization (ISO) and International Electrotechnical Commission

(IEC), 1995. ISO/IEC 12207. Standard for Information Technology.
Jensen, K., 1992. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 1.

Monographs in Theoretical Computer Science, Springer-Verlag, Germany.
Martin, A., 1991. Rapid Application Development. Macmillan Coll Div.
Martin, A., 2004. Relating Z and First-Order Logic. Lectures Notes in Computer Science, Vol. 1709, No.

1999, Springer, Berlin Heidelbert, Germany, pp. 715.
Petri, C. A., 1962. Kommunikation mit Automaten. Ph.D. Thesis. Schriften IIM Nr. 2, Institut für

Instrumentelle Mathematik, University of Bonn, Germany.
Picard, W., 2005. Modeling Structured Non-monolithic Collaboration Processes. Proceedings of the 6th

IFIP Working Conference on Virtual Enterprises: Collaborative Networks and their Breeding
Environments. Camarinha-Matos, L., Afsarmanesh, H., Ortiz, A., eds. Springer, Valencia, Spain, pp.
379-386.

Picard, W., 2006. Computer Support for Adaptive Human Collaboration with Negotiable Social
Protocols. In Lectures Notes in Informatics (LNI), Vol. 85: BIS 2006. Abramowicz, W., Mayr, H.C.,
eds. GI, Germany, pp. 90–101.

Picard, W., 2007. An Algebraic Algorithm for Structural Validation of Social Protocols. Proceedings of
Business Information Systems, 10th International Conference, BIS 2007. Poznan, Poland, pp. 570-
583.

Picard, W., 2008. Modelling Multithreaded Social Protocols with Couloured Petri Nets. In IFIP
International Federation for Information Processing, Vol. 283: Pervasive Collaborative Network.
Camarinha-Matos, L.M., Picard, W., eds. Springer, Boston, pp. 343-350.

Raise Method Group, 1992. The Raise Specification Language. Prentice-Hall, US.
Raise Method Group, 1995. The Raise Method Manual. Prentice-Hall, US.
Reisig, W., 1985. Petri Nets: An Introduction. Springer-Verlag, Berlin Heidelberg, Germany.
Royce, W.W., 1970. Managing the Development of Large Software Systems. IEEE Wescon, pp. 1-9.
Simon, E. et al, 2007. Scalable Social Protocols to Formalize Systems Development Life Cycles.

Proceedings of IADIS International Conference e-Society. IADIS Press, Lisbon, Portugal, pp. 177-
184.

Sowa, J.F., 1976. Conceptual Graphs for a Data Base Interface. IBM Journal of Research and
Development, Vol. 20, No. 4, pp. 336-357.

