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ABSTRACT 

In systems life cycle management (SLCM), a gap exists between the informal methodologies for systems 
development and the mathematical formalisms needed for the automatic validation of systems properties 
and correctness proofs. This paper presents a model based on finite state machines and its translation into 
Petri nets, a mathematical representation with the desired degree of provability in this context. We argue 
that the model effectively bridges the gap between the intuitive representation of development processes 
on one hand, and the formal model necessary for validation on the other hand, by allowing users without 
scientific or technical background to represent their activities and all their key features using simple 
automata, by applying a systems thinking approach to problem solving, instead of having to express the 
model in a more complicated representation from the start. Also, this model shows very promising 
results in other domains routinely modelled as activities, using other formalisms, like business processes. 
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1. INTRODUCTION 

In the context of systems life cycle management (SLCM), a clear gap exists between the 
methodologies devised to develop and manage such systems on one hand, and the formalisms 
used to represent and analyse the involved processes on the other hand. 

First, the methodologies applied by development teams are meant as guidelines rather than 
celarly defined processes, even though some are very strict and follow the philosophy of “big 
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design up front”, like the waterfall model (Royce, 1970). Other take into account the iterative 
nature of software development, like the spiral model (Boehm, 1986), or are based on adaptive 
models, like rapid application development (RAD) (Martin, 1991), and the many methods 
grouped under the general denomination of “agile” (Beck, 2001), in which case they are even 
more informal and subject to interpretation. 

Second, in the technical context of software development, formalisms to model software or 
at least some of its key features with sound mathematical foundations give the possibility to 
validate systems properties and do correctness proofs. Automata theory in general, and 
particularly the theory of virtual finite state machines and event driven finite state machines, 
allow the execution of a software specification from a formal representation. These techniques 
are often used to develop either safety critical applications or control software. In the same 
domain, Petri nets (Petri, 1962) are routinely applied to represent and analyse concurrent or 
real time systems, in order to ensure a high level of reliability. Other formalisms were 
developed for systems software with inherent complexity and strong reliability requirements, 
such as embedded systems or safety critical applications, often with accompanying toolkits, 
like the Vienna Development Method (VDM), and its specification language VDM-SL and 
later VDM++ (Bjørner, 1978), Raise, i.e. Rigorous Approach to Industrial Software 
Engineering (Raise Method Group, 1995) and its specification language: the Raise 
Specification Language (RSL) (Raise Method Group, 1992) or the B-Method (Abrial, 1996), 
derived from Z notation (Abrial, 1980), now an ISO standard (ISO/IEC 13568:2002). 
Formalisms inspired by first order logic have been appearing in publications as well (Martin, 
2004). These formalisms share a common denominator: they are too complicated for people 
without computer science or engineering background, what we refer to as “non-specialists” in 
the remainder of this document. 

There lies the essence of the gap between these two worlds. Nothing exists to formalise the 
actual processes involved in the life cycle of the systems while being simple enough for non-
specialists to use. A step towards formalisation has been taken by large organisations or 
administrations, where the need for such standards is critical, with documents such as the US 
Department of Justice definition of SDLC or the ISO/IEC 12207 Standard for Information 
Technology for SLCM (ISO/IEC, 1995). These standards suffer from two main disadvantages 
resulting from their sheer complexity though: First, they’re very difficult to follow to the letter 
as such, and second, they are very difficult, if not impossible, to validate. 

The idea presented in this article is to take one step further in bridging the gap between 
system development methodologies on one side, and the mathematical models for validation 
or proofs on the other side. To achieve this goal, a simple representation with the minimum 
elements is proposed to give non-specialists the ability to model well known or custom SLCM 
methodologies easily by enforcing a systems thinking approach to problem solving. This 
representation is then mapped into a well-established formalism with the desired properties for 
validation: Petri nets. Section 2 presents the representation based on finite state machines and 
Section 3 proceeds by showing that the mapping to Petri nets is straightforward. An example 
illustrating the key features of the model is presented in Section 4 and Section 5 concludes 
with applications, limitations and future work. 
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2. A MODEL BASED ON FINITE STATE MACHINES 

A representation and formalism based on finite state machines (FSM) has been proposed 
(Simon, 2007) to model the processes involved in systems life cycle management. It extends 
state machines in general and the social protocols defined by Picard (2005; 2006) that inspired 
it in particular in two respects: with scalability, and with a synchronisation mechanism. This 
section introduces finite state machines and its limitations in the context of life cycle processes 
representation and proceeds by presenting the two proposed extensions the model, one for 
synchronisation, which is outside the model itself, and one for scalability, which is formally 
defined. 

2.1 Finite State Machines 

The theory of finite state machines, or finite state automata, is a well-known model ideal for 
the representation of linear behavioural processes. Without going into formal details or 
classifications, which are extensively described in the appropriate literature (Gill, 1962; 
Ginsburg, 1962; Carroll, 1989), it consists in a set of states, and transitions indicating a change 
of state triggered by a certain condition. The model is well suited to represent linear processes 
with alternatives, such as the ones involved in systems life cycle management, but lacks two 
important properties to be applied in this context: 

It doesn't allow the representation of parallel processes, which is essential in the 
development of complex systems by whole teams of developers, managers etc. 

It is not scalable, in the sense that it is very difficult to break down a complex process 
involving many states and transitions into simpler components. This becomes even more 
critical when the users involved lack a strong background in the systems thinking approach to 
problem solving, which is often the case for people without scientific or engineering training, 
people we referred to in Section 1 as non-specialists. 

We propose two extensions of the model to allow the representation of all systems life 
cycle processes: 

Synchronised state machines 
Component-based state machines 

2.2 Synchronised State Machines 

This extension is a simple “rendezvous” type of synchronisation mechanism to model parallel 
activities and hold subsequent dependant activities until the completion of all the pre-
requisites. Note that it is different from the real rendezvous in the context of parallelism, 
which synchronises threads (processes) that continue after having met at that point. In our case 
the parallel processes themselves do not continue, it is the whole process that is held until the 
parallel processes all reach a final state. The synchronisation is represented by an AND 
between the set of final states of the synchronised automata and the set of source states of the 
dependant activities. It is not formally part of the mathematical model itself, but only a 
convenient way for non-specialists of representing concurrent activities using state machines. 
Figure 1 shows an example of such a synchronisation and the chosen notation. The arrows are 
dashed to emphasise the fact that the arcs are not transitions of the state machine and do not 
carry meaning about a role or an action. In this particular example we have a whole automaton 
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composed of states S1 to S7, that is itself composed of two components, the red and the blue 
automata respectively. The synchronisation is two-fold: first S2 and S3 are triggered by an 
AND with two outbound arrows, and second S4 and S6 must both be reached in order to 
proceed to the final state S7. The red and blue state machines are therefore parallel activities 
that can be conducted separately, but must both be finished before the whole process can 
continue. 

Note that there is no need for an OR, as an alternative is of course already part of the state 
machine theory: a state with multiple outbound arcs represents such an alternative, dependant 
on the conditions expressed by said arcs. 

 

 

Figure 1. Synchronisation between two parallel automata: The AND on the left means that both red and 
blue state machines are started after S1. The AND on the right means that both final states of the red and 
blue state machines must be reached in order to proceed to the final state S7 of the whole process. The 

dashed arrows emphasise the fact that those arcs are not part of the model. 

2.3 Component-based State Machines 

This extension can be seen as a sort of recursive definition, similar in essence to that of 
recursive state machines (Alur, 2005), which allows the replacement of activities (arcs) in a 
FSM by another FSM. In other words, it allows the viewing of an activity as a simple 
transition, or as a more detailed process. It is much simpler than the definition of a recursive 
state machine, and based on the semantic equivalence of two different state machines seen at 
different levels of detail. In this sense it is more appropriate to speak of “zooming” or 
“scalability”, so we use the terminology “scalable state machine” (SSM) and “component 
state machine” (CSM) in the remainder of this document when we refer to the extended FSM. 

Intuitively, as a prelude to a more formal definition of the model, there are two conditions 
to satisfy for this property to hold: 

The source states (entry nodes) and the destination states (exit nodes) must be univocally 
identified and respectively identical for the considered transition T and the component FSM it 
stands for. This corresponds to the requirement of a well-defined interface in the definition of 
a recursive state machine, with the limitation that we consider only one entry state and one 
exit state. 

The role associated with an arc must be in phase with the “overall role” of the component 
automaton. A certain freedom exists as to how to define this “overall role”, depending on the 
semantics of the process. 

Definition. A scalable state machine Σ  is a finite state machine ),,,,( TASsS dstsrc  : 

S  is the set of all states 
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Sssrc ∈  is the source state, or entry state 

SSdst ⊆  is the set of destination states, or exit states 

A  is the set of activities 
SAST →×:  is the state-transition function 

Definition. An activity A∈α  is a tuple (role, action). A role r is a label; it identifies the 
users or entities that performs the action. Note that a role can be an abstract thing played by 
many users (a team) or software agents. An action a is the execution of a task in the context of 
SLCM. Usually such a task produces a deliverable, such as a document or a piece of software. 

Definition. A component state machine is a scalable state machine Σ  with exactly one 

source state Sssrc ∈ and exactly one destination state Ssdst ∈ . 

Definition. A scalable state machine ),,,,( TAssS dstsrc=Σ  is semantically equivalent 

to another scalable state machine Σ′  where the transition Tsst t
dst

tt
src ∈= ),,( α  has been 

replaced by a component state machine ),,,,( ΚΚΚΚΚ=Κ TAssS dstsrc  if and only if the 

following conditions hold: 
Source and destination states respectively are identical for the CSM Κ  and the transition 

t  it replaces: Κ= src
t
src ss and Κ= dst

t
dst ss . 

A meaningful overall role Κr and a meaningful overall action Κa of the SSM Κ  that 

correspond respectively to the role tr  and action ta  in activity ),( ttt ar=α  can be 

defined. 
Condition 1 implies the uniqueness of the destination state. An arc has exactly one source 

and one destination state. In effect, the overall process can be represented as a SSM, with 
multiple destination states, but any activity itself is only represented by a CSM, i.e. it must 
have only one destination state. This makes sense in our context. A process can very well have 
two distinct destination states, one for success and one for failure for example, but any arc in 
itself must lead to a well-defined, unique state, else the composition doesn’t make sense. 

In general, condition 2 always holds as a role is only a label and one can define a meta-role 
capturing the semantics of all the roles involved in the new SSM Κ  replacing transition t , or 
simply use the last activity completing the task, i.e. the last arc reaching the destination state 
of Κ . The same holds for the action. 

Using the full definition of recursive state machines would allow for much more flexible 
compositions. However, for the problem at hand, it is not necessary. The semantics behind the 
SLCM activities is about producing deliverables or results, and alternative destination states 
can therefore always be combined into one single ending state which signifies the acceptance 
of the considered process after some possibilities that would otherwise be considered as final 
states have been reached. In other words, a scalable state machine (with multiple destination 
states) can be transformed into a component state machine (with only one destination state) 
with no loss of functionality. In the success/failure example, one possibility consists in 
defining another state meaning the end of the project and making it the only final state. 

Furthermore, as stated in the introduction, the idea is to keep the formalism as simple as 
possible for a non-specialist, and combining automata with interfaces of multiple entry and 
exit states recursively is far more complicated, even though it is mathematically much more 
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elegant and powerful than the proposed model. 

3. GOING FORMAL 

The strength of the model presented in Section 2, its simplicity for non-specialists, is also its 
weakness. The two extensions are not really part of the mathematical system itself, so in order 
to represent explicitly these processes and validate system properties or do correctness proofs 
another model is needed that satisfies the following properties: 

The model must take into account the possibility of parallel activities, while retaining the 
other features of SSM/CSM. 

A mapping must exist between the proposed SSM and the model that doesn’t break any 
condition or include new information requiring human intervention. 

Petri nets are a well-defined formalism that allows the representation of parallel activities 
and synchronisation. Section 3.1 presents briefly Petri nets and compares them to other 
formalisms that can be applied in this domain. Section 3.2 then proceeds by showing that the 
model proposed in Section 2 can be mapped directly to Petri nets. 

3.1 Petri nets 

As mentioned in the Introduction, Petri nets, also often referred to as place/transition nets, 
were proposed as a mathematical language and representation for discrete distributed systems, 
where concurrency and causal dependencies must be represented explicitly. Their application 
to workflow management in particular has been investigated extensively by Aalst (1998). 

Without going into formal definitions, which like in the case of state machines are 
extensively described in the relevant literature (Petri, 1968), a Petri net is composed of places 
and transitions. In the simplest case, which concerns us, a single token is moving from place to 
place by being consumed and produced by the corresponding enabled transition. 

Other possibilities to represent our model with a sound mathematical language have been 
investigated: Conceptual Graphs (Sowa, 1976) and Description Logic. They possess sound 
mathematical foundations and are very expressive languages, but that very last feature is what 
rules them out. The complete argument is beyond the scope of this paper, but to state it in one 
sentence: Representing processes using conceptual graphs, description logic (e.g. as ontologies 
in OWL-DL) or any other static model or language like first-order predicate logic adds the 
burden of representing dynamic activities explicitly, while Petri nets were designed from the 
ground up to fulfil that very requirement while being very simple to represent graphically and 
be comprehensible by human beings. 

There also exists a refinement of social protocols using the coloured Petri defined by 
Jensen (1992) as a mathematical language (Picard, 2008). The purpose of the development of 
social protocols is to model human-to-human interactions over a network from the ground up, 
while retaining a strong mathematical foundation, and explore the possibilities offered by 
successive refinements of the model, for example a direct structural validation (Picard, 2007). 
Our approach is quite different in that it is inspired by very pragmatic concerns: The purpose 
is to give non specialists the simplest possible representation language for SLCM, and then 
transform it into a sound mathematical model allowing the verification of certain system 
properties, the validation of the processes and automatic correctness proofs. Petri nets are 
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mathematically sound and offer such possibilities (Reisig, 1985). Furthermore, the mapping of 
our extension of FSM to a Petri net is straightforward, as showed in Section 3.2. 

Coloured Petri nets were ruled out because the semantics of what is being produced is 
attached to the states themselves. Adding types would permit the explicit representation of 
what is being produced, a specific document or a software module for example, but this 
information would have to be also explicit in the simple representation of the processes on the 
side of the users, i.e. in the SSM/CSM, and that would add unnecessary complexity and 
burden to the users, and make the proposed model more complicated. 

3.2 Mapping the Model 

It is well known that FSM can be seen as a special case of Petri nets, where each transition, 
now represented as a box, can have one and only one incoming arc and one and only one 
outgoing arc. The mapping of a FSM to a Petri net is then trivial as it goes from the more 
specific to the more general model. The following two sections show that the extensions 
presented in Section 2, synchronisation and scalability, do not break any property that would 
prevent such mapping. 

3.2.1 Synchronisation 

What happens when we represent as a Petri net the synchronisation mechanism (“rendezvous” 
or AND) between the set of the destination states of some SSM on one side and the triggering 
of initial states of other SSM on the other side? In the theory of Petri nets, such a 
synchronisation is simply a transition (a rectangle) with multiple incoming arcs, one for each 
of the place (state) that has to contain a token in order to enable the transition, and where the 
outgoing arcs, possibly only one or even none, enables the places (states) that have to be 
activated. The example in Figure 2 shows an AND in a finite state machine and the 
corresponding Petri net notation where the AND becomes transition T1 with corresponding 
inbound and outbound transitions. The numbers on the arcs mean that one token is consumed 
(inbound arc) or produced (outbound arc) by the transition. 

 

  
 

Figure 2. The logical AND shown on the left is mapped as a new transition T1 with multiple incoming 
and outgoing arcs in the corresponding Petri net on the right. Note the tokens in the two final states on 

the left, symbolised by red numbers 1 in parenthesis, meaning that the transition is ready to fire, i.e. to be 
executed. 
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3.2.2 Scalability 

In the mapping of FSM to Petri nets, a state-transition (an arc) of the FSM becomes a 
transition in the Petri net. Since scalability deals only with the (semantic) equivalence of two 
SSM at two different level of detail, a SSM where a transition has been replaced by a CSM is 
nothing more than a special case of FSM and as such can be mapped directly to another Petri 
net. 

Note that it cannot be said that this second Petri net is equivalent to the first one, as the 
equivalence of Petri nets is something completely different that has to do with the way the nets 
behave (isomorphism) and implies among other things that two equivalent systems always 
have the same number of cases, events and steps, which is clearly not the case here. 

In practice and in other words, the Petri net used for validation is simply the (automatic) 
mapping of the whole state machine, result of the combination and synchronisation of as many 
components as the design required. 

4. EXAMPLE 

This section illustrates the application of the model and it’s mapping to Petri nets using an 
activity defined in the ISO/IEC 12207 document (ISO/IEC, 1995). It encompasses a much-
simplified version of activity 5.1.1 “Acquisition process” (by the role “acquirer”), which was 
reduced to the SSM shown in Figure 3, retaining only those properties necessary to illustrate 
scalability and synchronisation. It is evident that real processes are rather more complex than 
the one presented in this paper, which serves only as an illustration. The arcs are sub-activities 
as defined in the reference document. For instance, in this particular case, there is an 
alternative between two activities to reach the final state, corresponding to either developing 
the software in-house (5.1.1.2 using 5.3), or buying it from a third-party (5.1.1.2 outsourced 
and 5.1.1.3) respectively. The mapping to the corresponding Petri net is straightforward. 

 

 
 

 

Figure 3. Activity 5.1.1 expressed as a SSM and as the corresponding Petri net. This is a much-simplified 
version of the actual process described in ISO/IEC 12207. The arcs correspond to sub-activities and are 

labelled accordingly. 

A single token is present in the first place S1 of the Petri net, showing that the transition 
T0 corresponding to activity 5.1.1.1 is enabled. The token itself carries no meaning. The 
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semantics of the state of the system is dependent only on the place (state) it is in and what is 
being produced: a deliverable, document, report, piece of software, or several of those items. 
The numbers on the inbound and outbound transitions of each activity are the number of 
consumed or produced tokens, respectively. In our case, this number is always one. Note that 
including several tokens in one single state of a given process would carry no meaning in this 
particular case, the processes being in essence completed when the next place in the diagram is 
reached. 

The example diagrams were produced using a prototype built to validate the model, which 
uses automatic layout engines provided by open-source libraries, and usually produces 
different orderings for FSM and Petri nets. Colours were added manually to the diagrams to 
improve legibility. 

4.1 Scalability  

In Figure 3, activity 5.1.1.2 in red is meant to be executed using activity 5.3, which defines a 
development procedure inspired by the waterfall model. This is why 5.3 has been included in 
parenthesis in the example automaton. This information is meaningless for the mapping itself: 
it is intended only to render the labels more precise. The first strength of the model is that it 
allows someone without many skills to take the SSM in Figure 3 and replace activity 5.1.1.2 in 
red by some development process: either 5.3 or a custom tailored one. Figure 4 shows a 
possible CSM that could be devised to perform activity 5.1.1.2, which would replace the 
corresponding transition in a more detailed view. The states S2 and S4 are retained, as they are 
the same for both the SSM in Figure 3 and Figure 4, fulfilling the conditions expressed in 
Section 2.3. 
 

 
 

 
Figure 4. A possibility for activity 5.1.1.2 expressed with a higher level of detail, as a SSM and as the 

corresponding Petri net. States S2 and S4 are the same as the corresponding S2 and S4 in Figure 3. 
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Figure 5. The whole state machine and corresponding Petri net when replacing the arrow (transition) 
in red in Figure 3 by the component state machine (Petri net) of Figure 4, also in red. 

Finally, Figure 5 illustrates the state machine and Petri net obtained by such replacement, 
which is the essence of the ability to zoom on an arrow. 

4.2 Synchronisation 

To illustrate the mapping when synchronisation is used, a new activity “feasibility study” is 
added in parallel to activity 5.1.1.1. This activity must take place after state S1, and before 
state S2. Figure 6 illustrates the new SSM with the synchronisation, and its corresponding 
Petri net. 

 

 
 

 

Figure 6. Activity 5.1.1 as a synchronised SSM, with the addition of a parallel activity “feasibility study” 
in blue and the synchronisation mechanism, and the corresponding Petri net 
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5. CONCLUSION 

The model presented in this article is a first step towards bridging the gap between an intuitive 
representation for systems life cycle processes on one hand, and a formal representation suited 
for validation of such processes on the other hand. 

The main contribution is the clear definition of a representation for SLCM processes, 
which cannot be used as such for validation of systems properties, but which can be mapped 
easily to a more general and expressive representation that has the desired properties: Petri 
nets. The model has the advantage that it enforces a systems thinking approach to problem 
solving from the start, while being simple enough for non-specialists. It therefore sacrifices 
mathematical elegance to usability, and has a certain trade-off between expressiveness and 
simplicity, which we argue is not a limitation in our case. 

This method has been successfully applied to some basic processes inspired from the ISO 
12207 document, but the main application seems to be beyond that of systems life cycle 
processes only. Indeed, the model was used to represent business processes representing legal 
and administrative documents (Coţofrei, 2008). The method needs to be refined as the 
mapping is not entirely straightfoward, but even the simple proof of concept using the 
prototype written to validate our idea showed very promising results. We were able to 
invalidate a lot of otherwise accepted administrative processes, and it seems that the mistakes 
found would have escaped traditional methods such as Pi calculus. 

Most mistakes were actually directly visible using only the representation of the state 
machines instead of the business process modelling language diagrams themselves. Some very 
important properties, like the generation of useless documents, potentially endless cycles or 
contradictions were visible with a simple graphical simulation of the Petri net. 

Future work is necessary in the actual analyses that can be done on the generated Petri 
nets, most algorithms used to analyse systems properties in this context (reachability, 
liveliness, boundedness, cycle detections etc.) being at least exponential, unless the graphs are 
constrained in some ways. A complete analysis of the properties of the generated graphs and 
state diagrams needs to be conducted to show the applicability of such methods. 
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