IADIS International Journal on Computer Science brfdrmation Systems
Vol. 4, No. 3, pp. 39-50
ISSN: 1646-3692

TOWARDSBRIDGING THE GAP BETWEEN
INTUITIVE AND FORMAL REPRESENTATIONS
OF SYSTEMSLIFE CYCLE PROCESSES

Eric Simon Institut du management de 'information, Univegsie Neuchatel, Switzerland.
eric.simon@unine.ch

Kilian Stoffel. Institut du management de l'information, Unive#sie Neuchatel, Switzerland.
kilian.stoffel@unine.ch

ABSTRACT

In systems life cycle management (SLCM), a gap gXistween the informal methodologies for systems
development and the mathematical formalisms neéatettie automatic validation of systems properties
and correctness proofs. This paper presents a rbadet! on finite state machines and its translartimn
Petri nets, a mathematical representation withdésred degree of provability in this context. \Weuse
that the model effectively bridges the gap betwibenintuitive representation of development proesss
on one hand, and the formal model necessary fadatadn on the other hand, by allowing users withou
scientific or technical background to represenirthaetivities and all their key features using sienp
automata, by applying a systems thinking approagtrablem solving, instead of having to express the
model in a more complicated representation from staet. Also, this model shows very promising
results in other domains routinely modelled asvis, using other formalisms, like business psses.

KEYWORDS

State machine, Petri net, life cycle

1. INTRODUCTION

In the context of systems life cycle managementQd), a clear gap exists between the
methodologies devised to develop and manage swgtensg on one hand, and the formalisms
used to represent and analyse the involved prosessthe other hand.

First, the methodologies applied by developmennteare meant as guidelines rather than
celarly defined processes, even though some ayestéct and follow the philosophy of “big

39

IADIS International Journal on Computer Science brfdrmation Systems

design up front”, like the waterfall model (Royd®70). Other take into account the iterative
nature of software development, like the spiral eidBoehm, 1986), or are based on adaptive
models, like rapid application development (RAD)4&itin, 1991), and the many methods
grouped under the general denomination of “agiBgdk, 2001), in which case they are even
more informal and subject to interpretation.

Second, in the technical context of software dgualent, formalisms to model software or
at least some of its key features with sound mathieal foundations give the possibility to
validate systems properties and do correctnessferédatomata theory in general, and
particularly the theory of virtual finite state nfges and event driven finite state machines,
allow the execution of a software specificatiomira formal representation. These techniques
are often used to develop either safety criticadliaptions or control software. In the same
domain, Petri nets (Petri, 1962) are routinely egapto represent and analyse concurrent or
real time systems, in order to ensure a high lefeteliability. Other formalisms were
developed for systems software with inherent coripleand strong reliability requirements,
such as embedded systems or safety critical apiplisa often with accompanying toolkits,
like the Vienna Development Method (VDM), and itgesification language VDM-SL and
later VDM++ (Bjgrner, 1978), Raise, i.e. Rigorouspphoach to Industrial Software
Engineering (Raise Method Group, 1995) and its ifipation language: the Raise
Specification Language (RSL) (Raise Method Growg92) or the B-Method (Abrial, 1996),
derived from Z notation (Abrial, 1980), now an IS€andard (ISO/IEC 13568:2002).
Formalisms inspired by first order logic have bagpearing in publications as well (Martin,
2004). These formalisms share a common denomintiey. are too complicated for people
without computer science or engineering backgrowitht we refer to as “non-specialists” in
the remainder of this document.

There lies the essence of the gap between thesedwds. Nothing exists to formalise the
actual processes involved in the life cycle of siggstems while being simple enough for non-
specialists to use. A step towards formalisatios haen taken by large organisations or
administrations, where the need for such standardstical, with documents such as the US
Department of Justice definition of SDLC or the I 12207 Standard for Information
Technologyfor SLCM (ISO/IEC, 1995). These standards suffenf two main disadvantages
resulting from their sheer complexity though: Fiteey're very difficult to follow to the letter
as such, and second, they are very difficult, ffirgossible, to validate.

The idea presented in this article is to take dee further in bridging the gap between
system development methodologies on one side, lemdnaithematical models for validation
or proofs on the other side. To achieve this gaajmple representation with the minimum
elements is proposed to give non-specialists ti#yatm model well known or custom SLCM
methodologies easily by enforcing a systems thipképproach to problem solving. This
representation is then mapped into a well-estaddighrmalism with the desired properties for
validation: Petri nets. Section 2 presents theasgmtation based on finite state machines and
Section 3 proceeds by showing that the mappingetd Rets is straightforward. An example
illustrating the key features of the model is prged in Section 4 and Section 5 concludes
with applications, limitations and future work.

40

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL RERESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

2. AMODEL BASED ON FINITE STATE MACHINES

A representation and formalism based on finiteestaachines (FSM) has been proposed
(Simon, 2007) to model the processes involved stesys life cycle management. It extends
state machines in general and the social protatafleed by Picard (2005; 2006) that inspired
it in particular in two respects: with scalabilignd with a synchronisation mechanism. This
section introduces finite state machines andntgdtions in the context of life cycle processes
representation and proceeds by presenting the tapoped extensions the model, one for
synchronisation, which is outside the model itsaifd one for scalability, which is formally
defined.

2.1 Finite State M achines

The theory of finite state machines, or finite statitomata, is a well-known model ideal for
the representation of linear behavioural proces®éishout going into formal details or
classifications, which are extensively describedthie appropriate literature (Gill, 1962;
Ginsburg, 1962; Carroll, 1989), it consists in afestates, and transitions indicating a change
of state triggered by a certain condition. The nhaslevell suited to represent linear processes
with alternatives, such as the ones involved inesys life cycle management, but lacks two
important properties to be applied in this context:

It doesn't allow the representation of parallel gesses, which is essential in the
development of complex systems by whole teams edéldpers, managers etc.

It is not scalable, in the sense that it is verffidilt to break down a complex process
involving many states and transitions into simptemponents. This becomes even more
critical when the users involved lack a strong lgmokind in the systems thinking approach to
problem solving, which is often the case for peapidaout scientific or engineering training,
people we referred to in Section 1 as non-spetsalis

We propose two extensions of the model to allow réq@esentation of all systems life
cycle processes:

Synchronised state machines

Component-based state machines

2.2 Synchronised State Machines

This extension is a simple “rendezvous” type ofcdypnisation mechanism to model parallel
activities and hold subsequent dependant activitiel the completion of all the pre-
requisites. Note that it is different from the reéahdezvous in the context of parallelism,
which synchronises threads (processes) that canéftar having met at that point. In our case
the parallel processes themselves do not contihigethe whole process that is held until the
parallel processes all reach a final state. Thechegmisation is represented by an AND
between the set of final states of the synchronsgdmata and the set of source states of the
dependant activities. It is not formally part ofetimathematical model itself, but only a
convenient way for non-specialists of representiogcurrent activities using state machines.
Figure 1 shows an example of such a synchronisatiointhe chosen notation. The arrows are
dashed to emphasise the fact that the arcs areamsitions of the state machine and do not
carry meaning about a role or an action. In thigipaar example we have a whole automaton

41

IADIS International Journal on Computer Science brfdrmation Systems

composed of states S1 to S7, that is itself composéwo components, the red and the blue
automata respectively. The synchronisation is teld:ffirst S2 and S3 are triggered by an
AND with two outbound arrows, and second S4 andn&&t both be reached in order to
proceed to the final state S7. The red and blue stachines are therefore parallel activities
that can be conducted separately, but must botfinished before the whole process can
continue.

Note that there is no need for an OR, as an aligeni of course already part of the state
machine theory: a state with multiple outbound aeggesents such an alternative, dependant
on the conditions expressed by said arcs.

1 S1 F - AND AND

OO

Figure 1. Synchronisation between two parallel anatia: The AND on the left means that both red and
blue state machines are started after S1. The AN®right means that both final states of thearsd
blue state machines must be reached in order tepdboto the final state S7 of the whole process. Th
dashed arrows emphasise the fact that those arecoapart of the model.

_ ¥

L—

2.3 Component-based State M achines

This extension can be seen as a sort of recurs¥ieitibn, similar in essence to that of
recursive state machines (Alur, 2005), which alldhe replacement of activities (arcs) in a
FSM by another FSM. In other words, it allows thewing of an activity as a simple
transition, or as a more detailed process. It ishmeimpler than the definition of a recursive
state machine, and based on the semantic equieatdrtevo different state machines seen at
different levels of detail. In this sense it is moappropriate to speak of “zooming” or
“scalability”, so we use the terminologypcalable state machine(SSM) and“component
state machine{CSM)in the remainder of this document when we reféhéextended FSM.

Intuitively, as a prelude to a more formal defimitiof the model, there are two conditions
to satisfy for this property to hold:

The source states (entry nodes) and the destinstiies (exit nodes) must be univocally
identified and respectively identical for the calesied transition T and the component FSM it
stands for. This corresponds to the requiremeit wéll-defined interface in the definition of
a recursive state machine, with the limitation that consider only one entry state and one
exit state.

The role associated with an arc must be in phatethw “overall role” of the component
automaton. A certain freedom exists as to how findehis “overall role”, depending on the
semantics of the process.

Definition. A scalable state machinZ is a finite state machinéS, S;,., Sy, A T) :

S is the set of all states

42

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL RERESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

S, LIS is the source state, or entry state
S, U S is the set of destination states, or exit states

A is the set o#ctivities
T :Sx A = S is the state-transition function

Definition. An activity @ [A is a tuple(role, action) A role r is a label; it identifies the
users or entities that performs the action. No#t ¢hrole can be an abstract thing played by
many users (a team) or software agentsaétion ais the execution of a task in the context of
SLCM. Usually such a task produces a deliverahieh s a document or a piece of software.

Definition. A component state maching a scalable state machinz with exactly one

source states,. [J Sand exactly one destination stegg, [1 S.
Definition. A scalable state maching = (S, S ., Sy» A T) is semanticallyequivalent
to another scalable state machidé where the transitiot = (S, @', S,,) JT has been

replaced by a component state machiie= (S°, s}, sk, A, T*) if and only if the

following conditions hold:
Source and destination states respectively ardicdérior the CSMK and the transition

. o — oK t — K
t it replaces:S,, = S and Sy = Sy -

A meaningfuloverall role rfand a meaningfubverall action a" of the SSMK that

correspond respectively to the rolé and actiona' in activity a' = (rt,at) can be

defined.

Condition 1 implies the uniqueness of the destimasitate. An arc has exactly one source
and one destination state. In effect, the overalkgss can be represented as a SSM, with
multiple destination states, but any activity itsslonly represented by a CSM, i.e. it must
have only one destination state. This makes sengsericontext. A process can very well have
two distinct destination states, one for successane for failure for example, but any arc in
itself must lead to a well-defined, unique statse ¢he composition doesn’t make sense.

In general, condition 2 always holds as a rolenly a label and one can define a meta-role
capturing the semantics of all the roles involvedhie new SSMK replacing transitiort , or
simply use the last activity completing the tasg, the last arc reaching the destination state
of K. The same holds for the action.

Using the full definition of recursive state maasnwould allow for much more flexible
compositions. However, for the problem at hand itot necessary. The semantics behind the
SLCM activities is about producing deliverablesresults, and alternative destination states
can therefore always be combined into one singiéngnstate which signifies the acceptance
of the considered process after some possibilitiaswould otherwise be considered as final
states have been reached. In other words, a seadtdie machine (with multiple destination
states) can be transformed into a component statdinme (with only one destination state)
with no loss of functionality. In the success/faluexample, one possibility consists in
defining another state meaning the end of the pt@jed making it the only final state.

Furthermore, as stated in the introduction, the ideto keep the formalism as simple as
possible for a non-specialist, and combining autameith interfaces of multiple entry and
exit states recursively is far more complicatecerethough it is mathematically much more

43

IADIS International Journal on Computer Science brfdrmation Systems

elegant and powerful than the proposed model.

3. GOING FORMAL

The strength of the model presented in SectiotsZimplicity for non-specialists, is also its
weakness. The two extensions are not really patieomathematical system itself, so in order
to represent explicitly these processes and validgstem properties or do correctness proofs
another model is needed that satisfies the follgwiroperties:

The model must take into account the possibilitypafallel activities, while retaining the
other features of SSM/CSM.

A mapping must exist between the proposed SSM hadrodel that doesn’t break any
condition or include new information requiring humiatervention.

Petri nets are a well-defined formalism that alldhs representation of parallel activities
and synchronisation. Section 3.1 presents briefiyrifhets and compares them to other
formalisms that can be applied in this domain. iBacB.2 then proceeds by showing that the
model proposed in Section 2 can be mapped direcfetri nets.

3.1 Petri nets

As mentioned in the Introduction, Petri nets, atéten referred to as place/transition nets,
were proposed as a mathematical language and espatien for discrete distributed systems,
where concurrency and causal dependencies musgtpbesented explicitly. Their application
to workflow management in particular has been itigated extensively by Aalst (1998).

Without going into formal definitions, which likenithe case of state machines are
extensively described in the relevant literaturetiP1968), a Petri net is composed of places
and transitions. In the simplest case, which carges, a single token is moving from place to
place by being consumed and produced by the camelépy enabled transition.

Other possibilities to represent our model withoarsl mathematical language have been
investigated: Conceptual Graphs (Sowa, 1976) amsti#ion Logic. They possess sound
mathematical foundations and are very expressivgulages, but that very last feature is what
rules them out. The complete argument is beyonddtbpe of this paper, but to state it in one
sentence: Representing processes using concepapdisy description logic (e.g. as ontologies
in OWL-DL) or any other static model or languageelifirst-order predicate logic adds the
burden of representing dynamic activities exphlgitivhile Petri nets were designed from the
ground up to fulfil that very requirement while bgivery simple to represent graphically and
be comprehensible by human beings.

There also exists a refinement of social protoeagg the coloured Petri defined by
Jensen (1992) as a mathematical language (Pica®@8).2The purpose of the development of
social protocols is to model human-to-human intisoas over a network from the ground up,
while retaining a strong mathematical foundationd &xplore the possibilities offered by
successive refinements of the model, for examplgeat structural validation (Picard, 2007).
Our approach is quite different in that it is ingpi by very pragmatic concerns: The purpose
is to give non specialists the simplest possibfgasentation language for SLCM, and then
transform it into a sound mathematical model allgyvithe verification of certain system
properties, the validation of the processes andmaatic correctness proofs. Petri nets are

44

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL RERESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

mathematically sound and offer such possibilitRsigig, 1985). Furthermore, the mapping of
our extension of FSM to a Petri net is straightfamly as showed in Section 3.2.

Coloured Petri nets were ruled out because the r#gnaof what is being produced is
attached to the states themselves. Adding typeddwmermit the explicit representation of
what is being produced, a specific document or favaoe module for example, but this
information would have to be also explicit in themgle representation of the processes on the
side of the users, i.e. in the SSM/CSM, and thatldvadd unnecessary complexity and
burden to the users, and make the proposed model complicated.

3.2 Mapping the Model

It is well known that FSM can be seen as a speeigé of Petri nets, where each transition,
now represented as a box, can have one and onlynooaiing arc and one and only one
outgoing arc. The mapping of a FSM to a Petri sethin trivial as it goes from the more

specific to the more general model. The followingp tsections show that the extensions
presented in Section 2, synchronisation and sdijalido not break any property that would

prevent such mapping.

3.2.1 Synchronisation

What happens when we represent as a Petri neyticdrenisation mechanism (“rendezvous”
or AND) between the set of the destination stafesome SSM on one side and the triggering
of initial states of other SSM on the other sidef the theory of Petri nets, such a
synchronisation is simply a transition (a rectapgiéh multiple incoming arcs, one for each
of the place (state) that has to contain a tokeordler to enable the transition, and where the
outgoing arcs, possibly only one or even none, lesathe places (states) that have to be
activated. The example in Figure 2 shows an ANDairfinite state machine and the
corresponding Petri net notation where the AND bee® transition T1 with corresponding
inbound and outbound transitions. The numbers eraths mean that one token is consumed
(inbound arc) or produced (outbound arc) by thaditaon.

83)

,"_-/
- -
>

A9
AND |-» S4)
yo

Figure 2. The logical AND shown on the left is magms a new transition T1 with multiple incoming
and outgoing arcs in the corresponding Petri neherright. Note the tokens in the two final staias
the left, symbolised by red numbers 1 in parengheseaning that the transition is ready to fie, o be
executed.

45

IADIS International Journal on Computer Science brfdrmation Systems

3.2.2 Scalability

In the mapping of FSM to Petri nets, a state-ttansi(an arc) of the FSM becomes a
transition in the Petri net. Since scalability deahly with the (semantic) equivalence of two
SSM at two different level of detail, a SSM whert&ransition has been replaced by a CSM is
nothing more than a special case of FSM and as carclbe mapped directly to another Petri
net.

Note that it cannot be said that this second Petriis equivalent to the first one, as the
equivalence of Petri nets is something completéfgrént that has to do with the way the nets
behave (isomorphism) and implies among other thihgs two equivalent systems always
have the same number of cases, events and steph, iwhlearly not the case here.

In practice and in other words, the Petri net used/alidation is simply the (automatic)
mapping of the whole state machine, result of tralination and synchronisation of as many
components as the design required.

4. EXAMPLE

This section illustrates the application of the mlodnd it's mapping to Petri nets using an
activity defined in the ISO/IEC 12207 document (IEEZ, 1995). It encompasses a much-
simplified version of activity 5.1.1 “Acquisitionrpcess” (by the role “acquirer”), which was
reduced to the SSM shown in Figure 3, retaininy dinbse properties necessary to illustrate
scalability and synchronisation. It is evident theal processes are rather more complex than
the one presented in this paper, which servesasbn illustration. The arcs are sub-activities
as defined in the reference document. For instaiteahis particular case, there is an
alternative between two activities to reach thalfistate, corresponding to either developing
the software in-house (5.1.1.2 using 5.3), or bgiytrfrom a third-party (5.1.1.2 outsourced
and 5.1.1.3) respectively. The mapping to the spwading Petri net is straightforward.

Figure 3. Activity 5.1.1 expressed as a SSM anthagorresponding Petri net. This is a much-sirgalif
version of the actual process described in ISO/IBEDX. The arcs correspond to sub-activities and are
labelled accordingly.

A single token is present in the first place Sthaf Petri net, showing that the transition
TO corresponding to activity 5.1.1.1 is enablede Tthken itself carries no meaning. The

46

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL RERESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

semantics of the state of the system is dependdyntom the place (state) it is in and what is
being produced: a deliverable, document, repoeteiof software, or several of those items.
The numbers on the inbound and outbound transitadnsach activity are the number of

consumed or produced tokens, respectively. In agecthis number is always one. Note that
including several tokens in one single state ofvargprocess would carry no meaning in this
particular case, the processes being in essengglet®th when the next place in the diagram is
reached.

The example diagrams were produced using a pratdiygt to validate the model, which
uses automatic layout engines provided by openesolibraries, and usually produces
different orderings for FSM and Petri nets. Colowere added manually to the diagrams to
improve legibility.

4.1 Scalability

In Figure 3, activity 5.1.1.2 in red is meant toéecuted using activity 5.3, which defines a
development procedure inspired by the waterfall @ho@his is why 5.3 has been included in
parenthesis in the example automaton. This infdonas meaningless for the mapping itself:

it is intended only to render the labels more meciThe first strength of the model is that it
allows someone without many skills to take the S8Migure 3 and replace activity 5.1.1.2 in
red by some development process: either 5.3 orstoutailored one. Figure 4 shows a
possible CSM that could be devised to perform >ig.1.1.2, which would replace the
corresponding transition in a more detailed vietve Btates S2 and S4 are retained, as they are
the same for both the SSM in Figure 3 and Figuré&Hilling the conditions expressed in
Section 2.3.

design

s R . 2P . P PR
Js2) (1st) design SA \ u.odc. » sp acceptance

Figure 4. A possibility for activity 5.1.1.2 expsesl with a higher level of detail, as a SSM anthas
corresponding Petri net. States S2 and S4 arathe as the corresponding S2 and S4 in Figure 3.

47

IADIS International Journal on Computer Science brfdrmation Systems

5.1.1.2 (outsourced

acceptance

(1st) design

code

Figure 5. The whole state machine and corresporféatg net when replacing the arrow (transition)
in red in Figure 3 by the component state macHiwtr{ net) of Figure 4, also in red.

Finally, Figure 5 illustrates the state machine Bedri net obtained by such replacement,
which is the essence of the ability to zoom onraove

4.2 Synchronisation

To illustrate the mapping when synchronisationssdj a new activity “feasibility study” is
added in parallel to activity 5.1.1.1. This actjvinust take place after state S1, and before
state S2. Figure 6 illustrates the new SSM with gliechronisation, and its corresponding
Petri net.

i/
I 81 F-# AND AND |-
hY

/
@ feasibility study @

SIB S2B

Figure 6. Activity 5.1.1 as a synchronised SSMhwfite addition of a parallel activity “feasibilistudy”
in blue and the synchronisation mechanism, andahesponding Petri net

48

TOWARDS BRIDGING THE GAP BETWEEN INTUITIVE AND FORMAL RERESENTATIONS
OF SYSTEMS LIFE CYCLE PROCESSES

5. CONCLUSION

The model presented in this article is a first $@pards bridging the gap between an intuitive
representation for systems life cycle processesnenhand, and a formal representation suited
for validation of such processes on the other hand.

The main contribution is the clear definition ofrgpresentation for SLCM processes,
which cannot be used as such for validation ofesgstproperties, but which can be mapped
easily to a more general and expressive repregamtdtat has the desired properties: Petri
nets. The model has the advantage that it enfacggstems thinking approach to problem
solving from the start, while being simple enough fion-specialists. It therefore sacrifices
mathematical elegance to usability, and has ainettade-off between expressiveness and
simplicity, which we argue is not a limitation imfocase.

This method has been successfully applied to sasi Iprocesses inspired from the 1SO
12207 document, but the main application seemsetddyond that of systems life cycle
processes only. Indeed, the model was used tosemréusiness processes representing legal
and administrative documents (©frei, 2008). The method needs to be refined as the
mapping is not entirely straightfoward, but ever thimple proof of concept using the
prototype written to validate our idea showed ve@mnpmising results. We were able to
invalidate a lot of otherwise accepted administeaprocesses, and it seems that the mistakes
found would have escaped traditional methods sadhi aalculus.

Most mistakes were actually directly visible usiagly the representation of the state
machines instead of the business process mod#ligyage diagrams themselves. Some very
important properties, like the generation of useldgcuments, potentially endless cycles or
contradictions were visible with a simple graphisiahulation of the Petri net.

Future work is necessary in the actual analysesddia be done on the generated Petri
nets, most algorithms used to analyse systems piepen this context (reachability,
liveliness, boundedness, cycle detections etcrjgbai least exponential, unless the graphs are
constrained in some ways. A complete analysis efpitoperties of the generated graphs and
state diagrams needs to be conducted to show glieaplity of such methods.

ACKNOWLEDGEMENT

This Work was sponsored by the Hasler Foundatiwitz8rland: project ManCOM 2085.

REFERENCES

van der Aalst, W.M.P., 1998. The Application of iPBlets to Workflow Managemerin The Journal of
Circuits, Systems and Computev®l. 8 No. 1, pp. 21-66.

Abrial, J.R. et al, 198@0n the Construction of Program&ambridge University Press, UK.
Abrial, J.R., 1996The B-Book: Assigning Programs to Meanin@ambridge University Press, UK.

Alur, R. et al, 2005. Analysis of Recursive State Maes. ACM Transactions on Programming
Languages and Systenvgl. 27 No. 4, pp. 786-818.

Beck, K. et al, 200IManifesto for Agile Software DevelopmeadRL: http://agilemanifesto.org/.

49

IADIS International Journal on Computer Science brfdrmation Systems

Bjgrner, D. and Jones, C.B., 1978. The Vienna Devetopriviethod: The Meta-Languade. Lectures
Notes in Computer Sciendéol. 61, Springer-Verlag, Berlin Heidelberg, Germany

Boehm, B., 1986. A Spiral Model of Software Developtrend EnhancemerACM SIGSOFT Software
Engineering Notes/ol. 11.

Carroll, J. et al,1989Theory of Finite Automata with an Introduction torfF@l LanguagesPrentice
Hall, Englewood Cliffs.

Cotofrei, P. and Stoffel, K., 2008. Business Processiélling for Academic Virtual Organizationm
Pervasive Collaborative NetworkSpringer, Boston, pp. 213-220.

Gill, A., 1962.Introduction to the Theory of Finite-state Machin€EGraw-Hill.

Ginsburg, S., 1962An Introduction to Mathematical Machine TheoAddison-Wesley.

International Organization for Standardization ()S&ahd International Electrotechnical Commission
(IEC), 1995.ISO/IEC 12207 Standard for Information Technology.

Jensen, K., 1992Coloured Petri Nets. Basic Concepts, Analysis Mettarts Practical UseVol. 1.
Monographs in Theoretical Computer Science, SprivMggtag, Germany.

Martin, A., 1991 Rapid Application Developmer#lacmillan Coll Div.

Martin, A., 2004. Relating Z and First-Order Lodiectures Notes in Computer Sciengel. 1709, No.
1999, Springer, Berlin Heidelbert, Germany, pp. 715.

Petri, C. A., 1962.Kommunikation mit AutomaterPh.D. Thesis. Schriften [IM Nr. 2, Institut fir
Instrumentelle Mathematik, University of Bonn, Genya

Picard, W., 2005. Modeling Structured Non-monotitfiollaboration ProcesseBroceedings of the's
IFIP Working Conference on Virtual Enterprises: Coiamative Networks and their Breeding
Environments. Camarinha-Matos, L., Afsarmanesh(hitiz, A., edsSpringer,Valencia, Spain, pp.
379-386.

Picard, W., 2006. Computer Support for Adaptive HaomCollaboration with Negotiable Social
Protocols.In Lectures Notes in Informatics (LNNpl. 85: BIS 2006 Abramowicz, W., Mayr, H.C.,
eds GI, Germany, pp. 90-101.

Picard, W., 2007. An Algebraic Algorithm for Strucal Validation of Social Protocol®roceedings of
Business Information Systems™llaternational Conference, BIS 2007. Poznan, Polap, 570-
583.

Picard, W., 2008. Modelling Multithreaded Socialofcols with Couloured Petri Net$n IFIP
International Federation for Information Processjngol. 283 Pervasive Collaborative Network.
Camarinha-Matos, L.M., Picard, W., e&pringer, Boston, pp. 343-350.

Raise Method Group, 1992he Raise Specification Languageentice-Hall, US.

Raise Method Group, 199%he Raise Method Manudrentice-Hall, US.

Reisig, W., 1985Petri Nets: An IntroductionSpringer-Verlag, Berlin Heidelberg, Germany.

Royce, W.W., 1970. Managing the Development of L&8g#&ware System$EEE Wesconpp. 1-9.

Simon, E. et al, 2007. Scalable Social Protocold=tomalize Systems Development Life Cycles.
Proceedings of IADIS International Conference ei&gclADIS Press, Lisbon, Portugal, pp. 177-
184.

Sowa, J.F., 1976. Conceptual Graphs for a Data Bassfdce.IBM Journal of Research and
Developmentyol. 20, No. 4, pp. 336-357.

50

