
IADIS International Journal on Computer Science and Information Systems
Vol. 4, No. 2, pp. 41-58
ISSN: 1646-3692

41

ADAPTIVE STORAGE MODEL FOR XML IN
OBJECT-RELATIONAL DATABASES

Michael Kamel. Dept. of Computer and Systems Engineering, Faculty of Engineering, Alexandria
University, Egypt. Elshatby, Alexandria, Egypt.

mkamel@alex.edu.eg

Khaled Nagi. Dept. of Computer and Systems Engineering, Faculty of Engineering, Alexandria
University, Egypt. Elshatby, Alexandria, Egypt.

knagi@alex.edu.eg

Nagwa El-Makky. Dept. of Computer and Systems Engineering, Faculty of Engineering, Alexandria
University, Egypt. Elshatby, Alexandria, Egypt.

nagwamakky@alex.edu.eg

ABSTRACT

Object relational database management systems (ORDBMS) are becoming more popular in storing and
retrieving XML than native XML DBMS. In most ORDBMS, XML is stored as CLOB inside the
relation. Efficient XML parsers and indexing techniques are used to retrieve the desired XML nodes.
However, less attention is given to XML updates queries. With the upcoming standardization of XML
updates queries, the current implementation of the lock granularity imposes a great limitation on the
concurrency of parallel transactions. This motivated several experimental ORDBMS to shred the XML
nodes across internal relations. This approach has also several drawbacks. In this paper, we propose an
adaptive technique for selective shredding. It is based on existing database engines and takes the changes
in the workload pattern into consideration. We analyze the performance of our approach and compare it
to the CLOB and the complete shredding approaches.

KEYWORDS

XML storage models, data shredding techniques, ORDBMS, performance analysis.

IADIS International Journal on Computer Science and Information Systems

42

1. INTRODUCTION

XQuery is becoming the standard query language for querying XML data. Currently, most
commercial Object Relational Database Management Systems (ORDBMS) treat the whole
XML document as a single text attribute in the relation. They all implement row-level or page
locking techniques. Due to the non-exclusive (shared) locks of read operations, XQuery
operations retrieving data from XML never impose a performance problem with the increase
of concurrent users in a database management system. The whole row containing the XML in
question is locked for reading in a shared mode and efficient XML parsers are used to retrieve
the desired XML nodes.

However, with the upcoming standardization of update queries in the XQuery language
(Chamberlin & Robie 2005) the current implementation of the lock granularity imposes a
great limitation on the concurrency of parallel transactions. To overcome this problem, several
experimental ORDBMS completely shred the XML nodes across internal relations to achieve
more concurrency. The main drawbacks of this approach are the huge space consumption used
to store meta-data of the shredded XML nodes and due to fragmentation and the degradation
of response time of XQueries accessing large XML Sub-trees (not just single nodes) which
require an extra overhead to rebuild the XML tree from the shredded nodes.

The current work presents a new XML storage approach called Selective XML Shredding
in which the XML document is gradually shredded into smaller XML portions to achieve
higher concurrency for XQuery updates. The XML sub-trees that are frequently accessed will
be stored into separate XML portions in a separate relation which helps to achieve higher
concurrency of access on these sub-trees. This approach tries to save the huge space used by
the complete shredding schemes and meanwhile achieve higher concurrency than CLOB
based schemes. The selective XML shredding is designed to perform better than complete
XML shredding for operations on XML Sub-trees as it saves the overhead required by the
complete XML shredding scheme to rebuild the accessed XML Sub-tree from shredded nodes.
The approach has another important advantage of being adaptive. The scheme shreds the
portions of XML that are heavily accessed, in so called hot spot areas. If the hot spot area
changes its location, the scheme gradually consolidates the fragmented XML portions that are
no longer heavily used and shreds those portions in the new area.

In our design, we undergo an important constraint, which is simply ignored in the
experimental ORDBMS. We do not attempt to change the internal storage management of the
database engine. We build the shredding scheme as an isolated layer on top of existing
commercial ORDBMS. This makes our approach more ready to use than others.

The rest of the paper is organized as follows. Section 2 presents a background on existing
storage models. In Section 3, we present our proposed storage model and briefly describe its
implementation in Section 4. Section 5 contains a brief validation and verification of the
system. Section 6 describes the simulation model used to analyze our approach and compare it
to the standard CLOB based storage model and the complete shredding storage model. The
experiment results are presented in Section 7. Section 8 concludes the paper.

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

43

2. BACKGROUND

There are several schemes used to store XML data in ORDBMS which can be categorized as
follows (Nicola & van der Linden 2005). Schemes used to store XML data natively are not
considered in this paper.

2.1 Storing XML as a Single Field

Generally, storing XML as a single field (generally CLOB) allows for fast insertion and
retrieval of full documents but suffers from poor search and extraction performance due to
XML parsing at query execution time. This can be moderately improved if indexes are built at
insert time. While this incurs XML parsing overhead, it may speed up queries that look for
documents which match given search conditions. Yet, extraction of document fragments and
sub-tree level updates still require expensive XML parsing. In Oracle 10g XML documents
can be stored with indexing support as CLOBs or shredded to object-relational tables.
Microsoft SQL Server 2005 stores XML documents as byte sequences in CLOB columns as
mentioned in (Pat et al. 2004). A primary XML index can be defined to avoid parsing the
XML CLOBs at query time (Pat et al. 2004).

2.2 Shredding XML to a Relational Schema

Shredding XML to a relational schema is the process of mapping XML elements into
relational data based on the tree representation of the XML document. Shredding XML to
relational tables is expensive at insert time due to costly XML parsing and multi-table inserts
(Nicola et al. 2003). But once XML is broken into relational scalar values, queries and updates
in plain SQL promise higher performance. XML Shredding can be categorized into two main
categories:

• Schema-based XML Storage: It depends on storing XML in relational systems that
make use of a schema for the XML data in order to choose a good relational schema.

• Schema-oblivious XML Storage: Its goal is to find a relational schema that works for
storing XML documents independent of the presence or absence of a schema.

Our work focuses on XML documents that do not necessarily have a schema.
In STORED (Deutsch et al. 1999), given a semi-structured database instance, a special

mapping is generated automatically using data mining techniques. STORED is a declarative
query language proposed for this purpose. This mapping has two parts: a relational schema
and an overflow graph for the data not conforming to the relational schema. STORED can be
classified as a schema-oblivious technique since the data inserted is not required to conform to
the derived schema.

According to the edge approach, the input XML document is viewed as a graph and each
edge of the graph is represented as a tuple in a single table. In a variant known as the attribute
approach, the edge table is horizontally partitioned on the tag name yielding a separate table
for each element/attribute. Two other alternatives, the Universal table approach and the
Normalized Universal approach are proposed but shown to be inferior to the other two.

The binary association approach (Schmidt et al. 2000) is a path-based approach that stores
all elements that correspond to a given root-to-leaf path together in a single relation. Parent-
child relationships are maintained through parent and child ids. The XRel approach

IADIS International Journal on Computer Science and Information Systems

44

(Yashikawa et al. 2001) is another path-based approach. The main difference here is that for
each element, the path id corresponding to the root-to-leaf path as well as an interval
representing the region covered by the element is stored. The latter is similar to interval-based
schemes for representing inverted lists proposed in (Li & Moon 2001) and (Zhang et al. 2001).

In (Tatarinov 2002), the focus is on supporting order based queries over XML data. The
schema assumed is a modified edge relation where the path id is stored as in (Yashikawa et al.
2001), and an extra field for order is also stored. In (DeHaan et al. 2003), all XML data is
stored in a single table containing a tuple for each element, attribute and text node. For an
element, the element name and an interval representing the region covered by the element is
stored. Analogous information is stored for attributes and text nodes.

There has been extensive work on using inverted lists to evaluate path expression queries
by performing containment joins (e.g., Jiang et al. 2003, Li & Moon 2001, Srivastava et al.
2002, Wang et al. 2003, and Zhang et al. 2001). In (Zhang et al. 2001), the performance of
containment algorithms in an RDBMS and a native XML system are compared. All other
strategies are for native XML systems. In order to adapt these inside a relational engine, it is
supposed to add new containment algorithms and novel data structures. The issue of how the
relational engine is extended to identify the use of these strategies is open. In particular, the
question of how the optimizer maps SQL operations into these strategies needs to be
addressed.

In (Teubner 2003), a new database index structure called the XPath accelerator is proposed
that supports all XPath axes. The pre-order and post-order ranks of an element are used to map
nodes onto a two-dimensional plane. The evaluation of the XPath axis steps then reduces to
processing region queries in this pre/post plane. In (Teubner 2003), the focus is on exploiting
additional properties of the pre/post plane to speedup XPath query evaluation and the Staircase
join operator is proposed for this purpose. The focus of (Grust 2002) and (Teubner 2003) is on
efficiently supporting the basic operations in a path expression and is complementary to the
XML-to-SQL query translation issue.

3. PROPOSED STORAGE MODEL

In our work, we focus on schema oblivious XML storage for ORDBMS. We do not attempt to
change the underlying database storage manager. Our solution is built on top any existing
storage manager. This implies, as well, that we do not change any interface to the lock manger
residing above the storage manager.

Figure 1 illustrates a general layered architecture of an ORDBMS. We introduce a
component that maps XQuery operations to SQL statements: the XQuery To SQL Translator.
The XML Storage Mapper is tightly coupled to the XQuery To SQL Translator in order to
map the operation on XML nodes to database operations performed on the corresponding
database tuples. The XML Access Monitor examines the tuples being accessed either through
read or write operations. Its job is to identify the hot spots, which are XPathes with lots of read
and write operations in order to apply the selective shredding algorithm.

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

45

Figure 1. Proposed system components

3.1 Selective Shredding

Selective Shredding based storage of XML documents means that the XML document is
gradually shredded into smaller XML portions to achieve higher concurrency for XQuery
updates. Using a sliding window concept to evaluate the frequency of access, the XML sub-
trees that are frequently accessed are gradually stored into separate XML portions. There are
two main parameters that control the shredding phase.

• Time interval dt: It is the time between two successive cycles of shredding and
consolidation.

• Frequency threshold of XQuery operations on a certain XPath: It is the threshold of
number of XQuery operations that access the same XPath during time interval dt. If
this threshold is exceeded at a certain XPath, selective shredding takes place at this
XPath.

When the access on the shredded XML portions decreases, the XML Access Monitor
issues a command to consolidate these portions back into a greater XML document or portion.
The following example explains our scheme.

Let us assume a sample XML document of the TPC-C benchmarking model, illustrated in
Figure 2. The node district shaded below in the XML document experiences frequent XQuery
updates. The XML document will be shredded into two portions at the node being frequently
updated; i.e., the district node. Each of the two XML portions is stored into a separate XML
CLOB field in order to achieve higher concurrency for XQuery updates as illustrated in
Figure 2.

IADIS International Journal on Computer Science and Information Systems

46

<district id="A-001">
 <customer id="M-
0023">
 <order id="1">
 ...
 </order>
 <order id="2">
 ...
 </order>
 ...
 </customer>
 <customer id="M-
0024">
 ...
 </customer>
</district>

<company>
 <warehouse id="A">
 <!--Node Place Holder-->
 <district id="A-002">
 ...
 </district>
 ...
 </warehouse>
 <warehouse id="B">
 <district id="B-001">
 <customer id="K-
0024">
 <order id="1">
 ...
 </order>
 ...
 </customer>
 </district>
 ...
 </warehouse>
 ...
</company>

Figure 2. XML after selective shredding

4. IMPLEMENTATION MODEL

In our implementation model, we use the standard edition of MS SQL Server 2005 in order to
verify our constraint of being ready to run on existing ORDBMS without changing its internal.
We define a user defined data type, myXMLType. We implement a simplified XML converter
similar to (Yashikawa et al. 2001) and (Tatarinov 2002), which translates XPath expressions
in XQuery which are in turn embedded in SQL to plain SQL using stored procedures for
insertion, update, deletion and retrieval. The algorithms used in these stored procedures
depend on the underlying storage model.

In order to keep our implementation as simple as possible, we assume – without loss of
generality – that the lock manager uses the standard Two Phase Locking scheme on row level
for the relational data. On the XML level, we assume the Path Lock Propagation scheme
(Dekeyser & Hidders 2002) since it is one of the best in time metric. While mapping to the
relational model, we make sure that the same logical locks on XML nodes are held by the lock
manager using the standard two phase locking scheme.

4.1 CLOB Based Storage

This is the standard approach used by most of the commercial ORDBMS. The whole XML
document is stored as a single attribute in the relation. A typical schema looks as in Table 1.

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

47

Table 1. CLOB based storage model

PK Name XML_Data
4711 ACME XMLdocument1 as CLOB
4712 Global Inc. XMLdocument2 as CLOB

4.2 Complete Shredding Based Storage

The data stores in the XML complete shredding based system are:
• XML Relation: This relation is the original relation that is supposed to store the XML

data but what actually is done is to store an XML document identifier instead of
storing the whole XML document as a CLOB. The identifier for the XML document
is used in nodes relation to relate the XML nodes to their original XML document
using a foreign key constraint.

• Nodes Relation: This relation is used to store the data of XML nodes resulting from
the tree representation of each XML document in XML relation. It is related to XML
relation by XML document identifier. This relation is created to achieve concurrency
at XML node level instead of being at the whole XML document.

A typical schema looks as in Table 2. The attributes of the Nodes relation are listed in
Table 3.

Table 2. Complete shredding based storage model

PK Name MyXML_Column_ID
4711 ACME XML00000001
4712 Global Inc. XML00000002

Table 3. Nodes relation for the complete shredding based storage model

Attribute Description
PK Node unique identifier
Type node type (element or attribute or text or comment, etc.).
Value node value

For nodes of type element, it is NULL.
For nodes of type attribute or text or comment, it stores the contents of the node.

XPath XPath of the XML node (tokenized)
docId XML document identifier which refers to the identifier of the XML document in

the base table.
ParentId Parent node identifier of the current node (foreign key to PK)

4.3 Selective Shredding Based Storage

The data stores in the XML selective shredding based system are:
• XML Relation: same as in the complete shredding storage model
• XML Portions Relation: This relation is used to store the data of XML portions

resulting from the shredding of frequently updated sub-trees in the tree representation
of each XML document in the XML relation. It is related to the XML relation by the

IADIS International Journal on Computer Science and Information Systems

48

XML document identifier. This relation is created to achieve concurrency at XML
portion level instead of being at the whole XML document.

The attributes of the XML Portions Relation are listed in Table 4.

Table 4. XML portion relation for the selective shredding based storage model

Attribute Description
XMLDocID XML document identifier
PortionID XML portion identifier
XPathOfRootForXMLPortion XPath of root for current XML Portion
XMLPortion XML Portion document
ParentPortionID Parent XML document for current XML portion

Additionally, the XML access monitor logs the XQuery operations in a volatile log to be

used for taking the decision whether to shred or consolidate an XML portion. The log contains
the XML document identifier, the operation type, the XPath used in the XQuery, and the
timestamp of the XQuery.

5. VALIDATION USING EXAMPLES

The proposed model and its implementation were verified by running several samples runs
using both typical and boundary values. In this paper, we show examples using simple values
for illustration purposes.

5.1 Sample Insertion

Consider the following Insert query:
Insert into TPC(CompanyID, CompanyName, [TPC XML]) Values(1,
‘‘Buckland Stores’’,
‘<company>
 <warehouse id="A">
 <district id="B-001">
 <customer id="M-0023" index="M">
 <name> Michael </name>
 <order id="1">
 <item> HB pencil </item>
 <price> 15 </price>
 <num> 12 </num>
 <status> undelivered </status>
 </order>
 </customer>
 </district>
 </warehouse>
</company>’)

For CLOB-based scheme, the XML document is stored directly as a single field. For
Complete Shredding-based scheme, this insertion is performed using the constructor of the
User Defined Type “MyXMLDataType”. The XML is validated and the system traverses the

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

49

XML tree and stores the nodes in the “Nodes Table” and also maintains the parent-child
relationship between XML nodes using foreign key constraints as illustrated in Table 5. It then
stores a row in the relational table containing the XML column.

Table 5. Nodes Table after insertion

Id TagName TId Value HId Pk1 ParentId
1 company 1 NULL company 1 NULL
2 warehouse 1 NULL company/warehouse 1 1
3 id 2 A company/warehouse/id 1 2
4 district 1 NULL company/warehouse/district 1 2
5 id 2 B-001 company/warehouse/district/id 1 4
6 customer 1 NULL company/warehouse/district/customer 1 4
7 id 2 M-0023 company/warehouse/district/customer/id 1 6
8 index 2 M company/warehouse/district/customer/index 1 6
9 name 1 NULL company/warehouse/district/customer/name 1 6
10 NULL 4 Michael company/warehouse/district/customer/name/#text 1 9
11 order 1 NULL company/warehouse/district/customer/order 1 6
12 id 2 1 company/warehouse/district/customer/order/id 1 11
13 item 1 NULL company/warehouse/district/customer/order/item 1 11
14 NULL 4 HB pencil company/warehouse/district/customer/order/item/#text 1 13
15 price 1 NULL company/warehouse/district/customer/order/price 1 11
16 NULL 4 15 company/warehouse/district/customer/order/price/#text 1 15
17 num 1 NULL company/warehouse/district/customer/order/num 1 11
18 NULL 4 12 company/warehouse/district/customer/order/num/#text 1 17
19 status 1 NULL company/warehouse/district/customer/order/status 1 11
20 NULL 4 undelivered company/warehouse/district/customer/order/status/#text 1 19

For Selective Shredding-based scheme, the system validates the XML document. If the

XML is valid, it traverses the XML tree and it initially stores the whole XML document as a
single field in the “XML Portions Table”. It also stores a row in the relational table containing
the XML column. Gradually, the XML document is shredded into smaller portions at the
XPaths being frequently accessed. During each shredding process, the XML Portions table is
modified by deleting the large XML document and inserting two smaller portions instead as
illustrated in Table 6.

Table 6. Portions tables after shredding

XMLDocID PortionID XPathOfRootForXMLPortion XMLPortion ParentPortionID
1 1 NULL [XML Portion 1] 1
1 2 company/warehouse/district [XML Portion 2] 2

5.2 Sample Update XQueries

5.2.1 Insertion
let $x := /company/warehouse[@id="A"]/district[@id="B-001"]
do insert $x
<customer id="D-144">
 <name> David </name>

IADIS International Journal on Computer Science and Information Systems

50

 <entry_date> 12/02/2002 </entry_date>
 </customer>

Steps for mapping XQuery for Selective Shredding Scheme
• XQuery Handler locates the XML Portion that includes the XPath of the node being

accessed from the XML Portions table. Let us say the XML Portion being accessed
starts with node called “district” as a root node.

• XQuery Handler maps the XPath of the XQuery transaction which is
“/Company/Warehouse[@id="A"]/district[@id=”B-001”]” to a corresponding XPath
of the XML Portion that includes the node being accessed which is “district[@id=”B-
001”]”. The mapped XQuery is

let $x := district[@id="B-001"]
do insert $x
<customer id="D-144">
 <name> David </name>
 <entry_date> 12/02/2002 </entry_date>
 </customer>

5.2.2 Modification
let $x0 := /company/warehouse[@id="B"],
$x1 := $x0/district[@id="D-002"]/customer[@id="C-031"],
$x := $x1/order[@id="5"]/num
do replace value of $x with “10”

Steps for mapping XQuery for Selective Shredding Scheme
• XQuery Handler locates the XML Portion that includes the XPath of the node being

accessed from the XML Portions table. Let us say the XML Portion being accessed
starts with node called “district” as a root node.

• XQuery Handler maps the XPath of the XQuery transaction which is
“/Company/Warehouse[@id="B"]/district[@id=”D-002”]” to a corresponding XPath
of the XML Portion that includes the node being accessed which is “district[@id=”D-
002”]”. The mapped XQuery is:

let $x1 := district[@id="D-002"]/customer[@id="C-031"],
$x := $x1/order[@id="5"]/num
do replace value of $x with “10”

5.2.3 Deletion
let $x0 := /company/warehouse[@id="B"],
$x := $x0/district[@id="D-002"]/customer[@id="C-031"],
$y := $x/order[date="19/02/2002"]
delete $y

Steps for mapping XQuery for Selective Shredding Scheme
• XQuery Handler locates the XML Portion that includes the XPath of the node being

accessed from the XML Portions table. Let us say the XML Portion being accessed
starts with node called “district” as a root node.

• XQuery Handler maps the XPath of the XQuery transaction which is
“/Company/Warehouse[@id="B"]/district[@id=”D-002”]” to a corresponding XPath

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

51

of the XML Portion that includes the node being accessed which is “district[@id=”D-
002”]”. The mapped XQuery is

let $x := district[@id="D-002"]/customer[@id="C-031"],
$y := $x/order[date="19/02/2002"]
delete $y

6. SIMULATION MODEL

In order to evaluate the performance of our proposed storage model, we build a simulator
based on MS SQL Server 2005 as illustrated in Figure 3. We implement a simplified version
of all three storage models: CLOB-based storage model, complete XML shredding model, and
the selective XML shredding model. The parameters that control the data stored in these data
stores include the number of XML documents, the number of levels in each XML document and
the average number of siblings for each node. The default is 10,000 documents of depth 3 and
average number of siblings 5. In other words, the test database contains about 1,250,000 XML
nodes. We use this relatively small number of nodes in order to artificially increase the rate of
conflicts and thus stress-test the three approaches.

Figure 3. Simulation model

The workload generator submits database transactions using XQuery embedded in SQL.
Each transaction executes in a separate thread. We launch up to 250 transactions in parallel to
simulate 250 concurrent users. The complexity of a single transaction varies from 1 to 10
database statements. Transactions can be read-only containing SELECT and XQuery retrieval
operations only or can be read-write containing UPDATE and XQuery insertion,
modification, or deletion operations. We have two types of selectivity factors. The first one is
the selectivity of database tuples. Traditionally, it does not exceed 10%. The second factor is
inside the XML document itself. It determines the level of the parent node of all nodes
accessed by the XQuery statement and accordingly the percentage of its siblings that are being
affected by the statement. This percentage can vary from 0% to 100% in real life. In order to
test the adaptive nature of each storage model, we artificially create hot spots by concentrating

IADIS International Journal on Computer Science and Information Systems

52

the access to XML nodes to one small subset of the existing nodes. Periodically, we switch to
another subset to simulate changes in the hot spot areas over time.

The performance monitor measures the overall system throughput in terms of committed
transactions per second; the average response time for all types of transactions; the space
consumption on the disk, and the percentage of aborted transactions, which is a direct
indication of the number and severity of conflicts in access to the same document part.

7. EXPERIMENT RESULTS

7.1 Adaptive Nature of the Storage Models

In this set of experiments, we investigate the effect of changing the hot spot access areas of
XML nodes over time in the three storage models. The hot spot area is changed periodically
and the transient behavior of each storage model is plotted. Figures 4 and 5 show that the
system throughput and the response time of the complete shredding and CLOB based storage
model are slightly affected by the change in the hot spot area. This is probably due to diverse
caching mechanisms. However, the proposed selective shredding has a much better
performance as it selectively begins to shred the hot spot. With the shift in the hot spot (the
graphs illustrate three shifts in the hot spot) the improvement in the performance measures
diminishes till the next consolidation and shredding phase. In all cases, the percentage of
aborted transactions remains insignificant. Thus, the transient behavior of the system
demonstrates the adaptive nature of the suggested solution.

Figure 4. Moving average system throughput

Figure 5. Moving average response time

7.2 Effect of Increasing the Number of Concurrent Users

In this set of experiments, the number of concurrent users submitting transaction is varied
from 50 to 250. With this huge number of parallel transactions the possibility of lock conflicts
increases dramatically. Moreover, the artificially small database size magnifies the rate of
conflicts.

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

53

As expected, complete shredding with its fine grained locks performs better than the other
storage models. CLOB-based and selective shredding storage model perform similarly. Their
system throughput saturates at 40 transactions/second, as illustrated in Figure 6, whereas the
complete shredding system seems to scale linearly even at 250 concurrent users achieving a
throughput of 80 transactions/second. The same applies to the response illustrated in Figure 7.
The response time of CLOB and selective shredding climb to 6 seconds whereas complete
shredding remains at 3 seconds. The abort rate of CLOB and selective shredding remains
below 12% which is acceptable. Not a single abort is observed in the complete shredding
model due to the fine granularity of its locks.

Figure 6. Throughput vs. number of concurrent users

Figure 7. Response time vs. number of concurrent users

IADIS International Journal on Computer Science and Information Systems

54

7.3 Space Consumption

The great performance of selective complete shredding has certainly its costs on the space
consumption. In this set of experiments, we increase the number of XML nodes in the system
and observe the space consumption of all three storage models. The increase can be done by
either increasing the number of XML documents, their level, or the average number of their
siblings. All three factors are applied and all yield similar results. Here, we show only the
space consumption as a function of the number of XML documents. The selective shredding
and CLOB go side by side with the increase in XML documents; whereas the complete
shredding consumes huge among of storage due to fragmentation as illustrated in Figure 8. By
increasing the number of XML documents by a factor of 10, the space consumed by the
complete shredding increases by a factor of 10 and amounts to 2.5 GB. The selective
shredding remains under 1.2 GB and CLOB storage under 750 MB. The throughput and
response degrade gracefully in all three storage models. The rate of aborted transactions
remains in a save area.

Figure 8. Space consumption vs. number of XML documents

7.4 Analysis of XQuery Update Operations

Figure 9 and 10 show the effect of the different XQuery update operations on the throughput
and response time respectively. During XQuery modification and deletion, it is just the value
of an XML node(s) that will be affected (updated or deleted). This makes the performance of
the complete shredding superior to the other two models, since it is always faster to update or
delete the relational data in the nodes tables than to update a CLOB field.

As for the XQuery insertion, it is required for the complete shredding based system to map
the inserted XML nodes into relational data as well as to relate the new nodes to their parent
nodes in the nodes tables. This is a cost intensive operation. In the CLOB based and selective
shredding based systems, a CLOB field is updated with the newly inserted nodes; which is a

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

55

much faster operation. The percentage of transaction aborts remains reasonably low for all
XQuery update operations in all three storage models.

Figure 9. Throughput of XQuery update operations Figure 10. Response time of XQuery operations

7.5 Analysis of XQuery Retrieval Operations

Since retrieval operations usually constitute 80% of the total number of operations, we analyze
its performance under different types of queries. In the relational part governing which XML
documents are in question for the XQuery operation, we assume a selectivity factor of 10%;
which is normal for typical relational database retrieval queries. Inside the XML documents,
the selectivity factor of the XML nodes varies heavily. We examine the whole spectrum from
0% to 100%. Moreover, the performance of the system depends on the depth of the XPath. In
this paper, we show the throughput and response time in case that the XPath matches level 2
and 3 of the whole XML document. In each case, the percentage of select XML nodes is
varied from 0% to 100%.

In Figures 11 and 12, we illustrate the throughout and response time for XPath accessing
nodes at level 2 respectively. Here, it is clear that the CLOB-based storage model outperforms
the complete shredding storage based model. This is due to the fact that the chosen sub-trees
are near to the root of the original document and are relatively deep. This makes their
reconstruction from deeply fragmented nodes a cost intensive operation. The selective
shredding storage based model comes slightly after CLOB.

IADIS International Journal on Computer Science and Information Systems

56

Figure 11. Throughput of XQuery retrieval operations vs. the selectivity factor of XML nodes at level 2

Figure 12. Response time of XQuery retrieval operations vs. the selectivity factor of XML nodes

at level 2

In Figures 13 and 14, we illustrate the throughout and response time for XPath accessing
nodes at level 3 respectively. Here, we get the opposite results. The complete shredding
storage based model outperforms the CLOB based storage model. This is due to the fact that
the chosen sub-trees are near to the leaf nodes of the original document and are hence not
expensive to reconstruct from fragmented single nodes. Here also, the performance of our
selective shredding storage based model lies between both standard approaches.

ADAPTIVE STORAGE MODEL FOR XML IN OBJECT-RELATIONAL DATABASES

57

Figure 13. Throughput of XQuery retrieval operations vs. the selectivity factor of XML nodes at level 3

Figure 14. Response time of XQuery retrieval operations vs. the selectivity factor of XML nodes

at level 3

8. CONCLUSION

In this paper, we present the Selective XML Shredding storage scheme for XML in ORDBMS.
It is a mix of CLOB based and XML Shredding based storage models. The main objective of
this scheme is to increase concurrency of XQuery operations on XML documents by splitting
them into smaller XML portions and store these portions in a separate relation. Our approach
is built as a layer on top existing DBMS systems.

We build a prototype of the existing storage schemes and compare the throughput,
response time, space consumption and the ratio of aborted transaction to our scheme. The
simulation results show that the XML Shredding based system has higher throughput than the

IADIS International Journal on Computer Science and Information Systems

58

CLOB based system when the number of concurrent users performing XQuery updates
increases in the system but the main drawback is the extra storage used to store XML nodes.
The depth of the XML nodes being accessed in XPath has the main effect on differentiating
the competitive three approaches. Selective Shredding based system is the best on
intermediate depths as it is a hybrid approach of the CLOB based and Complete Shredding.
Being adaptive against the change in the workload pattern, our approach promises the best
compromise between the existing approaches.

REFERENCES

Chamberlin, D and Robie J. 2005. W3C XQuery Update Facility Requirements, W3C Working Draft,
http://www.w3.org/TR/2005/WD-xquery-update-requirements-20050603/.

DeHaan, D.et al. 2003. A Comprehensive XQuery to SQL Translation using Dynamic Interval Encoding.
Proc. of SIGMOD.

Dekeyser, S. and Hidders, J. 2002. Path Locks for XML Document Collaboration. Proc. of WISE.
Deutsch, A. et al. 1999. Storing semi structured data with STORED. Proc. of SIGMOD.
Grust, T. 2002. Accelerating XPath location steps. Proc. of SIGMOD.
Jiang, H. et al. 2003. XR-Tree: Indexing XML Data for Efficient Structural Joins. Proc. of ICDE.
Li, Q. and Moon, B. 2001. Indexing and querying XML data for regular path expressions. Proc. of

VLDB.
Nicola, M. et al. 2003. XML Parsing, A Threat to Database Performance. Proceedings of CIKM.
Nicola, M. and van der Linden, B. 2005. Native XML Support in DB2 Universal Database. IBM Silicon

Valley Lab.
Pat et al. 2004. Indexing XML Data Stored in a Relational Database. Pro. of VLDB.
Schmidt, A. et al. 2000. Efficient Relational Storage and Retrieval of XML Documents. Proc. of webDB.
Srivastava, D. et al. 2002. Structural Joins: A Primitive For Efficient XML Query Pattern Matching.

Proc. of ICDE.
Tatarinov, I. et al. 2002. Storing and querying ordered XML using a relational database system. Proc. of

SIGMOD.
Teubner, J. 2003. Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps. Proc. of VLDB.
Wang, W. et al. 2003. PBiTree Coding and Efficient Processing of Containment Joins. Proc. of ICDE.
Yoshikawa, M. et al. 2001. XRel: a path-based approach to storage and retrieval of XML documents

using relational databases. ACM Transactions on Internet Technology (TOIT), 1(1):110-141.
Zhang, C. et al. 2001. On Supporting Containment Queries in Relational Database Management

Systems. Proc. of SIGMOD.

