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Abstract

Many validity indexes have been proposed for evaluating clustering results. They usually
have a tendency to fail in selecting the right number of clusters when dealing with
overlapping clusters such as the IRIS data. To overcome this limitation, we propose in this
paper, a new cluster validity index based on Maximum Entropy Principle, named VMEP.
VMEP allows finding the correct number of clusters, and can deal successfully with or
without the presence of overlap, even when this later is higher between clusters. Many
simulated and real examples are presented, showing the superiority of VMEP to the existing
indexes.

1. Introduction

Fuzzy c-means FCM clustering algorithms has been widely used to obtain fuzzy c-
partition. This algorithm requires a fixed number of clusters k. Different fuzzy partitions
are obtained for different values of k. Thus, an evaluation methodology is required to
validate each of the fuzzy c-partitions and, to obtain an optimal partition or optimal number
of clusters k*. Finding the “right” number of clusters, k*, for a data set, is a difficult and
often ill-posed problem. We introduce hereafter a new cluster validity index, VMEP, based
on Maximum Entropy Principle and a measure of cluster compactness. VMEP is parameter
free, works well and detects the correct number of clusters even when dealing with high
overlapping clusters. We present in this paper some results on simulated and real examples
which illustrate the superiority of VMEP to the existing indexes. They show also that our
new index is performing not only for Gaussian models but also with different shapes of
clusters with or without overlap.

2. Related work

Many clusters validity indexes for fuzzy clustering are proposed in the literature [1-4] in
order to find an optimal number of clusters. Bezdek [5] proposed: Partition Coefficient VPC

and Partition Entropy VPE. These indexes are sensitive to noise or a weighting exponent m.
VFS and VXB are proposed respectively by Fukayama and Sugeno [6] and Xie-Beni [7]. The
VFS index is sensitive to both high and low exponent m. VXB provided a good response over
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a wide range of choices both for k=2 to 10 and for 1<m ≤ 7. However, VXB decreases
monotonically as the number of clusters k becomes very large and close to the number of
data n. Kwon et al. introduced a punishing function to the numerator part of VXB to
eliminate its monotonic decreasing [8]. Maria Halkidi [9] defined a VS_Dbw which performs
well when clusters are compacts and well separated, i.e. in the non overlapping clusters
cases. In 2001, Do-Jong Kim [10] proposed index VSV which provides enhanced
performances when compared with the previous studies.

As seen, there are no many indexes for the overlapping cases. One of the most recent is
VOS, proposed by Dae-Won Kim et al. in 2004 [11]. VOS is defined as the ratio of an
overlap and a separation measures between clusters. As was mentioned by the authors [11],
the proposed index VOS is more reliable than other indexes. Unfortunately, from the tests on
the IRIS data, which have real overlapping clusters, the authors have seen that VOS does not
discriminate the two overlapping clusters.

3. The proposed validity index

For a given data set, we obtain, after some clustering process, a partition on k clusters
c1… cj …ck. Now, define Pij as a measure of the links between any point i and the cluster cj,
for j = 1…k. As all memberships of any of those clusters cj are known, we can set Pij =0 for
i  cj and, for i  cj, Pij > 0 are normalized by:
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Where jS is given by:
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Sj is the entropy corresponding to the cluster j. This entropy will be maximal when all
the data points of each cluster have the same association with their cluster centres.
Therefore, the optimal number of clusters is the number k whose value of entropy is
maximal.

In addition, to privilege nearest neighbor data points to the cluster centre, we shall
also minimize a second constraint:
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where
2

is the Euclidean distance, xi represents the point i and gj the centre of cluster cj.

We are trying to reach the higher possible concentration around or near each cluster centre.
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To satisfy the above two constrains, that is to maximize S while minimizing W, is
equivalent to minimize the following expression:

T=W – S (8)
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This minimization must be done under the k constraints in (1):
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Where j is the Lagrange multiplicator associated to jth constraint. We then annul the
derivation of L per Pij:
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We can then give the expressions of Pij for i = 1...N, and j = 1...k by the following one:
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where Zj is a normalization coefficient given by:

Zj = exp (1 + k.j )

By replacing the expression of Pij given by (13) in the corresponding constraint expression,

we obtain the expression of jZ given below:
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Then Pij coefficients can be computed by :
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Now, we define our proposed index VMEP as the whole entropy:
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where Sj is defined by (6) which use Pij defined in equation (14). The optimal number of
clusters is then the number k* whose value of VMEP is maximal.

4. Experimentals results

The VSV, proposed by Do-Jong Kim et al in 2001 [10], was compared in earlier
publications with the following validity indexes VPC, VPE, VFS, VXB, VK and Vcrit. This
validity index VSV provides enhanced performances.

To test the performance of the proposed validity VMEP, we use it to determine the
optimal cluster numbers in some of synthetic data and also in a well known real data set.
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We generate sixteen artificial data sets. The first one, DataSet1, is like the well known
Four Polonaise Balls [12]. Figure-1 shows the scatter plot of this data set, it has 4 compact
and well-separated clusters aligned in diagonal. Each cluster was generated using normal
distribution with parameters given in table-1 below:

Cluster
number

Number
of points

Mean
vector

Covariance
Matrix

Cluster 1 1000 (-4; -4) (2  0; 0  2)

Cluster 2 1000 (0; 0) (1  0; 0  1)

Cluster 3 1000 (4; 4) (1  0; 0  1)

Cluster 4 1000 (8; 8) (2  0; 0  2)

Table- 1: parameters used for generating DataSet1

The others fifteen Data Sets, named: DataSet2 … DataSet16, are derived from the first
one, DataSet1, by moving the centre (0, 0) of cluster 2 in direction of the centre (4, 4) of
cluster 3, producing hence two overlapping clusters. Coordinates of new centers of the
cluster 2 are (1, 1), (1.5; 1.5), (1.6; 1.6), (1.7; 1.7), (1.8; 1.8), (2; 2), (2.5; 2.5), (2.9; 2.9), (3;
3), (3.25; 3.25), (3.5; 3.5), (3.6; 3.6), (3.7; 3.7), (3.9; 3.9), and finally (4; 4) which are the
coordinates centre of cluster 3 (table-1). Figure-1, figure-2¸ and figure-3 show the
generated data sets with two overlapping clusters (clusters 2 and 3) with increasing degree
of overlap.

Now, we apply VSV and VMEP to these Data Sets, and we will see if our proposed
clusters validity index VMEP can performs VSV? If yes, how well does it, and up what limit?

The cluster validation results using VSV and VMEP are shown in figure-1. For the
DataSet1, having well-separated clusters, both VSV and VMEP can select correctly 4 as
optimal number of clusters.

For the DataSet2, DataSet3 and, DataSet4, which have two overlapping clusters with
low degree of overlap, also both VSV and VMEP select correctly 4 as the optimal number of
clusters.

For DataSet5, VSV select 3 which is a failure result. By increasing the degree of overlap
in DataSet6, DataSet7, VSV also fails, it select 3 which is not a correct optimal number of
clusters. Instead, VMEP selects correctly 4 clusters for all these data sets (DataSet5,
DataSet6, and DataSet7).
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Figure-1: Results of clusters validation using Do-Jong Kim’s index VSV (minimal
value), and the proposed VMEP (maximal value), displayed from DataSet1 to DataSet7
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From the above results, we conclude that VSV can work correctly only in the presence of
a low degree of overlap, and it produces a failure result when dealing with relatively high
overlapping degree. We then stop to apply VSV to data sets having a superior overlapping
degree such as DataSet8…DataSet16; and we continue to apply only VMEP.

The result of applying VMEP to the DataSet8…DataSet13, are presented respectively in
figure-2, these latter show that VMEP can still work well, it selects correctly 4 as the optimal
number of clusters.

In DataSet14…DataSet16, the centre coordinates of the moved cluster number 2 –which
overlap with the fixed cluster number 3- are respectively (3.7; 3.7), (3.9; 3.9), and (4; 4).
These centers are very close to those of the fixed cluster number 3 whose coordinates centre
are (4; 4). This yields a very high overlapping degree. In this case, we can see in figure-3
that the two overlapping clusters represent approximately one cluster. VMEP can not select 4
as optimal number of clusters. It selects 3 clusters, which can be considered as evident and
logical result.

We conclude that the proposed validity index VMEP performs clearly VSV, it can still
select the correct optimal number of clusters for the data sets DataSet5, DataSet6, and

DataSet7 (figure-1), for which VSV gives a failure result. And also, for DataSet8 up
DataSet13 (figure-2), VMEP can still work well.
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Figure-2. Results of clusters validation using the proposed VMEP,
displayed from DataSet8 to DataSet13
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Figure-3. Results of clusters validation using the proposed VMEP,
displayed from DataSet14 to DataSet16
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The performance of the proposed index VMEP is also examined using the well known
real Iris Data Set [13]. It consists of 150 biometric measurements in the four-dimensional
space. Iris Data are grouped into 3 clusters of 50 data points each, namely: Setosa,
Versicolor, and Virginica. Most of the recent indexes presented in the literature fails to
handle with the Iris data sets.

More recently, in 2004, Dae-Won Kim et al [11] proposed a new index named VOS that
uses the concept of the degree of Overlap and Separation. VOS was developed specially for
handling with overlapping cases. As was mentioned by the authors [11], when applied to
the Iris Data Sets, VOS was unable to detect the correct number of cluster 3. It selects 2 as
optimal number of clusters, which is a failure result.

In figure-4, we present the results of applying VSV and VMEP. Both select correctly 3 as
optimal number of clusters. Here VSV can work well because the low degree of overlap.

We conclude that the proposed validity index VMEP performs clearly VSV at least for
Gaussian mixtures models as verified in our early work [14].

Now, what about non Gaussian mixtures models? Fig 5 shows results when VMEP is
applied to banana forms. In the present work, we generate 4 banana forms named
respectively BSet1, BSet2, BSet3, BSet4. In all of them, VMEP detects the correct and real
number of clusters.

BSet1 describe two banana forms enclosed into one circle which is wrapped by one
banana form. The result of applying VMEP to the Banana set1 shows that it can select 4
clusters which is the correct number.

For BSet2, we stay the same two banana forms enclosed now in two symmetric banana
forms with same centre but with different radius. In this case VMEP can select also 4 clusters
which is the correct number.

The illustration of the banana set3 show two symmetric banana forms with same centre
and same radius. We keep into them the same two banana forms enclosed in banana set1
and banana set2. VMEP works also well and selects 3 clusters which is the logic and correct
number of clusters.

Finally, we test our new index on a combination of different forms and overlapping case.
The result of this application is very interesting. VMEP can detect 5 clusters which is the
correct number of clusters. This last result illustrates the performance and the robustness of
VMEP.

Figure-4: Results of clusters validation using Do-
Jong Kim’s index VSV (minimal value), and the
proposed VMEP (maximal value), applied to the

Iris Data Set.
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Figure 5: Results of clusters validation using VMEP for some banana forms.

5. Conclusion

A new index is proposed for the validation of the fuzzy c-partitions that are generated
by the application of the fuzzy c-means clustering method. The proposed index VMEP is
based on the Maximum Entropy Principle. The optimal number of clusters is then the
number k whose value of VMEP is maximal. The performance of our index VMEP was
examined, in both our generated synthetic data sets and in real data example and a
robustness of this new index is completed by another advantage when it can detect the
correct number of clusters for not only Gaussian models but also for other shapes.

The experimental results show the superiority of our measure VMEP to the existing ones.
Therefore, the proposed clusters validity index VMEP can be used as a reliable tool to
evaluate the partitions produced by the application of the fuzzy c-means clustering
algorithm. The robustness of our new index is showed also with variety banana forms. VMEP

work well not only in this case but can detect a correct and optimal number of clusters
when we combine different banana forms with overlapping case.

Finally, we report also another advantage of our index. The definition of VMEP uses any
parameter produced by the adopted clustering algorithm. Therefore, VMEP is independent of
any clustering algorithm. This allows us to choose any one, such as Gustafson–Kessel (GK)
algorithm which can deal with ellipsoidal clusters, or EM clustering algorithm. This will be
the subject of our next investigation.
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