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Abstract

In this paper we perform a study of the performance of the VBEM algorithm proposed in [19]. The
VBEM is a Bayesian approach for reconstructing gene regulatory networks (GRNs) based on microarray
data. We focus on a variable selection formulation and develop a solution by a variational Bayes Expecta-
tion Maximization (VBEM) learning rule. The major advantage of the VBEM solution over Monte Carlo
sampling based approach is its lower computational complexity. This makes it appealing for uncovering
large networks. The suitability of the proposed algorithm to infer large networks is studied in terms of
its ROC curves.

Keywords: Gene networks, Microarray data, Bayesian inference, Variational Bayesian Expectation
Maximization, ROC curves

1 Introduction

Gene Regulatory Networks are collections of gene-gene regulatory relations in a genome and are models that
display causal relationships between gene activities. With the completion of the Human Genome Project
and successful sequencing genomes of many other organisms, emphasis of post-genomic research has been
extended to the understanding of functions of genes [14]. We investigate in this paper reverse engineering
Gene Regulatory Networks (GRNs) based on time series microarray data. GRNs are the functioning circuitry
in living organisms at the gene level. They display the regulatory relationships among genes in a cellular
system. These regulatory relationships involve directly and indirectly in controlling the production of protein
and directing metabolic processes. Understanding GRNs can provide new ideas for treating complex diseases
and breakthroughs for designing new drugs. Mathematically, reverse engineering GRNs is a traditional
inverse problem, whose solutions require proper modelling and learning form data. Drawbacks like the big
amount of unknowns variables, the small sample size or the inherent experimental defects call for powerful
mathematic modelling together with reliable inference as long as the capability to integrate different types
of relevant data.

In the literature, many different models have been proposed for both static and cell cycle networks
and they include probabilistic Boolean networks [16], (dynamic) Bayesian networks [8, 9, 11, 15], differential
equations [7], and others [1,17]. Unlike in the case of static experiments, extra attention is needed in modelling
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the time series experiments to account for temporal dependency between samples. Such time series models
can in turn complicate the inference, thus making the task of reverse engineering even tougher than it
already is. In this paper, we apply dynamic Bayesian networks (DBNs) to model time series microarray
data. DBNs have been applied to reverse engineering GRNs in the past [2, 3, 8, 9]. Differences among the
existing work are the specific adopted models for gene regulations and the detailed inference objectives and
algorithms. To learn the proposed DBNs from time series data, we aim at soft Bayesian solutions, i.e.,
the solutions that provide the a posterior probabilities (APPs) of the network topology. This requirement
separates the proposed solutions with most of the existing approaches such as greedy search and simulated
annealing based algorithms, all of which produce only point estimates of the networks and are considered
as ’hard’ solutions. The advantage of soft solutions has been demonstrated in digital communications [21].
In the context of GRNs, the APPs from the soft solutions provide valuable measurements of confidence of
inference, which is difficult with hard solutions. Moreover, the obtained APPs can be used for Bayesian data
integration. Soft solutions including Markov chain Monte Carlo (MCMC) sampling [11, 20] and variational
Bayesian expectation maximization (VBEM) [2, 3] have been proposed for learning the GRNs. However,
MCMC sampling is only feasible for small networks due to its high complexity. In contrast, VBEM has been
shown to be much more efficient. However, the VBEM algorithm in [2,3] was developed only for parameter
learning. It therefore cannot provide the desired APPs of topology. In [19] we proposed a new variational
Bayesian EM (VBEM) algorithm that can learn both parameters and topology of a network. The algorithm
still maintains the general feature of other VBEM algorithms for having low complexity, thus appropriate
for learning large networks. In addition, it estimates the APPs of topology directly. In this paper we present
a study of the performance of the proposed VBEM algorithm in terms of its sensitivity and specificity. The
rest of the paper is organized as follows: In Section 2, the problem formulation is presented. In Section 3,
objectives on learning the networks are discussed and the VBEM algorithm is developed. In section 4, the
test results of the proposed VBEM on the simulated networks and yeast cell cycle data are provided.

2 Problem Formulation

In this paper, the objective is to uncover gene regulatory networks using microarray data so we start consid-
ering a microarray that measures the expression level of G genes evenly sampled at N + 1 consecutive time
instances. We define a random variable matrix Y ∈ RG×(N+1) with the (i, n)th element yi(n − 1) denoting
the expression level of gene i measured at time n1. We further assume that the gene regulation yields to a
linear regulatory relationship and follows a first-order time-homogeneous Markov process. This assumption
may be insufficient but will facilitate the modeling and inference. Finally, we define a G × 1 binary column
vector bi(n) of gene i, whose jth element is 1 if gene j regulates the target gene i and 0 else. The set of
bi(n), i, n is treated as latent variable which identifies the gene regulatory network structure. Based on the
above definition and assumption, gene regulations for gene i can be expressed as follows

yi(n) = wi ⊗ y(n − 1) ⊗ bi(n − 1) + ei(n), n = 1, 2, · · · , N (1)

where ⊗ represents Kronecker product, y(n− 1) = [y1(n− 1), · · · , yG(n− 1)]⊤, wi ∈ RG×1 is the weight
vector independent of time n and ei(n) is white Gaussian noise with variance σ2

i . The weight vector is very
informative and provides the degree and the types of the regulation, e.g., up or down regulation (positive or
negative). To be consistent with wi, bi(n) is also time invariant and notated as bi. The noise variable is
introduced to account for modeling and experimental errors.

An equivalent form of (1) can be further expressed in a more compact vector-matrix form as

yi = RWibi + ei (2)

where R = TY⊤ with T =







1 0
. . .

...
1 0






, yi = [yi(1), · · · , yi(N)]⊤, Wi =diag{wi}, bi = [bi(1), · · · , bi(G)]⊤
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and ei = [ei(1), ei(2), · · · , ei(N)]⊤. Given a set of Microarray data Y, our objective is to uncover gene reg-
ulatory networks, i.e., to determine bi for all i. Note Wi and σ2

i are also unknown.
If we analyze expression 2 carefully, we can see that the proposed model has the same structure than the

ones proposed for multiuser detection [21]. Therefore they are analogous problems so we can apply all our
knowledge about multiuser detection to solve this new problem. Thus, in this paper we are going to analyze
the performance on a Bayesian algorithm proposed in [19]. There are two main problems to deal with when
we are looking for a solution. The first one is related to the fact that the weights and the noise variance are
unknown. Thus, the proposed algorithm must be able to estimate them. On the other hand, the sample size
N of the microarray data is usually much smaller than the number of genes G, this makes the problem we
are dealing with ill-conditioned and the algorithm must be able to circumvent this drawback. This will be
one of the issues to take into account when the performance of the algorithm is studied.

3 VBEM algorithm

If we are interested in applying a Bayesian solution to the problem presented in the previous section, we
need to obtain the posterior distribution of variables bi. Nevertheless, it is not possible to calculate this
distribution since it has associated the resolution of some integrals that are not analytically tractable. Thus,
the calculation must be done numerically, using an approximation. The easiest way to approximate the
integrals is to evaluate the integrand using an estimator for the parameters like the MAP (Maximum a
posteriori). Another possibility is to estimate the integral numerically evaluating the integrand in different
values (samples) using Monte Carlo Methods [10]. The higher the number of samples, the more exact the
result provided by the method is. In spite of its good performance, the main drawback of this approach is
its high computational complexity. Another option is to use the Laplace Method. An alternative way to
approximate the integral is to use a Variational approach [4]. The key point of Variational Methods is the
approximation of the integral by a simpler function that is mathematically treatable by the calculation of a
lower or upper bound. In this way, the integration is reduced to a simpler problem: the optimization of a
bound trying to make this bound as closer as possible to its true value.

The necessity of a method with low computational complexity leads us to propose a solution based on
the VBEM algorithm [2] given the possibility to approximate those posterior distributions in a simple way
by optimizing a lower bound of the marginal likelihood using an iterative process.

The optimal solution to the proposed problem can be written using a MAP criterion as:

b̂i(l) = argmaxbi(l)p(bi(l)|yi) l = 1, · · · , G (3)

Where p(bi(l)|yi) ∝ p(yi|bi(l))p(bi(l)) and p(yi|bi(l)) is the probability function obtained using the
Bayesian rule:

p(yi|bi(l)) =
∑

(bi)
−l

p(yi|bi)p((bi)−l) (4)

where the summation is done over all possible configurations of vector bi except for bi(l) and (bi)−l represents
a vector of size (G − 1) × 1 that contains all the latent variables except for bi(l).

Apparently, the solution given by 4 has a complexity that grows exponentially with the number of genes,
so this solution becomes computationally prohibitive when we are working with a big number of genes.
Thus, if we want face these drawbacks; we need to be able to develop efficient algorithms able to diminish
the computational complexity when working with big gene networks. In [20] an approach to approximate
the Bayesian inference was proposed. This algorithm is a ’Reversible jump Markov chain Monte Carlo’
(RJMCMC). Although their results were good, its good performance is limited to cases where G is not too
big since its computational burden becomes very high as G increases (real situations).

Thus, in order to decrease the computational complexity related to the computation of 4, we approximate
the distribution of variable bi by a Gaussian. The main advantage of this approximation is that it permits
an analytical treatment of the problem, reducing in this way the computational burden.
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The marginal likelihood p(yi|bi) is obtained via integration over the unknown parameters in the following
way:

p(yi|bi) =

∫ ∫

p(yi | wi, σ
2
i ,bi)p(wi, σ

2
i | bi)dσ2

i dwi (5)

where p(wi, σ
2
i | bi) is the prior of the parameters. We choose a Gaussian-Inverse-Gamma distribution as a

prior [4]:
p(wi, σ

2
i | bi) = Nwi

(0, σR̃)IGσi
(ν0, γ0) (6)

where R̃−1 = HTH with H = RBi, Bi = diagbi and ν0 and γ0 are small, real and positive values. With
the latter configuration, the parameter and latent variables distributions are conjugate of the approximate
posterior distributions.

Given the prior information and the observations, the VBEM algorithm calculates the lower bound of
the marginal likelihood using the Jensen inequality and the mean field approximation [6]:

ln p(yi) = ln

∫

dθidbip(bi,yi, θi)

≥

∫

dθidbiq(θi,bi) ln
p(bi,yi, θi)

q(θi,bi)
(7)

where θi = [w⊤

i σ2
i ]⊤ and q(θi) and q(bi) are the approximated distribution to determine. The VBEM

algorithm calculates those approximated distributions by maximizing iteratively 7 with respect to q(θi) and
q(bi) accordingly to the variational Bayesian learning rule [2]. This learning rule has two parts that are
explained in the following subsections.

3.1 VBE step

The posterior distribution p(bi, θi|yi) has second order interaction terms. As a result, the integration in the
latent variables (bi) and parameters is not analytically possible. However, since the model we are using is
Conjugate-Exponential, we can overcome this difficulty developing a general VBEM algorithm based on the
properties of the Conjugate-Exponential models [2]. Thus, the first step is to specify the prior distribution
of the parameters and latent variables. To do so, we start identifying the prior conjugate distributions
and rewriting them according to the Conjugate-Exponential model. This task is accomplished taking into
account that these prior distributions must satisfy the two main conditions of the Conjugate-Exponential
models.

Once the prior distributions are known and properly written, the VBE step is performed in order to find
the posterior variational distribution of the latent variables. To do so, we apply the variational Bayesian
theory for Conjugate Exponential models using as a starting point an arbitrary distribution on the parame-
ters:

q(bi) = N (bi|µbi
,Σbi

) (8)

where

µbi
= Σbi

(σ−2
0 µ0 + f) (9)

Σbi
= (σ−2

0 IG + D)−1

con

D = B⊗
[

(mwi
mwi

)⊤〈σ−2
i 〉q(θi) + A−1

]

(10)

f⊤ = y⊤

i Rdiag(mwi
)〈σ−2

i 〉q(θi)

B = R⊤R

A = IG + K

K = B⊗ (Σbi
+ µbi

µ⊤

bi
)
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The marginal posterior distribution p(bi(l)|yi) is updated in next way till the algorithm converges:

p(bi(l)|yi) = N (mbi
(l), Σbi

(l, l)) (11)

and finally the decision on bi(l) is done in the following way:

b̂i(l) = argmaxbi(l)p(bi(l)|yi) (12)

3.2 VBM step

In the VBM step, the objective is to calculate the distributions of the unknown parameters taking into
account the distributions calculated in the previous VEB step for the latent variables. In the first place we
calculate q(θi) in the following way:

q(θi) = N (wi|mwi
,Σwi

)IG

(

α

2
,
β

2

)

(13)

where

mwi
= (IG + K)−1(y⊤

i RMx)⊤ (14)

Σwi
= σ2

i (IG + K)−1

α

2
=

N(η + 1) − 2

2
β

2
= −

c

2

with

Mx = diag(mbi
) (15)

c = y⊤

i RMxmwi
− y⊤

i yi − ν0

3.3 Lower Bound calculation (F)

Finally, once the q(θi) and q(bi) have been updated, the lower bound of the distribution ln p(yi | bi) is
computed and updated. This process is repeated until convergence. The lower bound is calculated using the
Kulback-Leiber distance. The Kulback-Leiber measuresthe difference between two probability distributions.
This distance is also known as relative entropy and mathematically can be expressed as:

F =

∫

dθiq(θi)

[∫

dbiq(bi) ln
p(bi,yi|θi)

q(bi)
+ ln

p(θi)

q(θi)

]

(16)

= −

∫

dθiq(θi)KL [q(bi)‖p(bi,yi|θi)] − KL [q(θi)‖p(θi)]

4 Simulation results

4.1 Study of the performance through ROC

In this section, we present a study of the performance of the proposed VBEM algorithm in terms of the
ROC (Receiver Operating Characteristics) curves. In general, a ROC curve is a graphical plot of the
sensitivity versus (1 - specificity) for a binary classifier system as its discrimination threshold is varied. In
our case the discrimination threshold is the APP. The sensitivity is a statistical measure of how well a binary
classification test correctly identifies a condition and it can be computed as TP/(TP + FN). On the other
hand, the specificity is a statistical measure of how well a binary classification test correctly classifies cases
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Figure 1: ROC curve for the VBEM algorithm using synthetic data with different settings

not belonging to that class and it can be calculated as TN/(TN + FP ). Both, sensitivity and specificity
varies between 0 and 1. The best possible prediction method would yield a graph that was a point in the
upper left corner of the ROC space, i.e. 100% sensitivity (all true positives are found) and 100% specificity
(no false positives are found). A completely random predictor would give a straight line at an angle of 45
degrees from the horizontal, from bottom left to top right (the so-called ’line of no-discrimination’). To
pursue our objective, we have created simulated networks of 30, 150, 200, 500 and 1000 genes. For each
tested networks, we have collected only 30 time samples for each gene, which mimics the realistic small
sample scenario. Regarding to the regulation process, each gene can have either none, one, two or three
parents. Besides, the number of parents has been selected randomly for each gene. The weights associated
to each regulation process have also been chosen randomly from an interval that contains the typical values
estimated when working with microarray data. As for the nature of regulation (the sign of the weight), it
has also been selected randomly. Finally the observations have been calculated using the linear Gaussian
model proposed in 1. These observations have been taken once the system has reached stationarity and their
values are also in the range of the observations corresponding to real microarray data. In Figure 4.1 we have
plotted the ROC curves for the different settings. In order to construct these curves, we started by setting
a threshold for the APPs. This threshold ρ is between 0 to 1 and it was used as in [1]: for each possible
regulation relationship between two genes, if its APP is greater than ρ, then the link is considered to exist,
whereas if the APP is lower than ρ, the link is not considered. We calculated the precision and the recall
for each selected threshold between 0 and 1. We plotted the results in blue for the case with G = 30, black
for G = 150, red for G = 200, green for G = 500 and magenta for G = 1000. As expected, the performance
got worse as the number of genes increases. However, we can state that, in spite of the degradation, the
performance of the algorithm is very good for all the settings even for the one where G = 1000 and N = 30.
One measure of aforementioned degradation is shown in Table 1 where we calculated the area under each
curve (AUC). As can be noticed, the area decreases as G increases but still is good enough even if the number
of genes is 1000 and the number of samples only 30.

To study the scalability of the proposed algorithm, we have also calculated the ROC curves for simulated
networks characterized by the following settings: G1 = 1000 and N1 = 400 (solid blue line), G2 = 500 and
N2 = 200 (black squares), G3 = 250 and N3 = 100 (red stars) and G4 = 125 and N4 = 50 (green triangles).
As can be noticed, the ratio Gi/Ni has been kept constant in order to maintain the proportion between the
amount of nodes in the network and the amount of information (samples). The results represented in Figure
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G 30 150 200 500 1000
AUC 0.9434 0.9097 0.8979 0.8498 0.8496

Table 1: Area under each curve in Figure 4.1, the higher the area, the better the performance of the algorithm

Setting Errors Gibbs Sampling (500 samples) Errors VBEM
G=5,N=5 126 26
G=5,N=10 5 1
G=20,N=10 N/A 6

Table 2: Comparison between the performance of the VBEM and Gibbs Sampling algorithms

4.1 shows a good enough scalability of the algorithm.
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Figure 2: ROC curve for different setting maintaining the ratio Gi/Ni constant in order to show the scalability
of the VBEM algorithm

4.2 Comparison with the Gibbs sampling

We also have done a comparison between the VBEM and the Gibbs sampling algorithm. To do such a
comparison we have used synthetic data generated using a simulated network. We focused on a particular
gene in the simulated networks. The gene was assumed to have two parents. In Table 2, we present the
number of errors in 100 Monte Carlo tests. For the Gibbs sampling, 500 Monte Carlo samples are used. We
tested the algorithms under different setting. From these results we can see that the proposed algorithm
achieve better results with less computational complexity.

4.3 Test on real data

Finally, we show the results of applying the VBEM algorithm to real microarray data, specifically to the
set reported in [18] for the cell cycle of the yeast Saccharomyces cerevisiae. This set contains information
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Figure 3: Predicted network using the VBEM. The solid lines represent direct relationships and the dotted
lines represents indirect relationships (meaning that there are intermediate elements) in agreement with the
KEGG. The dashed lines represent relationships predicted in the the opposite direction. The dashed-dotted
lines represent relationships (mainly autorregulation ones) not confirmed by the KEGG.

about 62 genes and 17 samples. In order to synchronize the set of data, a CDC15 mutant sensitive to the
temperature has been used. The cellular cycle under study lasts 85 minutes. For each gene, the data is
represented by log2{(expression in t)/(expression in the mixture set of control cells)}. It is worth noting
that there are missing values in the data set and this fact indicates that the used signal is not strong enough.
This must be taken into account when analyzing the results given by the algorithm and may justify until
some point some discrepancies. The missing values are calculated using spline interpolation.

In Figure 3 we have plotted the estimated network for the G1 state of the cell cycle. We have compared
the results obtained with the VBEM algorithm with the ones shown in the KEGG pathway [12]. We would
like to point out here that the KEGG has been created using information from different sources and this fact
must be kept in mind when analyzing the results obtained in this paper with the ones of the KEGG pathway.
The only data source used to test the VBEM algorithm is microarray data and, thus, the expected results
are somehow limited since the information used is also limited. We have used solid lines to represent the
direct relationships confirmed by the KEGG pathway. The dotted lines are used for indirect relationships
(meaning that there are intermediate elements) also confirmed by the KEGG. One example of this is the
link between from SWI4 and CLN1. This relationship has a APP of 0.6757 and a weight of 0.0633 positive
that indicates an upregulation as confirmed by the KEGG pathway. On the other hand, the dashed lines
represent relationships confirmed by the KEGG but estimated by the VBEM algorithm in the wrong way
(the sign of the estimated weight is opposite to the one predicted by the KEGG). An example of this situation
is the link between the CLN1 and CLN3. Its APP is 0.7723 but the weight is negative and it should be
positive according to the KEGG pathway. Finally, we have used dashed-dotted lines for those relationships
(mainly autorregulation ones) not confirmed by the KEGG. Since the proposed algorithm intends to be the
first step of a more complete approach, the main objective of this paper is to study its ability to uncover
or identify regulation relationships and not direct associations in the KEGG. This is the reason why the
dashed and dotted lines are also considered as successes of the algorithm. Thus, we can state that most of
the associations reflected in the KEGG (Kyoto Encyclopedia of Genes and Genome) are predicted by the
proposed algorithm.
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5 Conclusions

In this paper we have studied the performance of the VBEM algorithm through simulations with synthetic
date and the corresponding analysis of the ROC curves since the problem we have dealt with a classification
one. In the first place we have demonstrated that the suitability of the proposed algorithm for large network.
We have shown that, although its performance degrades when the ratio Gi/Ni increases, it remains appropri-
ate for the real situations we normally deal with. On the other hand, the ROC curves have also been used to
study the scalability of the algorithm since this is a problem worth considering in this field. Again, we have
shown that the behavior of the proposed algorithm is suitable in spite of the slight degradation observed as
the number of time samples is reduced. Finally, we have also shown using synthetic data the superiority of
the VBEM algorithm in comparison to the Gibbs sampling algorithm. We have shown a reduction in the
computational burden as well as a improvement of the results in terms of the number of errors. On the other
hand, we have also shown the performance of the algorithm when it is used with real data. Specifically, we
have used data from the cell cycle of the yeast Saccharomyces cerevisiae and we have compared the results
with the ones shown in the KEGG pathway. We have found many agreements. Moreover, it is importante to
notice the fact that the proposed algorithm is a soft Bayesian solution and thus, it provides with APP that
can be used in processes of data integration from different sources providing in this way improved results [5].
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