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Abstract 
 

The steepest descendent is the non-linear optimiza-tion method most used in ICA 
algorithms. The method is used to find the unmixing matrix, which solves the problem 
and is a minimum of a non-linear cost function. In this paper the use of quasi-Newton 
optimization methods, instead of gradient-type ICA methods, is studied. These methods 
can increase the speed of the method what it is corroborated by simulations. 
 
Keywords: radar target recognition, natural resonances, principal component analysis, 
neural network, matrix pencil method. 
 
 

1 Introduction 
Blind Source Separation (BSS) is usually solved by the Independent Component 
Analysis (ICA) through the optimization of a cost function, which measures the 
statistical dependence between of the outputs of a linear transformation of the data. This 
is based in the fact that the outputs are statistically independent when the linear 
transformation is the inverse of the original mixture, which is called the unmixing 
matrix. Then, this transformation forms part of the unknowns of the const function, 
which is built such as its minimum or maximum is reached when the linear 
transformation is the unmixing matrix. As a maximization of a cost function can be 
easily turned into a minimization problem, just changing the sign of the cost function, it 
is assumed in the rest of the paper that the optimization is a minimization problem, 
without losing generality.  
 
The cost function is a non-linear function, therefore it is necessary to resort to non-
linear minimization algorithm to find its minimum. The most used family are the 
gradient algorithms, which use the gradient of the cost function in each point to find the 
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direction of maximum variation in the space of the unknowns, moving to smaller values 
of the cost function and reaching, in this way, a minimum in iterative steps. If the cost 
function, the unmixing matrix and the gradient of the cost function are denoted as J, W 
and ∇J, respectively, the unmixing matrix is updated in each step as Wk+1=Wk−µk∇Jk, 
where µk is the size of the k step (the subscript k indicates the step where the variable is 
calculated). The step size can be found using a linear search, be fixed or change 
following a predetermined pattern. This method, called the steepest descendant method, 
can be really slow, especially near the solution, and other methods are generally 
preferred to speed up the convergence.  
 
In ICA, the method preferred to increase the speed consists in using the natural gradient 
[1] instead the standard gradient. This method studies the geometry of the space of 
unknowns, which is generally non-Euclidean, to find the direction of maximum 
variation, that could be viewed as a “geodesic”. In general, this scheme is a very 
complicate one, needing Riemann geometry analysis and does not produce simple 
results; but in ICA, as the unknowns posses a special structure (they are a multiplicative 
group), the natural gradient can be found and has a very simple and attractive form. 
Specifically, the update formula is Wk+1=Wk−µ(∇Jk)Wk

H Wk, where the step size is 
usually kept fixed to a certain value. The convergence of the natural gradient method is 
much faster than in the standard gradient method, although the value of step size is a 
key, and sometimes problematic, issue in the speed. A too big step size can make the 
method to diverge or oscillate around the minimum, and a too small one makes the 
method too slow. The problem has been solved with the approach of fixed-point 
algorithms, as FastICA [2], leading to much faster algorithm without the use of step 
size. Some problems appear though in the fixed-point algorithm, as the necessity of a 
prewhitening in the data and that they are offline algorithms. Although the prewhitening 
is a general preprocessing step in many ICA methods, there are situations, as the 
existence of non negligible additive noise, where it is not an optimum procedure, and 
the fix-point approach is not the best one. On the other part, when algorithms have to 
work online, due for example to a fast variation in the system, gradient algorithms are 
preferable. In any case, this paper is concerning to gradient-type algorithms and how 
they can be accelerated, without going into if they are preferred to fixed-point ones.  
 
There are other options to minimize the cost function, although, they are not generally 
used by the ICA community. For example, linear searching methods that do not use 
information about the derivates, as the simplex algorithm, can be used. However, their 
convergence near the solution is slow and the speed decreases dramatically when the 
number of unknowns and the complexity of the cost function increase. In general, these 
methods are much slower than the natural gradient and are not used.  
 
Other option is to resort to second-order learning, instead to first-order as in the gradient 
algorithm. The gradient methods, natural or standard, assume a linear approximation in 
the proximity of each point to find the smallest value of the cost function in this 
proximity. The second-order learning assumes a quadratic approximation and therefore 
can find the smallest value of the cost function in a bigger neighborhood of each point. 
The best known one of these algorithms is the Newton method. For a cost function J(b) 
depending on the vector of unknowns b (it can be, for example, bi+(j−1)N=Wij for a N×N 
unmixing matrix), the Newton method’s update formula is bk+1=bk−µk(∇2Jk)−1Jk, where 
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∇Jk is the gradient evaluated in the point bk, i.e.  , and the matrix 

∇2Jk is the Hessian of the cost function evaluated in the same point, i.e.  
. When this algorithm is applicable, it is usually much 

faster than any gradient algorithm, however it suffers of serious technical problems. One 
is the necessity of computing the Hessian and then inverting it, in each iteration, which 
increases the complexity of each step. But the biggest problems are the appearance of 
spurious local minimum in the convergence (see, for example, [1]) and the possibility 
for the inverse to not be definite at a point, which is the result of a non-full rank Hessian 
matrix. When any of this happens, the method stops in the local minima or diverges. As 
the existence of a minimum in the cost function only assures a full Hessian at the 
minimum, non full rank Hessian will, in general, appear.  

kiik bJJ bb] =∂∂=∇ |/[

kjiijk bbJJ bb] =∂∂∂=∇ |)/([ 22

 
On the other hand, the quasi-Newton methods are also second-order learning methods 
but, instead the compute the Hessian at each point and then invert it, they estimate 
directly the inverse of the Hessian using the value of two consecutive points and the 
gradient at these two points, constraining the matrix to be symmetric and full rank. The 
algorithms so built are faster than the gradient type and they do not posses the 
drawbacks of the Newton method. The complexity of each step is still bigger than in the 
gradient methods, but can be compensated with the increasing in the speed, which 
makes them interesting alternatives to the gradient methods. This is precisely what this 
paper proposes: to study the use of quasi-Newton methods in ICA. In Sect. 2, the model 
and a general overview of the most used cost functions are stated. In Sect. 3, the quasi-
Newton methods are presented. In Sect. 4, the theoretical analysis is verified in 
simulations, where the quasi-Newton methods are compared with well known gradient 
methods, to test if, in fact, the speed is increased. 

 

2 ICA model and cost functions 
Although the substitution of the natural gradient method by a quasi-Newton method, 

can be valid in multichannel deconvolution, non-linear ICA or underdetemined ICA 
problems, if they obtain their solutions by the minimization of a nonlinear cost function, 
this paper is restricted to instantaneous ICA, such as the data are the instantaneous 
linear mixture of independent sources. This restriction is done to test the ideas in widely 
known algorithms, but the study can be easily extended to more sophisticated models 
and problems. Then, the N×1 vector of data x is assumed to be 

 

Asx =  (1) 

 
where the N×N matrix A is the mixing matrix and s are the original independent 
sources. Real data and same number of sources and data are also assumed for simplicity, 
but the generalization to complex data and more data than sources is straightforward.  

 
It is clear that the entries of y=Cs are independent if the matrix C, called the global 

transformation, is a scaled-permutated version of the identity matrix, i.e. the entries y 
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are equal to the original sources except for a scale or permutation.  
 
This is used by the ICA methods, since they search for the linear transformation W of 

the data x such as the outputs are independent, and the obtained matrix is the inverse of 
the mixing matrix, except for a possible permutation or scale in their rows. It is only 
necessary a measure of the independence between the components of y. This is usually 
done by a cost function J[y] that can be function only of W or also of the Probability 
Density Function (PDF) of the original sources. The first case arises when a PDF of the 
sources is assumed or when higher-order approximations are done in the PDF-
dependant cost functions. In the second case, the PDFs are not supposed known, but, in 
general, some model with free parameters is assumed to be followed by the PDFs, such 
as the free parameters are also unknowns of the problem. In each step, the parameters of 
the PDF are estimated using the information of the previous step, and with them fixed, 
Wk is updated with the natural gradient. This scheme is suboptimal, because does not 
minimize the cost function respect all the parameters, but is needed if we want to use 
the natural gradient, since the inclusion of all the unknowns together would break the 
multiplicative group structure of the non-singular matrices. The simplest example in the 
parametrization of the PDFs can be found in [3], where a binary parameter is used to 
model the PDFs. The cost function is a real function that possesses the property 
J[Cs]≤J[s] with the equality only when C is a permutated-scaled version of the identity. 
The most common cost functions are the likelihood, the Kullback divergence, the 
mutual information and the negentropy, or their approximations using higher-order 
statistic (see [4] for an overview of the most common cost functions and the relation 
between them).  

 
In any case, the natural gradient method is used to minimize the cost function respect 

to the unmixing matrix, although other unknowns may be involved and are estimated 
suboptimally in each step. 

 

3 Quasi-Newton Methods 
The gradient algorithm are based in a Taylor expansion up to first order of J, such as 

J(bk+c)≈J(bk)+(∇Jk)Tc. Then, the direction of maximum variation of Jin the step k is 
−∇Jk/||∇Jk||, so the adaptation rule is selected as bk+1=bk−µk∇Jk. In the Newton method, 
on the other hand, a Taylor expansion up to second order is done, such as the cost 
function near a point bk is J(bk+c)≈J(bk)+( ∇Jk)Tc+cT ∇2Jkc/2. The value of c that 
produces the maximum descent in the step k is −(∇2Jk)−1∇Jk, and the vector of 
unknowns is updated as bk+1=bk−µk(∇2Jk)−1∇Jk, where the step size has been added, as in 
the previous case, to take into account that the approximation is not exact. As it was 
pointed before, the Newton method converges if it can find a decreasing direction in 
each point it passes through, and this happens if the Hessian is positive definite at all 
these points. But if the Hessian is not positive definite at any point, the Newton 
direction either is not definite or does not provide a decrease in the cost function. It is 
possible to modify the method to overcome this limitation (generally adding to the 
Hessian a matrix that follows some properties when it is not positive definite) but still 
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the method needs to compute the second derivates to built the Hessian and then invert it 
in each step, which increases notably the complexity of each step.  

 
The quasi-Newton methods follow also a quadratic approximation of the cost 

function, but using a symmetric positive definite matrix instead of the Hessian, i.e. 
J(bk+c)≈J(bk)+(VJk)Tc+cTBkc/2, where the matrix Bk is updated in each iteration 
imposing some conditions, constrained to be symmetric and positive definite. The first 
of this conditions is that the gradient of the cost function built with the quadratic 
approximation should be equal to the true gradient in two consecutive points, this is 
hold if Bkpk=qk, with pk=bk−bk−1and qk=VJk−VJk−1, which is called the secant condition. 
The other condition is that the two matrices in consecutive steps have to be the closest 
in some sense. Different measures of the distance between the matrices produce 
different quasi-Newton method. This same scheme can be done over the inverse of Bk, 
which is noted Hk and is also forced to be symmetric a positive definite. Specifically, 
the secant condition for this matrix is Hkpk=qk. This is what is done in the most 
extended quasi-Newton method, the BFGS (Broyden-Fletcher-Goldfarb-Shannon), 
where the condition of two consecutives matrices being the closest is imposed over Hk 
and the resulting update formula for Hk is [5]:  

T
kkk

T
kkkk

T
kkkk uuu ppqpIHqpIH +−−= − )()( 1

 

(2) 

with  and the update formula for bk is:  )/(1 k
T
kku pq=

kkkkk J∇−=+ Hbb µ1
 

(3) 

The step size µk is found through a linear search along the direction −HkVJk. As it can be 
seen, the BFGS method is very easy to program and the complexity of each step is 
small, as it does not need the inversion of matrices nor the computation of second 
derivates. On the other hand, it keeps a big part of the speed of the Newton method, due 
to the quadratic scheme it follows. In the next section, the BFGS method is compared 
with natural gradient methods, both offline and on-line, to demonstrate that they are 
faster in practical situations 

4 Results  
 

In this section the comparison of the Infomax method for supergaussian sources [6] 
with the BFGS method is done, in order to study the behavior of the quasi-Newton 
methods, working both off-line and on-line. 

 
The classical Infomax method proposes a cost function as:  
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so, with the natural gradient, the updated expression for Wk is:  

k
T

kk WyyIWW ))tanh(2(1 −−=+ µ  
(5) 

where µ is kept fixed in all the iterative process. The BGFS is used as a quasi-Newton 
method to minimize the same cost function, where µk is obtained through a linear search 
along the direction −HkVJk. When the algorithm works off-line, an inexact linear search 
is preferred, since the times the cost function has to be evaluated along the line is 
reduced and, therefore, the speed increased. On the other hand, when the algorithms 
works on-line this would not be the better option and an exact linear search would be 
more adequate. As the behavior of the algorithm depends on the off-line or on-line 
character, both situations are studied separately. The data will consist in the linear 
mixture of six laplacian sources with mean zero, variance one and different shape. The 
number of data per source is M=100,000. The mixing matrix is generated randomly with 
the only condition to be non-singular. 

 4.1  Off-line study  
In this case all the M data of signals are assumed known and the algorithm works 

with the whole set. The cost function J only depends on the unmixing matrix, since the 
data x are fixed through all the iterative minimization process. In this situation, the time 
spent by BFGS and Infomax to converge is compared. The estimation of the method in 
the step k is characterized by the minimum distance of the global transformation in that 
step Ck=WkA, to the identity matrix or any permutated scaled version of it. This is 
measure by a parameter E, whose explicit expression can be found in [3] as:  
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(  
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To finish the BFGS method it is necessary to say how the search for µk is done along 

the line −Hk∇Jk, in each step. Two different approaches are studied. The first is to do an 
inexact search along the line, only satisfying some weak conditions (the Wolfe’s 
conditions [5]) to assure the convergence, so J and ∇J are evaluated few times along the 
line and the speed is increased. The second approach is to do an exact linear search, 
using the golden rule algorithm, for example. This means evaluate J much more times, 
slowing down the method but needing fewer steps. The parameter E as function of the 
time for Infomax, BFGS with inexact linear search and BFGS with exact search, are 
shown in Figure 1. Although BFGS with exact linear search converges in the smallest 
number of iterations, the time consumed in each iteration is much bigger than the time 
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Fig
(d) 
wor

used by Infomax, and it results that, in time, Infomax algorithm is faster. Of course, if 
the comparison would have been done in iterations instead of time, BFGS with exact 
search would have shown that converges in much less iterations than Infomax, although 
it is the time and not the number of iteration what it is interesting to reduce working off-
line. In any case, BFGS with inexact search converges in much less time than the two 
others, showing that it is quite faster than the Infomax methods working off-line. The 
number of iterations necessary for BFGS with exact and with inexact linear search is 
similar.  
 

 

 4.2 
 
In

total
the k
only
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(a)                                                              (b) 

 
(c)                                                             (d) 

 
. 1.  Parameter E as function of  time (a) working off-line (a) working off line and 
working on-line for P=500; as function of iteration for (b) P=500 and (c) P=250, 
king on-line.  
 On-line study 

 this case the M vectors of data are assumed to appear in segments of P data, for a 
 of M/P segments. The unmixing matrix is estimated in the step k using the data in 
 segment. In this case the cost function J changes from iteration to iteration, not 

 due to the change in unmixing matrix, but also to the change of x in each segment. 
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As it is well known, this change in the data in each segment contributes to increase the 
value of E in the steady-state. This increase is bigger for BFGS than for Infomax, since 
the first uses two consecutive steps while the second only uses one step in the update 
process, and therefore it would be more sensible to difference between segments. 

 
In this case, it is wanted the methods to converge in few iterations, since then they 

will be able to deal with faster change in non-stationary signals or will need a smaller 
amount of data to solve a problem. In Figure 1(a), the two BFGS options and Infomax 
are compared for P=500 as function of the number of iteration. It can be seen that both 
BFGS methods converge in quite less iterations, with BFGS with exact linear search 
usually converging in a bit less iterations although the time consumed in each iteration 
by this method is much bigger than for BFGS with inexact search. This is explicitly 
shown in Figure 1(c), where the parameter E is shown in the same case, but as function 
of the time, instead of the iteration. In this last figure, it can also be seen how the time 
consuming by BFGS with inexact linear search is similar to the time of Infomax. The 
bigger the number of data per segment the greater the difference between the iterations 
needed by the BFGS methods and Infomax. 

 
The principal problem of BFGS with inexact linear search is that the steady state 

presents a bigger value of E and bigger variance than for Infomax. In BFGS with exact 
search, the value and the variance of E in the steady-state is a bit reduced, as it can be in 
Figure 1(a), and more clearly in Figure 1(b), where the on-line study has been done with 
P=250. The smaller the number of data per segment, the bigger the value of E in the 
steady-state for the BFGS algorithms and its variance, the bigger the difference between 
BFBS with exact and inexact search, and smaller the difference between the number of 
iterations needed by the BFGS methods and Infomax. 

 
This study has been repeated for different cost functions, numbers of data in the off-

line case and numbers of data per segment in the on-line case, and the results can be 
considered general. Broadly, the more complicate the cost function, the bigger the 
acceleration the convergence gets when the natural gradient minimization method is 
substituted by a quasi-Newton method. The fact is very much accentuated in the case 
that natural gradient can not be used, as is the case of [7]. 

 

5 Conclusion 
 

In this paper has been shown that the quasi-Newton method can be an option to the 
gradient minimization methods in BBS and ICA. If the method works off-line the quasi-
Newton methods converge faster than the natural gradient algorithms, and if it does on-
line, the quasi-Newton methods converge in a minor number of iterations. The time 
necessary in this second case is similar, although the quasi-Newton methods present a 
worse behaviour in the steady state 
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