
IADIS International Journal on Computer Science and Information Systems
Vol. 3, No. 1, pp. 86-109
ISSN: 1646-3692

 86

EXERTION ORIENTED PROGRAMMING

Michael Sobolewski Computer Science, Texas Tech University, SORCER Research Group,
http://sorcer.cs.ttu.edu

sobol@cs.ttu.edu

ABSTRACT

Six generations of RPC systems can be distinguished including Federated Method Invocation presented
in this paper. Some of them—CORBA, Java RMI, and Web/OGSA services—support distributed ob-
jects. However, creating object wrappers implementing remote interfaces doesn’t have a great deal to do
with object-oriented distributed programming. Distributed objects developed that way are usually ill-
structured, difficult to use, with missing core object-oriented traits. A distributed system is not just a
collection of distributed objects—it is the network of dynamic objects that come and go. In particular,
the object wrapping approach does not help to cope with network-centric messaging, invocation latency,
object discovery, dynamic object federations, fault detection, recovery, partial failure, etc. The Jini™
service architecture does not hide the network; it allows the programmer to deal with the network reality
to form dynamic service federations. However, handling low-level networking details in Jini does not
help to cope with complex network programming to dynamically cluster, federate, and utilize efficiently
various network services easily. A new network programming methodology is presented in this paper. It
uses the intuitive metacomputing semantics and the Triple Command design pattern. The pattern defines
how service objects communicate by sending one another a form of service messages called exertions
that encapsulate data, operations, and control strategy.

KEYWORDS

service-oriented programming, metacomputing, grid computing, dynamic computing federations, large-
scale distributed systems

1. INTRODUCTION

Socket-based communication forces us to design distributed applications using a read/write
(input/output) interface, which is not how we generally design non-distributed applications
based on procedure call (request/response) communication. In 1983, Birrell and Nelson de-
vised remote procedure call (RPC) [2], a mechanism to allow programs to call procedures on
other hosts. So far, six RPC generations can be distinguished:

EXERTION ORIENTED PROGRAMMING

 87

1. First generation RPCs [2]—Sun RPC (ONC RPC) and DCE RPC, which are language,
architecture, and OS independent;

2. Second generation RPCs—CORBA [22] and Microsoft DCOM-ORPC, which add distrib-
uted object support;

3. Third generation RPC—Java RMI [19] is conceptually similar to the second generation but
supports the semantics of object invocation in different address spaces that are built for
Java only. Java RMI fits cleanly into the language with no need for standardized data rep-
resentation, external interface definition language, and with behavioral transfer that allows
remote objects to perform operations that are determined at runtime;

4. Fourth generation RPC—next generation of Java RMI, Jini Extensible Remote Invocation
(Jini ERI [18]) with dynamic proxies, smart proxies, network security, and with depend-
ency injection defining exporters, end points, and security properties in configuration files;

5. Fifth generation RPCs—Web/OGSA Services RPC [17, 29] and the XML movement in-
cluding Microsoft WCF/.NET;

6. Sixth generation RPC—Federated Method Invocation (FMI), presented in this paper, al-
lows for concurrent invocations on multiple federating hosts (virtual metacomputer) in the
SORCER environment [27].
All the RPC generations are based on a form of service-oriented architecture (SOA) dis-

cussed in Section 2. However, CORBA, RMI, and Web/OGSA services are in fact object-
oriented wrappers of network interfaces that hide distribution and ignore the real nature of
network through classical abstractions of object-oriented programming using existing network
technologies. The fact that object-oriented languages are used to create these object wrappers
does not mean that developed distributed objects have a great deal to do with object-oriented
distributed programming. For example, CORBA defines many services, and implementing
them using distributed objects does not make them well structured with core object-oriented
features: encapsulation, instantiation, and polymorphism. Similarly in Java RMI, marking
objects with the Remote interface does not help to cope with network-centric messaging, for
example when calling on a dead stub. Network centricity here means that sending a message
to a remote object, in fact is sending it onto the network in the first place, and then dispatching
it to a live remote object provided by the network in a uniform way. Network-centric messag-
ing should encapsulate object discovery, fault detection, recovery, partial failure, and others.

Programmers use abstractions all the time. The source code written in programming lan-
guage is an abstraction of the machine language. From machine language to object-oriented
programming, layers of abstractions have accumulated like geological strata. Every generation
of software architects and programmers uses its era’s programming languages and tools to
build programs of the next generation. Each architecture and programming language used
reflects a relevant abstraction, and usually the type and quality of the abstraction implies the
complexity of problems we are able to solve. For example, a procedural language provides an
abstraction of an underlying machine language. Building on the object-oriented distributed
paradigm is the service object-oriented paradigm exemplified by the Jini architecture [12] in
which the network objects come together on-the-fly to play their predefined roles. In the Ser-
vice-ORiented Computing EnviRonmet (SORCER) developed at Texas Tech University [27],
a service provider is a remote object that accepts network requests to participate in a collabo-
ration—a process by which service providers work together to seek solutions that reach be-
yond what any one of them could accomplish on their own. While conventional objects en-
capsulate data and operations, the network requests called exertions encapsulate data, opera-

IADIS International Journal on Computer Science and Information Systems

 88

tions, and control strategy. An exertion can federate transparently on multiple hosts according
to its control strategy by hiding all low-level Jini networking details as well.

The SORCER metacomputing environment adds an entirely new layer of abstraction to the
practice of grid computing—exertion-oriented (EO) programming. The EO programming
makes a positive difference in service-oriented programming primarily through a new metap-
rogramming abstraction as experienced in many grid-computing projects including applica-
tions deployed at GE Global Research Center, GE Aviation, Air Force Research Lab, and
SORCER Lab [21, 8, 9, 14, 15, 24]. The new abstraction is about managing object-oriented
distributed system complexity laid upon the complexity of the network of computers.

An exertion submitted onto the network dynamically binds to all relevant and currently
available service providers in the object-oriented distributed system. The providers that dy-
namically participate in this invocation are collectively called an exertion federation. This
federation is also called a virtual metacomputer since federating services are located on multi-
ple physical compute nodes held together by the EO infrastructure so that, to the requestor
submitting the exertion, it looks and acts like a single computer.

The SORCER environment provides the means to create interactive EO programs [24] and
execute them using the SORCER runtime infrastructure presented in Section 3. Exertions can
be created using interactive user agents downloaded on-the-fly from service providers. Using
these interfaces, the user can create, execute, and monitor the execution of exertions within
the EO metacomputer. The exertions can be persisted for later reuse, allowing the user to
quickly create new applications or EO programs on-the-fly in terms of existing, usually per-
sisted for reuse exertions.

SORCER is based on the evolution of concepts and lessons learned in the FIPER project
[5, 23], a $21.5 million program founded by NIST (National Institute of Standards and Tech-
nology). Academic research on EO programming has been established at the SORCER Labo-
ratory, TTU, [27] where twenty-five SORCER related research studies have been investigated
so far [28]. The most recent version of EO programming used in SORCER is described in this
paper.

The paper is organized as follows. Section 2 provides a brief description of two service-
oriented architectures with a related discussion of distribution transparency; Section 3 de-
scribes the SORCER methodology; Section 4 presents EO programming and the related FMI
framework; Section 5 provides concluding remarks.

2. SOA AND DISTRIBUTION TRANSPARENCY

Various definitions of a Service-Oriented Architecture (SOA) leave a lot of room for interpre-
tation. In general terms, SOA is a software architecture using loosely coupled software ser-
vices that integrates them into a distributed computing system by means of service-oriented
programming. Service providers in the SOA environment are made available as independent
service components that can be accessed without a priori knowledge of their underlying plat-
form or implementation. While the client-server architecture separates a client from a server,
SOA introduces a third component, a service registry, as illustrated in Figure 1 (left). In SOA,
the client is referred to as a service requestor and the server as a service provider. The pro-
vider is responsible for deploying a service on the network, publishing its service to one or
more registries, and allowing requestors to bind and execute the service. Providers advertise

EXERTION ORIENTED PROGRAMMING

 89

Figure 1. SOA versus SOOA

their availability on the network; registries intercept these announcements and add published
services. The requestor looks up a service by sending queries to registries and making selec-
tions from the available services. Requestors and providers can use discovery and join proto-
cols to locate registries and then publish or acquire services on the network.

We can distinguish the service object-oriented architecture (SOOA), where providers are
network objects accepting remote invocations, from the service protocol oriented architecture
(SPOA), where a communication protocol is fixed and known beforehand by the provider and
requestor. Based on that protocol and a service description obtained from the service registry,
the requestor can bind to the service provider by creating a proxy used for remote communica-
tion over the fixed protocol. In SPOA a service is usually identified by a name. If a service
provider registers its service description by name, the requestors have to know the name of the
service beforehand.

In SOOA, a proxy—an object implementing the same service interfaces as its service pro-
vider—is registered with the registries and it is always ready for use by requestors. Thus, in
SOOA, the service provider publishes the proxy as the active surrogate object with a codebase
annotation, e.g., URLs to the code defining proxy behavior (RMI and Jini ERI). In SPOA, by
contrast, a passive service description is registered (e.g., an XML document in WSDL for
Web/OGSA services, or an interface description in IDL for CORBA); the requestor then has
to generate the proxy (a stub forwarding calls to a provider) based on a service description and
the fixed communication protocol (e.g., SOAP in Web/OGSA services, IIOP in CORBA).
This is referred to as a bind operation. The proxy binding operation is not required in SOOA
since the requestor holds the active surrogate object obtained from the registry. The surrogate
object is already bound to the provider that registered it with its appropriate network configu-
ration.

Web services and OGSA services cannot change the communication protocol between re-
questors and providers while the SOOA approach is protocol neutral [32]. In SOOA, how an
object proxy communicates with a provider is established by the contract between the pro-
vider and its published proxy and defined by the provider implementation. The proxy’s re-
questor does not need to know who implements the interface or how it is implemented. So-
called smart proxies (Jini ERI) can grant access to local and remote resources; they can also
communicate with multiple providers on the network regardless of who originally registered

IADIS International Journal on Computer Science and Information Systems

 90

the proxy. Thus, separate providers on the network can implement different parts of the smart
proxy interface. Communication protocols may also vary, and a single smart proxy can also
talk over multiple protocols including efficient application-specific protocols.

SPOA and SOOA differ in their method of discovering the service registry (see Figure 1).
SORCER uses dynamic discovery protocols to locate available registries (lookup services) as
defined in the Jini architecture [12]. Neither the requestor who is looking up a proxy by its
interfaces nor the provider registering a proxy needs to know specific locations. In SPOA,
however, the requestor and provider usually do need to know the explicit location of the ser-
vice registry—e.g., the IP address of an ONC/RPC portmapper, a URL for RMI registry, a
URL for UDDI registry, an IP address of a COS Name Server—to open a static connection
and find or register a service. In deployment of Web and OGSA services, a UDDI registry is
sometimes even omitted when WSDL descriptions are shared via files; in SOOA, lookup
services are mandatory due to the dynamic nature of objects identified by service types. Inter-
actions in SPOA are more like client-server connections (e.g., HTTP, SOAP, IIOP), in many
cases with no need to use service registries at all.

Let us emphasize the major distinction between SOOA and SPOA: in SOOA, a proxy is
created and always owned by the service provider, but in SPOA, the requestor creates and
owns a proxy which has to meet the requirements of the protocol that the provider and re-
questor agreed upon a priori. Thus, in SPOA the protocol is always a generic one, reduced to a
common denominator—one size fits all—that leads to inefficient network communication in
many cases. In SOOA, each provider can decide on the most efficient protocol(s) needed for a
particular distributed application.

Service providers in SOOA can be considered as independent network objects finding
each other via service registries and communicating through message passing. A collection of
these objects sending and receiving messages—the only way these objects communicate with
one another—looks very much like a service object-oriented distributed system.

Do you remember the eight fallacies [4] of network computing? We cannot just take an
object-oriented program developed without distribution in mind and make it a distributed
system ignoring the unpredictable network behavior. Most RPC systems, except Jini, hide the
network behavior and try to transform local communication into remote communication by
creating distribution transparency based on a local assumption of what the network might be.
However every single distributed object cannot do that in a uniform way as the network is a
heterogeneous distributed system and cannot be represented completely within a single entity.

The network is dynamic, cannot be constant, and introduces latency for remote invoca-
tions. Network latency also depends on potential failure handling and recovery mechanisms so
we cannot assume that a local invocation is similar to remote invocation. Thus complete
transparency distribution—by making calls on distributed objects as though they were local—
is impossible to achieve in practice. The distribution is not just an object-oriented implementa-
tion of a single type of distributed object or network wrapper; it is a metasystemic issue in
object-oriented distributed programming.

EO programming is introduced to handle the metasystemic distribution in SORCER by us-
ing indirect remote method invocation with no service provider directly specified in the net-
work request called service exertion. Specific infrastructure services support EO programming
combined with the FMI framework presented in this paper. That infrastructure defines
SORCER’s distributed object encapsulation, modularity, extensibility, and reuse of service-
oriented components consistent with the metacomputing granularity, behavioral transfer, and

EXERTION ORIENTED PROGRAMMING

 91

configuration setup with dependency injection—the key features of object-oriented distributed
programming that are usually missing in SPOA programming environments.

3. FEDERATED SERVICE OBJECT-ORIENTED COMPUTING
ENVIRONMENT: SORCER

SORCER is a federated service-to-service (S2S) metacomputing environment that treats ser-
vice providers as network objects with well-defined semantics of a federated service object-
oriented architecture. It is based on Jini semantics of services [12] in the network and Jini
programming model with explicit leases, distributed events, transactions, and discovery/join
protocols. While Jini focuses on service management in a networked environment, SORCER
is focused on EO programming and the execution environment for exertions. SORCER uses
Jini discovery/join protocols to implement its exertion-oriented architecture (EOA) using
FMI, but hides all low-level programming details of the Jini programming model [3].

In EOA, a service provider is an object that accepts remote messages from service re-
questors to execute a service collaboration. These messages, called service exertions, describe
service data, operations and provider’s control strategy. An exertion task (or simply a task) is
an elementary service request, a kind of elementary remote instruction (elementary network
statement) executed by a single service provider or a small-scale federation. A composite
exertion called an exertion job (or simply a job) is defined hierarchically in terms of tasks and
other jobs, a kind of network procedure (block of network statements) executed by a large-
scale federation. The executing (active) exertion is dynamically bound to all required and
currently available service providers on the network. This collection of providers identified in
runtime is called an exertion federation. The federation provides for the implementation of the
executing exertion. When the federation is formed, then each exertion’s operation has its
corresponding method (code) on the network available. Thus, the network exerts the request
with the help of the service federation formed in runtime. In other words we send the request
onto the network implicitly, not to a particular network object explicitly.

While this sounds similar to the object-oriented paradigm, it really is not. In the object-
oriented paradigm, the object space is a program itself; here the exertion federation is the
execution environment for the exertion, and the exertion is the object-oriented program—
specification of service collaboration. This changes the programming paradigm completely. In
the former case the object space is hosted by a single computer, but in the latter case the par-
ent and its component exertions along with related service providers are hosted by the net-
work of computers.

The overlay network of service providers is called the service grid and the exertion federa-
tion is in fact a virtual metacomputer. The metainstruction set of the metacomputer consists of
all operations offered by all service providers in the grid. Thus, a service-oriented program
consists of required metainstructions, service-oriented control strategy, and a service context
representing the metaprogram data. The service context describes the data that tasks and jobs
work on. EO programs can be created interactively using zero-install service user interfaces
[31] and allow for transparent monitoring and debugging [24, 25] their execution within the
grid. Please note that these metacomputing concepts are defined differently in traditional grid

IADIS International Journal on Computer Science and Information Systems

 92

computing where a job is just an executing process for a submitted executable code with no
federation being formed.

Each service provider offers services to other service peers [8] on the object-oriented over-
lay network. These services are exposed indirectly by methods in well-known public inter-
faces and considered as operations that can be specified in exertions. Thus a service is essen-
tially an interface (service) type (in EOA a Java interface) that has a service provider imple-
menting it. Indirectly means here, that you cannot invoke any operation defined in provider’s
interface directly. These operations can be specified in a requestor’s exertion only, and the
exertion can be passed on to any service provider via the top-level Servicer interface re-
quired by all service providers. Thus all service providers in EOA implement the ser-
vice(Exertion, Transaction):Exertion operation of the Servicer interface. When
the provider accepts its received exertion, then the exertion’s operations can be invoked by the
provider itself, if the requestor is authorized to do so.

Service providers do not have mutual associations prior to the execution of an exertion;
they come together dynamically (federate) for all nested tasks and jobs in the exertion. In
EOA requestors do not have to lookup for any network provider at all, they can submit an
exertion, onto the network by calling Exertion.exert(Transaction):Exertion on the
underlying exertion. The exert operation will create a required federations that will execute
the collaboration specified by the exertion and return the resulting exertion back the requestor.
Since exertion encapsulates everything needed (data, operations, and control strategy) for the
program execution, the results of the execution can be found in the returned exertion’s service
context.

Domain specific providers within the federation, or task peers (taskers), execute service
tasks. Two types of rendezvous peers, Jobber and Spacer, coordinate execution of job exer-
tions. Providers of the Tasker, Jobber, and Spacer type are core infrastructure services of
the metacompute operating system in SORCER (see Figure 1). In view of the P2P architecture
defined by the Servicer interface, a job can be sent to any service provider (peer). A peer
that is not of a Jobber or Spacer type is responsible for forwarding the job to one of avail-
able rendezvous peers in the SORCER environment and returning results back to the initiating
requestor.

EXERTION ORIENTED PROGRAMMING

 93

Figure 2. The SORCER layered functional architecture

Thus implicitly, any peer can handle any job or task. Once the job execution is complete,
the federation dissolves and the providers disperse to seek other exertions to join. Also,
SORCER supports a traditional approach to grid computing similar to those found in Condor
[30] and Globus [29]. Here, instead of exertions being executed by services providing own
business logic, the business logic comes from the service requestor's executable codes that
seek compute resources on the network.

Traditional grid-based services in the SORCER environment include Grider services col-
laborating with Jobber and Spacer services for traditional grid job submission, and Caller
and Methoder services for task execution [14]. Callers execute legacy codes via a system
call as described in the standardized service context of submitted task. Methoders can down-
load required Java code (task method) from requestors to process any submitted context ac-
cordingly with the code downloaded. In either case, the business logic comes from the re-
questors; it is an executable code invoked by Callers with the standardized Caller’s ser-
vice context or mobile Java code executed by Methoders with a relevant service context
provided by the requestor. A SORCER layered functional architecture with a collection of
infrastructure services is presented in Figure 2.

4. EXERTION-ORIENTED PROGRAMMING

Each programming language provides a specific computing abstraction. Procedural languages
are abstractions of assembly languages. Object-oriented languages abstract entities in the
problem (application) domain that refer to “objects” communicating via message passing as
their representation in the corresponding solution domain, e.g., SORCER objects. EO pro-
gramming is a form of distributed programming that allows us to describe the distributed
problem in terms of the intrinsic unpredictable network domain instead of in terms of distrib-
uted objects that hide the notion of the network domain.

What intrinsic distributed abstractions are defined in SORCER? Well, service providers
are “objects”, but they are specific objects—they are network objects with a network state,
network behavior, and network type(s). There is still a connection to distributed objects: each
service provider looks like a distributed object (compute node) in that it has a network state,
network behavior, and network types(s). Service providers act also as network peers; they
implement the same top-level interface; they are replicated and dynamically provisioned for
reliability to compensate for network failures [20]; they can be found dynamically at runtime
by type(s) they implement; they can federate for executing a specific network request called
an exertion and perform hierarchically nested (component) exertions. An exertion encapsu-
lates service data, operations, and provider’s control strategy. The component exertions may
need to share context data of ancestor exertions, and the top-level exertion is complete only if
all nested exertions are successful.

With that very concise introduction to the abstraction of EO programming, let’s look into a
simple analogy to Unix shell scripts execution and then in detail at how EOA is defined.

Let's first look at the EO approach to see how it works. EO programs consist of exertion
objects called tasks and jobs. An exertion task corresponds to an individual network request to
be executed on a service provider. An exertion job consists of a structured collection of tasks

IADIS International Journal on Computer Science and Information Systems

 94

and other jobs. The data upon which to execute a task or job is called a service context. Tasks
are analogous to executing a single program or command on a computer, and the service con-
text would be the input and output streams that the program or command uses. A job is analo-
gous to a batch script that can contain various commands and calls to other scripts. Pipelining
Unix commands allows us to perform complex tasks without writing complex programs. As
an example, consider a script sort.sh connecting simple processes in a pipeline as follows:
cat hello.txt | sort | uniq > bye.txt

The script is similar to an exertion job in that it consists of individual tasks that are organ-
ized in a particular fashion. Also, other scripts can call the script sort.sh. An exertion job
can consist of tasks and other jobs, much like a script can contain calls to commands and other
scripts.

Each of the individual commands, such as cat, sort, and uniq, would be analogous to a
task. Each task works with a particular service context. The input context for the cat “task”
would be the file hello.txt, and the “task” would return an output context consisting of the
contents of hello.txt. This output context can then be used as the input context for another
task, namely the sort command. Again the output context for sort could be used as the
input context for the uniq task, which would in turn give an output service context in the
form of bye.txt.

To further clarify what an exertion is, an exertion consists mainly of three parts: a set of
service signatures, which is a description of operations in a collaboration, the associated ser-
vice context upon which to execute the exertion, and control strategy (default provided) that
defines how signatures are applied in the collaboration. A service signature specifies at least
the provider’s interface that the service requestor would like to use and a selected operation to
run within that interface. There are four types of signatures that can be used for an exertion:
PREPROCESS, PROCESS, POSTPROCESS, and APPEND. An exertion must have one and only
one PROCESS signature that specifies what the exertion should do and who works on it. An
exertion can optionally have multiple PREPROCESS, POSTPROCESS, and APPEND signatures
that are primarily used for formatting the data within the associated service context. A service
context consists of several data nodes used for either input, output, or both. A task may work
with only a single service context, while a job may work with multiple service contexts since
it can contain multiple tasks. The programmer can define a control strategy as needed for the
underlying exertion by choosing relevant exertion types (see Section 4.4 and 4.5) and config-
uring attributes of service signatures accordingly (see Section 4.2 for details).

Here is the basic structure of the EO program that is analogous to the sort.sh script.

1. // Create service signatures
2. Signature catSignature, sortSignature, uniqSiganture;
3. catSignature = new ServiceSignature("Reader", "cat");
4. sortSignature = new ServiceSignature("Sorter", "sort");
5. uniqSiganture = new ServiceSignature("Filter", "uniq");
6.
7. // Create component exertions
8. Task catTask, sortTask, uniqTask;
9. catTask = new ServiceTask("t-cat", catSignature);
10. sortTask = new ServiceTask("t-sort", sortSignature);
11. uniqTask = new ServiceTask("t-uniq", uniqSiganture);
12.
13. // Create top-level exertion
14. Job sortJob = new SevriceJob("Sort job");

EXERTION ORIENTED PROGRAMMING

 95

15. sortJob.addExertion(catTask);
16. sortJob.addExertion(sortTask);
17. sortJob.addExertion(uniqTask);
18.
19. // Create service contexts
20. Context catContext, sortContext, uniqContext;
21. catContext = new ServiceContext("c-cat");
22. sortContext = new ServiceContext("c-sort");
23. uniqContext = new ServiceContext("c-uniq");
24.
25. catContext.putInValue("/text/in/URL", "http://host/hello.txt");
26. catContext.putOutValue("/text/out/contents", null);
27.
28. sortContext.putInValue("/text/in/contents", null);
29. sortContext.putOutValue("/text/out/sorted", null);
30.
31. uniqContext.putInValue("/text/in/sorted", null);
32. uniqContext.putOutValue("/text/out/URL", "http://host/bye.txt");
33.
34. // Map context output to input parameters (paths)
35. catContext.map("/text/out/contents",
36. "/text/in/contents", sortContext);
37. sortContext.map("/text/out/sorted",
38. "/text/in/sorted", uniqContext);
39.
40. catTask.setContext(catContext);
41. sortTask.setContext(sortContext);
42. uniqTask.setContext(uniqContext);
43.
44. // Activate the top-level job exertion
45. sortJob.exert(null);

In the above EO program we create three signatures (lines 2-5), each signature is defined
by the interface name and the operation name that we want to run by any remote object im-
plementing the interface. We use the three signatures to create three tasks (lines 8-11) and by
line 12, we have three separate commands cat, sort, and uniq to be used in the sort.sh
script. The three tasks are combined into the job by analogy to piping Unix commands in the
sort.sh script. Thus, by line 18, we have added these commands to sort.sh script, but
have not provided input/output parameters nor piped them together:

as is: cat sort uniq
to be: cat hello.txt | sort | uniq > bye.txt

Lines 20-32 create and define three service contexts for our three tasks. By line 32, we have
specified some input and output parameters, but still no piping:

as is: cat hello.txt sort uniq bye.txt
to be: cat hello.txt | sort | uniq > bye.txt

Lines 35-38 define mapping of context output to the related context input parameters. The
parameters are context paths from a source context to a target context. The target context is
the last parameter in the map operation. By line 43, we have piping setup and by the analogy
our sort.sh script is complete now:

as is: cat hello.txt | sort | uniq > bye.txt
On line 45, we execute the script. If we use the Tenex C shell (tcsh), invoking the script is
equivalent to: tcsh sort.sh, i.e., passing the script sort.sh on to tcsh. Similarly, to

IADIS International Journal on Computer Science and Information Systems

 96

invoke the exertion sortJob, we call sortJob.exert(). Thus, the exertion is the program
and the network shell at the same time, which might first come as a surprise, but close evalua-
tion of this fact shows it to be consistent with the meaning of object-oriented distributed pro-
gramming. Here, the virtual metacomputer is a federation that does not exist when the exer-
tion is created. Thus, the notion of the virtual metacomputer is encapsulated in the exertion
that creates the required federation on-the-fly. The federation provides the implementation
(metacomputer instructions) as specified in signatures of the EO program before the exertion
runs on the network.

The sortJob program described above can be rewritten with just one exertion task only
instead of exertion job as follow:

1. // Create service signatures
2. Signature catSignature, sortSignature, uniqSiganture;
3. catSignature = new ServiceSignature("Reader", "cat",
4. Type.PREPROCESS);
5. sortSignature = new ServiceSignature("Sorter", "sort",
6. Type.PROCESS);
7. uniqSiganture = new ServiceSignature("Filter", "uniq",
8. Type.POSTPROCESS);
9.
10. // Create an exertion task
11. Task sortTask;
12. sortTask = new ServiceTask("task-sort", sortSignature);
13. sortTask.addSignature(catSignature);
14. sortTask.addSignature(sortSignature);
15. sortTask.addSignature(uniqSiganture);
16.
17. // Create a service context
18. Context taskContext;
19. taskContext = new ServiceContext("c-sort");
20.
21. taskContext.putInValue("/text/in/URL", "http:// host/hello.txt");
22. taskContext.putOutValue("/text/out/contents", null);
23.
24. taskContext.putInValue("/text/in/contents", null);
25. taskContext.putOutValue("/text/out/sorted", null);
26.
27. taskContext.putInValue("/text/in/sorted", null);
28. taskContext.putOutValue("/text/out/URL", "http:// host/bye.txt");
29.
30. // Map context output to input parameters (paths)
31. taskContext.map("/text/out/contents", "/text/in/contents",
32. taskContext);
33. taskContext.map("/text/out/sorted", "/text/in/sorted",
34. taskContext);
35. sortTask.setContext(taskContext);
36.
37. // Activate the task exertion
38. sortTask.exert(null);

In this version of the sort.sh analogy—taskSort, we create three signatures (lines 2-
8), but in this case three signature types are assigned, so we can batch them into a single task
(lines 12-15). In the jobSort version all signatures are of the default PROCESS type and each

EXERTION ORIENTED PROGRAMMING

 97

task is created with its own context. Here we create one common taskContext (lines 18-35)
that is shared by all signature operations. Finally, on line 38, we execute the exertion task
sortTask.

The major difference between the two EO programs jobSort and taskSort is in the ex-
ertion execution. The execution of jobSort is in fact coordinated by a Jobber, but the exe-
cution of the taskSort is coordinated by the service provider implementing the Sorter
interface that binds to the PROCESS signature sortSignature. If the provider implementing
the Sorter interface, implements two other interfaces Reader and Filter, then the execu-
tion of taskSort is more efficient as all three operations can be executed by the same pro-
vider with no need of network communication between a Jobber and collaborating providers
in the jobSort federation.

4.1 Service Messaging and Exertions

In object-oriented terminology, a message is the single means of passing control to an object.
If the object responds to the message, it has an operation and its implementation (method) for
that message. Because object data is encapsulated and not directly accessible, a message is the
only way to send data from one object to another. Each message specifies the name (identi-
fier) of the receiving object, the name (selector) of operation to be invoked, and its parame-
ters. In the unreliable network of objects; the receiving object might not be present or can go
away at any time. Thus, we should postpone receiving object identification as late as possible.
Grouping related messages per one request for the same data set makes a lot of sense due to
network invocation latency and common errors in handling. These observations lead us to
service-oriented messages called exertions. An exertion encapsulates multiple service signa-
tures that define operations, a service context that defines data, and a control strategy that
defines how signature operations flow during exertion execution. Different types of control
flow exertions (Section 4.4) can be used to define collaboration control strategies that can also
be configured with signature flow type and access type attributes. Two basic exertion catego-
ries are distinguished: elementary and composite exertion called exertion task and exertion
job, respectively. Task and job control strategies are described in Section 4.5.

An exertion can be activated by calling exertion’s exert operation: Exer-
tion.exert(Transaction):Exertion, where a parameter of the Transaction type is
required when a transactional semantics is needed for all participating nested exertions within
the parent one. Thus, EO programming allows us to submit an exertion onto the network and
to perform executions of exertion’s signatures on various service providers indirectly, but
where does the service-to-service communication come into play? How do these services
communicate with one another if they are all different? Top-level communication between
services, or the sending of service requests (exertions), is done through the use of the generic
Servicer interface and the operation service that all SORCER services are required to
provide—Servicer.service(Exertion, Transaction):Exertion. This top-level
service operation takes an exertion as an argument and gives back an exertion as the return
value. In Section 4.7 we describe how this operation is used in the FMI framework.

So why are exertions used rather than directly calling on a provider's method and passing
service contexts? There are two basic answers to this. First, passing exertions helps to aid with
the network-centric messaging. A service requestor can send an exertion out onto the net-

IADIS International Journal on Computer Science and Information Systems

 98

work—Exertion.exert()—and any service provider can pick it up. The provider can then
look at the interface and operation requested within the exertion, and if it doesn't implement
the desired interface or provide the desired method, it can continue forwarding it to another
service provider who can service it. Second, passing exertions helps with fault detection and
recovery. Each exertion has its own completion state associated with it to specify if it has yet
to run, has already completed, or has failed. Since full exertions are both passed and returned,
the user can view the failed exertion to see what method was being called as well as what was
used in the service context input nodes that may have caused the problem. Since exertions
provide all the information needed to execute an exertion including its control strategy, a user
would be able to pause a job between tasks, analyze it and make needed updates. To figure out
where to resume an exertion, the service provider would simply have to look at the exertion’s
completion states and resume the first component one that wasn't completed yet.

4.2 Service Signatures

An activated exertion initiates the dynamic federation of all needed service providers dynami-
cally—as late as possible—as specified by signatures of top-level and nested exertions. An
exertion signature is compared to the operations defined in the service provider’s interface
along with a set of signature attributes describing the provider, and if a match is found, the
appropriate operation can be invoked on the remote provider. In federated method invocation
(FMI) signatures specify indirect invocations of provider methods via the service operation
of the top-level Servicer interface as described in Section 4.1.
A service Signature is defined by:
• signature name—a custom name
• service type name—a service name corresponding to the provider’s type
• service flow type—FlowType: SEQUENTIAL (default), PARALLEL, CONCURRENT
• selector of the service operation—an operation name defined in the service type
• operation type—Signature.Type: PROCESS (default), PREPROCESS, POSTPROCESS,
APPEND

• service access type—Signature.Access: PUSH (default) direct binding to service pro-
viders, or PULL using a shared exertion space via the Spacer service

• priority—integer value used by exertion’s control strategy
• execution time flag—if true, the execution time is returned in the service context
• notifyees—list of email addresses to notify upon exertion completion
• service attributes—required requestor’s attributes matching provider’s registration attrib-

utes
An exertion can comprise of a collection of PREPRROCESS, POSTPROCESS, and APPEND

signatures, but with only one PROCESS signature. The PROCESS signature defines the binding
provider for the exertion. An APPEND signature defines the context received from the provider
specified by this signature. The received context is then appended in runtime to the context
later processed by PREPROCESS, PROCESS, and POSTPROCESS operations of the exertion.
Appending a service context allows a requestor to use actual network data in runtime not
available to the requestor when the exertion is submitted.

Different languages have different interpretations as to what constitutes and operation sig-
nature, For example, in C+ and Java the return type is ignored. In FMI the parameters and

EXERTION ORIENTED PROGRAMMING

 99

return type are all of the Context type. Using the UML advanced operation syntax, the exer-
tion operation (prefixing it with the <<service>> stereotype and postfixing with tagged val-
ues), can be defined as follow:
<<service>> operation-name (operation-context : Context) : Context {
interface = service-type-name, type = operation-type, access = access-
type, flow = flow-type, priority = integer, timing = boolean, notfiees
= notfiees-list, attributes = registration-attribute-list }

4.3 Service Contexts

A service context, or simply a context, defined by the Context interface, is a data structure
that describes service provider ontology along with related data. A provider ‘s ontology is
controlled by the provider vocabulary that describes data and the relations between them in a
provider's namespace within a specified service domain of interest. A requestor submitting an
exertion to a provider has to comply with that ontology as it specifies how the context data is
interpreted and used by the provider. In service context, attributes and their values are used as
atomic conceptual primitives, and complements are used as composite ones. A complement is
an attribute sequence (path) with a value at the last position. A context property consists of a
subject complement and a set of defining context complements. The context property usually
corresponds to a simple sentence of natural language (a subject with multiple complements).

A service context is a tree-like structure described conceptually by the EBNF conceptual
syntax specification as follows:

1. context = [subject ":"] complement { complement }.
2. subject = element.
3. complement = element ";".
4. element= path ["=" value].
5. path = ["/"] attribute { "/" attribute } [{ "<" association ">" }] [{ "/" attribute }].
6. value = object.
7. attribute = identifier.
8. relation = domain product.
9. association = domain tuple.
10. product = attribute { "|" attribute }.
11. tuple = value { "|" value }.
12. attribute = identifier.
13. domain = identifier.
14. association = identifier.
15. identifier = letter { letter | digit }.

A relation with a single attribute is called a property and is denoted as attribute | attribute.
To illustrate the idea of service context, let’s consider the following example (graphically
depicted in Figure 3 where the subject SORCER is indicated in green color and the person
association in red):

/laboratory/name = SORCER: /university=TTU;
/university/department/name=CS;
/university/department/room;
number=20B;

IADIS International Journal on Computer Science and Information Systems

 100

Figure 3. An example of a service context

phone/number=806-742-1194;
phone/ext=237;
/director<person | Mike | W | Sobolewski>/email=sobol@cs.ttu.edu;

where absolute and relative paths are used, and the relation person is defined as follows: per-
son | firstname | initial | lastname.

A context leaf node, or data node is where the actual data resides. All absolute context

paths define an application domain namespace. The context namespace with data nodes ap-
pended to its context paths is called a context model, or simply a context. A context path is a
hierarchical name for a data item in a leaf node. Note that a service context can be represented
as an XML document—what has been done in SORCER for interoperability—but the power
of the Context type comes from the fact that any Java object can be naturally used as a data
node. In particular exertions themselves can be used as data nodes and then executed by pro-
viders as needed to run complex iterative programs, e.g., nonlinear multidisciplinary optimiza-
tion [15].

4.4 Exertion Types

A Task instance specifies an elementary step of EO program. It is an analog of a statement in
conventional programming languages (see the examples in Section 4). Thus, it is a minimal

EXERTION ORIENTED PROGRAMMING

 101

unit of structuring in EO programming. If the provider binds to a Task, it has a method for
the task's PROCESS signature. Other signatures associated with the Task exertion provide for
preprocessing and postprocessing by the same provider or its collaborating providers. An
APPEND signature defines the context received from the provider specified by this signature.
The received context is then appended in runtime to the task context later processed by
PREPROCESS, PROCESS, and POSTPROCESS operations of the task. Appending a service con-
text allows a requestor to use actual network data in runtime not available to the requestor
when the task is submitted. A Task is the single means of passing control to an application
service provider in EOA. Note that a task can specify a batch of operations that operate on the
same service context—a Task shared execution state. All operations of the Task, that are
defined by its signatures, can be executed by the same provider or a group of federating pro-
viders coordinated by the receiving provider.

A Job instance specifies a “block” of task and other jobs. It is the analog of a procedure in
conventional programming languages. In EO programming it is a composite of exertions that
makeup the network collaboration. A Job can reflect a workflow with branching and looping
by concatenating control flow exertions.

Figure 4. Exertion types including control flow exertions that allow for algorithmic logic in EO pro-

gramming

The following control exertion types define algorithmic logic of EO programming: Ser-
viceTask, ServiceJob, IfExertion, WhileExertion, ForExertion,
DoExertionThrowExertion, TryExertion, BreakExertion, Continue-
Exertion. Currently implemented control Exertion types in SORCER are depicted in
Figure 4.

IADIS International Journal on Computer Science and Information Systems

 102

4.5 Exertion Control Strategies

In Section 4.1 and 4.2 top-level exertion messaging and service signatures were described.
This section will present how they are used, at the task level and job level, to execute an EO
program. Before we delve into a task and job execution strategy, let’s look at three related
infrastructure providers identified by the following interfaces: Jobber, Spacer, and Cata-
loger.

To begin processing a job, a service requestor must exert the job that finds its way dy-
namically to a Jobber service using its implementation of Exer-
tion.exert(Transaction):Exertion. The Jobber is responsible for coordinating the
execution of the job, much like a command shell coordinates the execution of a batch script
(see the programming examples in Section 4). The Jobber acts as a service broker by calling
upon the proper service providers to execute the component exertions within the given job.
The Jobber can dispatch nested service requests either explicitly, where the jobber finds a
proper provider by way of a Cataloger service or falling back to the Jini lookup service, or
it can be dispatched implicitly to a shared exertion space through the use of a Spacer service.

SORCER extends the discovery and registration capabilities of the service-oriented archi-
tecture through the use of a service called the Cataloger service. A cataloger service looks
through all the Jini lookup services that it is aware of and requests all the SORCER service
registration it can get. The cataloger organizes these registrations that include service proxies,
into groups of the same type. Whenever a service requestor needs a certain service, it can go
to a cataloger instead of a lookup service to find what it needs. The cataloger will distribute
registrations for the same service in a round-robin fashion to help balance the load between
service providers of the same service type.

SORCER also extends task/job execution abilities through the use of a Spacer service.
The spacer service can drop a task into a shared object space, provided by the Jini JavaSpace
service [7], in which several providers can retrieve relevant exertions from the object space,
execute them, and return the results back to the object space.

As defined before, an exertion is associated with a collection of signatures. There is only
one PROCESS signature in this collection and multiple instances of APPEND, PREPROCESS, and
POSTPROCESS signatures. The PROCESS signature is responsible for binding to the service
provider that executes the exertion. The exertion activated by a service requestor (Exer-
tion.exert(Transaction):Exertion) can be submitted directly or indirectly to the
matching service provider. In the direct approach, when signature’s access type is PUSH, the
exertion’s ServicerAccessor (see Figure 5) finds the matching service provider against the
service type and attributes of the PROCESS signature and submits the exertion to the matching
provider. Alternatively, when signature’s access type is PULL, a ServiceAccessor can use a
Spacer provider that simply drops the exertion into the shared exertion space to be pulled by
matching providers. Each service provider looks continuously into the space for exertions that
match a provider’s interfaces and attributes. Each service provider that picks up a matched
exertion from the exertion space returns the exertion being executed back into the space, then
the requestor picks up the executed exertion from the space. The exertion space provides a
kind of automatic load balancing—the fastest available service provider gets an exertion from
the space and joins the federation.

EXERTION ORIENTED PROGRAMMING

 103

When a receiving service provider gets a task (directly or indirectly) then the task signa-
tures are executed in the following order:

1. First, all APPEND signatures are processed by the receiving provider in the order speci-
fied in the task. The order of signatures is defined by signature priorities, if the task’s
flow type is SEQUENTIAL, otherwise they are dispatch in parallel. In the result the task’s
service context is appended with dynamic data delivered from context providers speci-
fied by these append signatures. Obtained complementary shared context data is man-
aged by the receiving provider according to the remote Observer/Observable design pat-
tern [10].

2. Second, all PREPROCESS signatures are executed in the order specified in the task. The
order is as defined in 1). In the result the task context is ready for applying its PROCESS
method.

3. Third, the PROCESS signature is executed and results are captured in the task context in-
cluding any exceptions and errors.

4. Forth, all POSTPROCESS signatures are executed in the order specified in the task. The
order is as defined in 1). Finally the resulting task with the processed context is returned
to the requestor.

Figure 5. The primary types of SORCER providers: Tasker, Jobber, and Spacer with supporting

ServicerAccessor

The default job’s PROCESS signature defines a runtime binding to a Jobber provider. Two
major parameters: job PROCESS signature’s access type and its flow type determine the top-
level control strategy. Additionally, an implicit job’s service context, called a control context,
defines job’s execution preferences. When a Jobber gets an exertion job then a relevant dis-
patcher is assigned to a Jobber by a dispatcher factory that takes into account job’s access
type, flow type, and a control context configuration. In the SORCER environment there are
twelve types of dispatchers that implement different types of control strategies. The assigned

IADIS International Journal on Computer Science and Information Systems

 104

dispatcher manages the execution of the job’s component exertions either sequentially or in
parallel (depending on the value of flow type), and accessing collaborating providers either
directly or indirectly (depending on the value of access type). The top-level control strategy
implements a master/slave computing model with sequential or parallel execution of slave
exertions with the master exertion executed as the last one, if any. In general, full algorithmic
logic operations: concatenation, branching, and looping are supported. A job’s workflow can
be defined in terms of flow control exertion types defined in Section 4.4. The job signature’s
access type specifies the way a jobber accesses collaborating service providers: directly or
indirectly. While the Spacer provider is used for indirect access, the Cataloger service is
usually used by a Jobber to find directly needed service providers.

4.6 Service-to-Service (S2S) Infrastructure

Exertion tasks are usually executed by service providers of the Tasker type and exertion jobs
by rendezvous providers of Jobber or Spacer type. While a Tasker manages a single ser-
vice context for the received task, a rendezvous provider manages a shared context (shared
execution state) for the job federation and provides substitutions for input parameters in ser-
vice contexts of component exertions. Either one, a Tasker or rendezvous provider creates a
federation of required service providers in runtime, but federations managed by rendezvous
providers are usually larger in size than those managed by Taskers. All SORCER service
providers implement the top-level Servicer interface. A peer of the Servicer type that is
unable to execute an Exertion for any reason forwards the Exertion to any available Ser-
vicer matching the exertion’s PROCESS signature and returns the resulting exertion back to
its requestor.

Thus, each Servicer can initiate a federation created in response to Ser-
vicer.service(Exertion, Transaction). Servicers come together to form a federa-
tion participating in collaboration for the activated exertion. When the exertion is complete,
Servicers leave the federation and seek a new exertion to join. Note that the same exertion
can form a different federation for each execution due to the dynamic nature of looking up
Servicers by their required interfaces. Despite the fact that every Servicer can accept any
exertion, Servicers have well defined roles in EOA:
a) Taskers – process service tasks
b) Jobbers – process service jobs
c) Spacers – process tasks and jobs via exertion space for space-based computing [7]
d) Contexters – provide service contexts for APPEND Signatures
e) FileStorers – provide access to federated file system providers [1, 25]
f) Catalogers – service registries
g) Persisters – persist service contexts, tasks, and jobs to be reused for interactive exer-

tion-based programming
h) Relayers – gateway providers, transform exertions to native representation, for example

integration with Web services and JXTA [12]
i) Autenticators, Authorizers, Policers, KeyStorers – provide support for service

security
j) Auditors, Reporters, Loggers – support for accountability, reporting and logging

EXERTION ORIENTED PROGRAMMING

 105

k) ServiceProviderBeans – to enable autonomic provisioning with the Rio framework
[20]

l) Griders, Callers, Methoders – support traditional grid computing
m) Generic ServiceTasker, ServiceJobber, and ServiceSpacer implementations are

used to configure domain-specific providers via dependency injection—configuration files
for smart proxying and embedding business objects, called service beans, into service pro-
viders. Also, domain-specific providers can subclass either one and implement required
domain-specific interfaces with operations returning a service context and taking a service
context as its single parameter. These domain-specific interfaces and operations are used in
task signatures.

4.7 FMI Triple Command Pattern

Polymorphism let us encapsulate a request then establish the signature of operation to call and
vary the effect of calling the underlying operation by varying its implementation. The Com-
mand design pattern [10] establishes an operation signature in a generic interface and defines
various implementations of the interface. In Federated Method Invocation (FMI), the three
interfaces are defined with the following three commands:
1. Exertion.exert(Transaction):Exertion—join the federation;
2. Servicer.service(Exertion, Transaction):Exertion—request a service in the

federation from the top-level Servicer obtained for the activated exertion;
3. Exerter.exert(Exertion, Transaction):Exertion—execute the argument exer-

tion by the target provider in the federation.
These three commands define the Triple Command pattern that makes EO programming pos-
sible via various implementations of the three interfaces: Exertion, Servicer, and
Exerter.

The FMI approach allows for:
− the P2P environment via the Servicer interface,
− extensive modularization of programming P2P collaborations by the Exertion type,
− the execution of exertions by providers of the Exerter type, and
− vast common synergistic extensibility from the triple design pattern.

Thus, requestors can exert simple (tasks) and structured metaprograms (jobs with control
exertions) with or without transactional semantics as defined in 1) above.
The Triple Command pattern in SORCER works as follows:

1. An exertion is invoked by calling Exertion.exert(Transaction). The Exer-
tion.exert operation implemented in ServiceExertion uses ServicerAccessor
to locate in runtime the provider matching the exertion’s PROCESS signature.

2. If the matching provider is found, then on its access proxy (that can also be a smart
proxy) the Servicer.service(Exertion, Transaction) method is invoked.

3. When the requestor is authenticated and authorized by the provider to invoke the method
defined by the exertion’s PROCESS signature, then the provider calls its own exert op-
eration: Exerter.exert(Exertion, Transaction).

4. Exerter.exert method calls exert either of ServiceTasker, ServiceJobber, or
ServiceSpacer depending on the type of the exertion (Task or Job) and its control
strategy. Then the provider by reflection calls the method specified in the exertion

IADIS International Journal on Computer Science and Information Systems

 106

PROCES signature (interface and selector). All application domain methods that are used
in exertion signatures have the same signature: a single Context type parameter and a
Context type return vale. Thus a custom (application) interface looks like a common
Java RMI interface with the above simplification on the common signature for all do-
main-specific operations defined in the provider remote interfaces.

In the FMI approach, a requestor can create an Exertion, composed from any hierarchi-
cally nested Exertions, with required service contexts received from providers. The pro-
vider’s object proxy, service namespace, and registration attributes are network-centric; all of
them are part of the provider’s registration so they can be accessed via Cataloger or
lookup services. Thus, any requestor on the network, e.g., service browsers [11] or custom
service UI [31] user agents. In SORCER, using these zero-install service UIs, the user can
define data in downloaded context provided by the provider and create related tasks/job to be
executed on the virtual metacomputer.

Individual service providers either Taskers or rendezvous peers, implement their own
exert(Exertion, Transaction) method according to their service semantics and con-
trol strategy In SORCER taskers, jobbers, and spacers are implemented by ServiceTasker,
ServiceJobber, and ServiceSpacer classes respectively (see Figure 5). A SORCER spe-
cific-domain provider can be a subclass of ServiceTasker, ServiceJobber, or Ser-
viceSpacer. Alternatively, one of these three providers can be set up as an application pro-
vider by dependency injection—using the Jini configuration methodology. Twelve proxying
methods have been developed in SORCER to configure off-the-shelf ServiceTasker, Ser-
viceJobber, or ServiceSpacer. In general, many different types of taskers, jobbers, and
spacers can be used in SORCER at the same time and exertions via their signatures will make
appropriate runtime choices as to what virtual collaboration to run.

Invoking an exertion, let’s say program, is similar to invoking an executable program
program.exe at the command prompt. If we use the Tenex C shell (tcsh), invoking the
program is equivalent to: tcsh program.exe, i.e., passing the executable program.exe to
tcsh. Similarly, to invoke a metaprogram using FMI, in this case the exertion program, we
call program.exert(null), if no transactional semantics is required. Thus, the exertion is
the metaprogram and the network shell at the same time, which might first come as a surprise,
but close evaluation of this fact in the context of FMI shows it to be consistent with the mean-
ing of object-oriented federated programming. Here, the virtual metacomputer is a federation
that does not exist when the exertion is created. Thus, the notion of the virtual metacomputer
is enclosed in the exertion exemplified by FMI. In Figure 6 a cloud represents a service grid
wile the metacomputer is a subset of providers that federate for the job shown below the
cloud.

EXERTION ORIENTED PROGRAMMING

 107

Figure 6. A job federation. The solid line (the first from the left) indicates the originating FMI invoca-
tion: Exertion.exert(Transaction). The top-level job with component exertions is depicted

below the service grid (a cloud). Late bindings of all signatures are indicated by dashed lines that define
the job’s federation (metacomputer).

The observation concluding that the exertion is the metaprogram and the network shell at
the same time brings us back to the distribution transparency issue discussed in Section 2. It
might appear that Exertion objects are network wrappers as they hide network intrinsic
unpredictable behavior. However, Exertions are not distributed objects, as do not implement
any remote interfaces; they are local objects representing network requests only. Servicers
are distributed objects, but Servicers collaborate with other infrastructure providers address-
ing different aspects of networking. The network intrinsic unpredictable behavior is addressed
by the SORCER object-oriented distributed infrastructure: Taskers, Jobbers, Spacers,
Catalogers, FileStorers, Authenticators, Authorizers, KeyStorers, Policers,
etc. (see Figure 2). The FMI based infrastructure facilitates EO programming and concurrent
metaprogram execution using the presented framework and allows for constructing large-scale
reliable object-oriented distributed systems from unreliable distribute components—
Servicers.

5. CONCLUSIONS

A distributed system is not just a collection of distributed objects—it is the network of dy-
namic objects that come and go. From the object-oriented point of view, the network of dy-
namic objects is the problem domain of object-oriented distributed system that requires rele-
vant abstractions in the solution space—FMI. The exertion-based programming introduces the
new abstraction of the solution space with service providers and exertions instead of object-

IADIS International Journal on Computer Science and Information Systems

 108

oriented conventional objects and messages. Exertions not only encapsulate operations, data,
and control strategy, they encapsulate related federations of dynamic service providers as
well.

Service providers can be easily deployed in SORCER by injecting implementation of do-
main-specific interfaces into the FMI framework. The providers register proxies, including
smart proxies, via dependency injection using twelve methods investigated already. Executing
a top-level exertion, by sending it onto the network, means forming a federation of currently
available domain-specific providers at runtime. The federation processes service contexts of
all nested exertions collaboratively as specified by control strategies of the top-level and com-
ponent exertions. The fact that control strategy is exposed directly to the user in a modular
way allows him/her to create new applications on-the-fly. For the new control strategy only,
the new federation becomes the new implementation of the executing exertion—a truly meta-
computing program. When the federation is formed then each exertion operation has its corre-
sponding method (code) on the network available. Services, as specified by exertion signa-
tures, are invoked only indirectly by passing exertions on to providers via service object prox-
ies that in fact are access proxies allowing for service providers to enforce security policies on
access to required services. If the access to use the operation is granted, then the operation
defined by an exertion’s PROCESS signature is invoked by reflection.

The FMI framework allows for the P2P computing via the Servicer interface, extensive
modularization of Exertions and Exerters, and extensibility from the Triple Command
design pattern. The presented EO programming methodology has been successfully deployed
and tested in multiple concurrent engineering and large-scale distributed applications [21, 8, 9,
14, 15, 24].

REFERENCES

1. Berger, M., and Sobolewski, M., SILENUS – A Federated Service-oriented Approach to Distributed
File Systems, In Next Generation Concurrent Engineering, ISPE/Omnipress, pp. 89-96 (2005)

2. Birrell, A. D. & Nelson, B. J., Implementing Remote Procedure Calls, XEROX CSL-83-7, October
1983.

3. Edwards W.K., Core Jini, 2nd ed., Prentice Hall (2000)
4. Fallacies of Distributed Computing. Accessed on: January 15, 2008. Available at:

http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
5. FIPER: Federated Intelligent Product EnviRonmet. Available at:

http://sorcer.cs.ttu.edu/fiper/fiper.html. Accessed on: January 15, 2008.
6. Foster I., Kesselman C., Tuecke S., The Anatomy of the J. Supercomputer Applications, 15(3) (2001)
7. Freeman, E., Hupfer, S., & Arnold, K. JavaSpaces™ Principles, Patterns, and Practice, Addison-

Wesley, ISBN: 0-201-30955-6 (1999)
8. Goel S., Shashishekara, Talya S.S., Sobolewski M., Service-based P2P overlay network for collabo-

rative problem solving, Decision Support Systems, Volume 43, Issue 2, March 2007, pp. 547-568
(2007)

9. Goel, S, Talya S., and Sobolewski, M., Preliminary Design Using Distributed Service-based Comput-
ing, Proceeding of the 12th Conference on Concurrent Engineering: Research and Applications,
ISPE, Inc., pp. 113-120 (2005)

10. Grand M., Patterns in Java, Volume 1, Wiley, ISBN: 0-471-25841-5 (1999)

EXERTION ORIENTED PROGRAMMING

 109

11. Inca X™ Service Browser for Jini Technology. Available at:
http://www.incax.com/index.htm?http://www.incax.com/service-browser.htm.
Accessed on: January 15, 2008.

12. JXTA. Available at: https://jxta.dev.java.net/. Accessed on: January 15, 2008.
13. Ji-

ni architecture specification, Version 2.1. Available at: http://www.sun.com/software/jini/specs/jini1.
2html/jini-title.html. Accessed on: January 15, 2008(2001)

14. Khurana V., Berger M., Sobolewski M., A Federated Grid Env. with Replication Services. In Next
Generation Concurrent Engineering, ISPE/Omnipress (2005)

15. Kolonay, R.M., Sobolewski, M., Tappeta, R., Paradis, M., Burton, S. 2002, Network-Centric MAO
Environment. The Society for Modeling and Simulation International, Westrn Multiconference, San
Antonio, TX (2002)

16. Lapinski, M., Sobolewski, M., Managing Notifications in a Federated S2S Environment, International
Journal of Concurrent Engineering: Research & Applications, Vol. 11, pp. 17-25 (2003)

17. McGovern J., Tyagi S., Stevens M.E., Mathew S., Java Web Services Architecture, Morgan Kauf-
mann (2003)

18. Package net.jini.jeri. Available at: http://java.sun.com/products/jini/2.1/doc/api/net/jini/jeri/package-
summary.html.
Accessed on: January 15, 2008.

19. Pitt E., McNiff K., java.rmi: The Remote Method Invocation Guide, Addison-Wesley Professional
(2001)

20. Project Rio, A Dynamic Service Architecture for Distributed Applications. Available at:
https://rio.dev.java.net/. Accessed on: January 15, 2008.

21. Röhl, P.J., Kolonay, R.M., Irani, R.K., Sobolewski, M., Kao, K. A Federated Intelligent Product
Environment, AIAA-2000-4902, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Long Beach, CA, September 6-8 (2000)

22. Ruh W.A., Herron T., Klinker P., IIOP Complete: Understanding CORBA and Middleware Interop-
erability, Addison-Wesley (1999)

23. Sobolewski M., Federated P2P services in CE Environments, Advances in Concurrent Engineering,
A.A. Balkema Publishers, 2002, pp. 13-22 (2002)

24. Sobolewski M., Kolonay R., Federated Grid Computing with Interactive Service-oriented Program-
ming, International Journal of Concurrent Engineering: Research & Applications, Vol. 14, No 1., pp.
55-66 (2006)

25. Sobolewski, M., Soorianarayanan, S., Malladi-Venkata, R-K. 2003, Service-Oriented File Sharing,
Proceedings of the IASTED Intl., Conference on Communications, Internet, and Information technol-
ogy, pp. 633-639, ACTA Press (2003)

26. Soorianarayanan, S., Sobolewski, M., Monitoring Federated Services in CE, Concurrent Engineering:
The Worldwide Engineering Grid, Tsinghua Press and Springer Verlag, pp. 89-95 (2004)

27. SORCER Research Group. Available at: http://sorcer.cs.ttu.edu/. Accessed on: January 15, 2008.
28. SORCER Research Topics. Available at: http://sorcer.cs.ttu.edu/theses/. Accessed on: January 15,

2008
29. Sotomayor B., Childers L., Globus® Toolkit 4: Programming Java Services, Morgan Kaufmann

(2005)
30. Thain D., Tannenbaum T., Livny M. Condor and the Grid. In Fran Berman, Anthony J.G. Hey, and

Geoffrey Fox, editors, Grid Computing: Making The Global Infrastructure a Reality. John Wiley
(2003)

31. The Service UI Project. Available at: http://www.artima.com/jini/serviceui/index.html. Accessed on:
January 15, 2008.

32. Wal-
do J., The End of Protocols, Available at: http://java.sun.com/developer/technicalArticles/jini/protoco
ls.html. Accessed on: January 15, 2008.

