
IADIS International Journal on Computer Science and Information Systems
Vol. 3, No. 1, pp. 71-85
ISSN: 1646-3692

 71

COMPOSITIONAL ABSTRACTIONS FOR
PROCESS NETWORKS

Maciej Koutny*, Giuseppe Pappalardo** and Marta Pietkiewicz-Koutny*
(*) School of Computing Science, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
{maciej.koutny, marta.koutny}@ncl.ac.uk

(**) Dipartimento di Matematica e Informatica, Università di Catania, I-95125 Catania, Italy
pappalardo@dmi.unict.it

ABSTRACT
A promising way of dealing with complex behaviours of networks of communicating processes is to use
abstractions. In our previous work, interface abstraction, modelled through a suitable relation, allowed us
to `interpret’ the behaviour of an implementation process as that of a specification process, even in the
event that their interfaces differ. The proposed relation is compositional, in the sense that a composition
of communicating sub-systems may be implemented by connecting their respective implementations. In
our previous work, abstraction has been shown to distribute only over network composition, which
restricts its usefulness for compositional correctness analysis. In this paper we extend our treatment to
other process constructs, known to be useful in the development of complex distributed applications.

KEYWORDS

Behaviour abstraction, communicating sequential processes, compositionality, algebra of abstractions.

1. INTRODUCTION

The basic issue we aim at addressing in this work is the notion of implementation, and its
relationship to abstraction, in the framework of communicating sequential processes. In
general, we say that a process Q implements a process P when its behaviour, suitably
interpreted through an appropriate form of abstraction, is a potential behaviour of P, i.e.,
when the interpretation of Q is more deterministic than P. In the following, we refer to Q as
the implementation (process), and to P as the corresponding specification or target or base
(process).

Development or refinement consists in replacing a target P with a (usually) more complex
or detailed process Q representing a proper implementation of P with respect to the intended

IADIS International Journal on Computer Science and Information Systems

 72

abstraction. This may possibly be accomplished in a stepwise fashion. Every refinement step
should undergo verification, to be formally proved correct. A refinement step may be an
instance of a known pattern (as in program transformation [3]), avoiding the need of
verification through a specific, dedicated proof. Moreover, a correctness proof may also be an
instance of application of a general theorem and/or methodology, as in compositional
verification.

Conventionally, in process algebras, such as [12, 14], the notion of implementation differs
from the approach advocated here, in that it does not employ abstraction to interpret the
behaviour of the implementation process Q as that of the target process P. The behaviour of a
correct Q must indeed simply be (part of) that of P. Of course, if we shift our attention from
process behaviour (i.e., meaning, a semantic notion) to expressions of the process algebra at
hand (a syntactic notion), we can still see (a different kind of) abstraction operating. Then,
process expression q may be seen as an implementation of a syntactically different expression
p, built out of different parts and operators, if the behaviour denoted by q, say Q, is part of that
denoted by p, say P. Thus, “abstraction” here means abstraction from syntactic structure, and
is applied to the implementation and the target process expressions, i.e. q and p respectively.
Though fundamental, this abstraction is irrelevant to our notion of implementation, which
deals with “pure” processes, Q and P. In it, a process is its behaviour. At the syntactic level,
conventional refinement of course allows the designer to change the control structure of the
target into the desired implementation. However, as implied by the previous discussion, their
interfaces must coincide.

On the other hand, in refinement, it is often natural to implement abstract, high-level
interaction at an interface at a lower level of detail and in a more concrete manner. For
example, an ideal channel in the target system may in practice need to be replaced by a
data/acknowledgement unreliable channel pair in the implementation. To such issues, our
abstraction-oriented approach does provide a solution, based upon an abstraction
implementation relation, which we deem in principle somehow more flexible than the action-
refinement approach (cf. [4, 9, 13]).

In our previous work (see, e.g., [4, 5, 10]), we proposed abstraction-based implementation
relations satisfying realisability, a property ensuring that an implementation may be put to
good use, and compositionality, which requires the implementation relation to distribute over
system composition. Thus, a specification composed of a number of connected systems may
be implemented by connecting their respective implementations. Compositionality is
important to avoid the state explosion problem when carrying out automated verification.

Previously, we only dealt with compositionality/distributivity over the parallel composition
operator, a key tool in the construction of concurrent and distributed systems. However, for
practical applications, other process combinators are known to be useful. Therefore, in this
paper, we aim at extending proper distributivity results to the relevant operators.

Another limitation of our previous results lies in the assumption of point-to-point
interprocess communication, over typed input and output channels. We here remove this
restriction as well, and move on to deal with arbitrary patterns of communication, e.g.,
broadcast.

The paper is organised as follows. In the next section, we briefly recall some basic notions
used throughout the paper, and discuss an example of behavioural abstraction. The following
section outlines our previous approach and results, and the last section presents the proposed
extension. The interested reader can find in [4, 9] detailed motivations for an abstraction of

COMPOSITIONAL ABSTRACTIONS FOR PROCESS NETWORKS

 73

interprocess communication, illustrative examples, and further comments on related work,
especially [1, 2, 6, 7, 11, 13, 15].

This paper is a revised and extended version of the paper presented at the PITA’07
conference.

2. PRELIMINARIES

We use the CSP process algebra [8, 14]. A CSP process P can be regarded as a black box
which may engage in interaction with its environment. Atomic instances of this interaction are
called actions and must be elements of P’s finite alphabet, αP. P’s traces, or τP, are the finite
sequences of actions that P can engage in. After a given trace t, process P may refuse to
engage in a set of actions R, which is a convenient device to model deadlock-like situations as
well as non-determinism. All such pairs (t, R) form the set of P’s failures, φP. Finally, some of
the traces may lead to un-productive internal loops, forming the set of P’s divergences, δP.
The following notations are similar to that of [8] (below t, u are traces and A a set of actions):

• t = <a1, ..., an> is the trace whose i-th element is action ai.
• The empty trace is denoted by <>, and ◦ is the concatenation operation for traces.
• A* is the set of all traces of actions from A, including the empty trace.
• t≤u means that trace t is a prefix of u, and t<u that t is a proper prefix of u.
• A mapping h from traces to traces is monotonic if t≤u implies h(t)≤h(u), and strict if

h(<>) = <>.
• If t is a prefix of u then u-t is the suffix of u after deleting the initial t.
• The trace t⌠A is obtained by deleting from t all the actions that do not belong to A.

To improve readability, we will sometimes use structured actions of the form b:v, where v
is a message and b is a communication channel. We will then also talk about the set of
channels of a process rather than the set of its actions, and partition the channels of a process P
into the input channels, belongs inP (depicted by incoming arrows), and output channels, outP
(depicted by outgoing arrows).

2.1 Failures and divergences

In the standard failures-divergences model of CSP [8, 14] a process P is a triple (αP, φP, δP)
where αP (the alphabet) is a non-empty finite set of actions, φP (the failures) is a subset of
αP* x P(αP), and δP (the divergences) is a subset of αP*. For a valid process P, its
components should satisfy the conditions given below, where τP denotes the set of traces of P,
defined by τP = {t | (t, R)∈φP}:

• τP is non-empty and prefix-closed.
• If (t, R)∈φP and S⊆R then (t, S)∈φP.
• If (t, R)∈φP and a∈αP and t◦<a> does not belong to τP, then (t, R⋃{a})∈φP.
• If t∈δP then (t◦u, R)∈φP, for all u∈αP* and R⊆αP.

If (t, R)∈φP then P is said to refuse R after performing trace t. Intuitively, this means that
P can deadlock, should the environment offer R as the set of possible actions to be executed
after t.

IADIS International Journal on Computer Science and Information Systems

 74

If t∈δP then P is said to diverge after t. In the CSP philosophy this means the process
behaves in a totally uncontrollable way.

2.2 Standard CSP process operators

Parallel composition P∥Q models synchronous communication between processes in such a
way that each of them is free to engage independently in any action that is not in the other’s
alphabet, but they have to engage simultaneously in any action that is in the intersection of
their alphabets. Formally,

• α(P∥Q) = αP⋃αQ.
• δ(P∥Q) comprises all traces t◦u such that (t⌠αP, t⌠αQ)∈(τP x δQ) ⋃ (δP x τQ), and

u∈(αP⋃αQ)*.
• φ(P∥Q) comprises all failures (t, R⋃S) such that (t⌠αP, R)∈φP and (t⌠αQ, S)∈φQ,

as well as all the elements of δ(P∥Q) x P(α(P∥Q)). (Note that P(X) denotes the
powerset of a set X.)

Parallel composition is commutative and associative.
Let P be a process and A be a set of actions of P. Then P\A is a process that behaves like P

with the actions in A made invisible. Hiding is here the only operator which may introduce
divergence. This happens whenever P can execute an infinite sequence of hidden actions.
Formally,

• α(P\A) = αP-A.
• δ(P\A) comprises all traces t⌠α(P\A)◦u such that u∈α(P\A)*, and t∈δP or there exist

a1, a2, ... in A such that for all n, t◦<a1, ..., an>∈τP.
• φ(P\A) comprises all failures (t⌠α(P\A), R) such that (t, R⋃A)∈φP, as well as all the

elements of δ(P\A) x P (α(P\A)).
Hiding is associative in that (P\A)\A’ = P\(A⋃A’).

In the next two operations on processes it is assumed that P and Q have the same
alphabets. The deterministic choice and non-deterministic choice offer an alternative between
the behaviours of P and Q. In the latter case, no external process has control about which of
these options is actually followed (this property is useful, e.g., to model execution errors).
Then the external choice (P □ Q) and internal choice (P⊓Q) are processes with the same
alphabet as P and Q, the divergences being the union of those of P and Q, and the failures
given respectively by:

• φ(P□Q) comprises all failures (<>, R)∈φP∩φQ, and all failures (t, R) ∈φP⋃φQ such
that t is non-empty.

• φ(P⊓Q) is the union of φP and φQ.
The last operator we introduce is prefixing. Assuming that a is an action in the alphabet of

P, a → P is the process with the same alphabet as P and
• δ(a → P) = {<a>◦ t | t∈δP}.
• φ(a → P) comprises all failures (<a>◦t, R) such that (t, R)∈φP, as well as all the

elements of {<>} x P(αP-{a}).

COMPOSITIONAL ABSTRACTIONS FOR PROCESS NETWORKS

 75

There are also atomic CSP processes like stopA which denotes a terminated process with
the alphabet A. One can also use recursive process definitions, e.g., P = (a → P) □ (b → stop)
defines a process which can execute action a any number of times, and then perhaps execute b
and terminate (often stop’s subscript alphabet is implicit).

2.3 Behaviour abstraction

Consider two base (or specification) processes, Gen and Buf, as shown in Figure 1. Gen
generates an infinite sequence 010101... of messages, or an infinite sequence 101010... of
messages on its output channel d, responding to the initial message (0 or 1) received on its
input channel, c, at the beginning of its execution. Formally, the process executes actions in its
alphabet αGen = {c:0, c:1, d:0, d:1}. Buf is a buffer processes of capacity one, forwarding
messages received on its input channel, d. In terms of CSP, we have:

• Gen = (c:0 → Gen0) □ (c:1 → Gen1)
• Geni = d:i → d:(1-i) → Geni
• Buf = (d:0 → e:0 → Buf) □ (d:1 → e:1 → Buf)

Figure 1. Two base processes (top); and their implementations (bottom)

Suppose that communication between the two processes at the shared channel d has been
implemented using three channels, d1, d2 and d3, as shown in Figure 1.

The original transmissions on d become triplicate and the different copies are sent on the
channels di (i = 1, 2, 3). That is, Gen’ sends three copies of a message, while Buf’ forwards the
first copy of the message received, ignoring the other two. This simple replication scheme
clearly works, as it can be shown that:

• (Gen∥Buf)\{d:0, d:1} = (Gen’∥Buf’)\D

where D = ⋃i=1,2,3{di:0, di:1}. Suppose now that the transmission of messages is imperfect and
two types of faulty behaviour can occur:

• Buf’’ = Buf’⊓stop and Buf’’’ = Buf’⊓Buf’23
where Buf’23 is Buf’ with all the communication on channel d1 being blocked. In other words,
Buf’’ can break down completely, as stop, refusing to input any message; while Buf’’’ can
only fail in such a way that although channel d1 is dead, the other two can still be used to

d3
d2

d Gen c e Buf d

d1 Gen’ c d2
d1

d3
e Buf’

IADIS International Journal on Computer Science and Information Systems

 76

accept messages. (One could think about this scenario as modelling the situation where, in
order to improve performance, a “slow” channel d is replaced by three channels: a high-speed
yet unreliable channel d1, and two slow but reliable backup channels d2 and d3.). Since it can
be shown that:

• (Gen∥Buf)\{d:0, d:1} is different from (Gen’∥Buf’’)\D
• (Gen∥Buf)\{d:0, d:1} is the same as (Gen’∥Buf’’’)\D,

it follows that Buf’’’ is much “better” an implementation of the Buf process than Buf’’.
We now observe that the communication between the processes Gen’ and Buf’’’ can be

thought of as adhering to the following two rules:
• [R1] The transmission sequences over d1, d2 and d3 are consistent w.r.t. message

content and can thus be directly related to transmissions over d. (This follows from
the way Gen’ produces its output.) The set of all traces over D satisfying such a
property will be denoted by dom.

• [R2] Transmission over d2 and d3 is reliable, but there is no such guarantee for d1.
On the other hand, communication between the processes Gen’ and Buf’’ satisfies the first
rule, but fails to satisfy the second one. To express this difference formally, we need to render
R1 and R2 in some sort of precise notation.

To capture the relationship between traces of the implementations Buf’, Buf’’ or Buf’’’ and
the relevant target process Buf on the corresponding channels, one may employ an (extraction)
mapping extr which, given a trace in dom, over D={d1:0, d1:1, d2:0, d2:1, d3:0, d3:1}, returns its
interpretation as a trace over {d:0, d:1}. For example, interpreting so as to abstract from
replication yields

• <> → <>
• <d1:0> → <d:0>
• <d3:0> → <d:0>
• <d2:1, d3:1} → <d:1>
• <d3:1, d1:1, d1:0> → <d:1, d:0>

Although it will play a central role, the extraction mapping alone is not sufficient to
identify the “correct” implementation of Buf in the presence of faults. What one also needs is
an ability to relate the refusals of Buf’’ and Buf’’’ with the possible refusals of the base
process Buf, so as to discriminate them on this basis. This, however, is much harder than
relating traces. As outlined in the next section, in our past research we abandoned the ambition
of interpreting refusals performed by implementations, and simply introduced a device
(extraction pattern) intended to constrain good implementations not to deadlock when they
shouldn’t, i.e., essentially, when their interaction is not “complete” yet. In the case of
replication and majority voting, an inconsistent trace would be deemed incomplete. E.g.,
assume (for a different example from the previous one) that at most one of the replicated
output channels d1, d2, d3 is faulty; then trace <d3:1, d1:0> is incomplete, in that it fails to tell
whether 0 or 1 is intended as an output, whereas <d3:1, d1:0, d2:1> reveals that output 1 is the
desired one (under the said fault assumption) and that replica d1 was the one to behave
erroneously.

COMPOSITIONAL ABSTRACTIONS FOR PROCESS NETWORKS

 77

3. PREVIOUS RESULTS

In our previous work (see, e.g., [4, 5, 9, 10]), we regard processes P1, ..., Pn as forming a
network if no channel is shared by more than two processes. (Note that such a process network
assumes a one-to-one interprocess communication.) We then define P1⊗…⊗Pn to be the
process obtained by taking the parallel composition of P1, ..., Pn and then hiding all
interprocess communication, i.e., the process (P1∥...∥Pn)\B, where B is the set of actions
shared by any two different processes in the network. Network composition is commutative
and associative.

In a recent work [10], we place restriction on the kind of allowed base processes, called
input-output (IO) processes, by assuming them to be non-diverging and with value
independent input channels. Intuitively, in an IO process, the data component of a message
arriving on an input channel c is irrelevant as far as accepting it is concerned; thus, if one such
message can be refused, then so can any other message. In practice, standard programming
constructs like c?x for receiving messages give rise to value independent input channels. The
requirement that an IO process P should be non-diverging is standard in a CSP based
framework, as divergences basically signify totally unacceptable behaviour. The class of base
IO processes is compositional, i.e., a network of IO processes is an IO process provided that
no divergence arises from its construction.

The notion of extraction pattern ep (used in [4, 5, 9, 10]) relates behaviour on a set of
“source” channels, B, in an implementation process, to that on a “base” channel, b, in the
target process. It has two main functions: that of interpretation of behaviour, necessitated by
interface difference, and the encoding of some correctness requirements. The key part of ep is
an extraction mapping, extr, which interprets a trace over the source channels B in terms of a
trace over base channel b, thought of as belonging to the target process (see the previous
section for more explanations). Moreover, mapping extr, by way of its domain dom, identifies
behaviour over source channels that is correct functionally (i.e., in terms of traces). Indeed,
“incorrect” traces over B need not (or cannot sensibly) be interpreted, thus making the domain
of extr potentially smaller. Another mapping, ref, is used to define correct behaviour in terms
of failures, as it gives bounds on refusals after execution of a particular trace sequence over
the source channels. The extraction mapping extr should be monotonic, as receiving more
information cannot decrease the current knowledge about the transmission. Both notions can
be lifted to a finite set of extraction patterns, operating on disjoint sets of channels.

Figure 2. Base process P and its implementation Q

Suppose that we intend to implement a base IO process P in Figure 2 using another process
Q with a possibly different communication interface, as in Figure 2 where thick arrows
represent sets of channels. The correctness of the implementation will be expressed in terms of

Q
B1

Bm

Bm+1

Bm+n

P
b1

bm

bm+1

bm+n

IADIS International Journal on Computer Science and Information Systems

 78

two sets of extraction patterns, In = {ep1, ..., epm} and Out = {epm+1, ..., epm+n}, where each epi
is an extraction pattern from Bi to bi. The former set (with sources inQ and targets inP) will be
used to relate the communication on the input channels of P and Q, the latter will serve a
similar purpose for the output channels.

Under the above assumptions, Q is an implementation of P w.r.t. sets of extraction patterns
In and Out, denoted Q ⊴In:Out P, if the following hold:

• all correct traces of Q can be interpreted as traces of P;
• it is not possible to execute Q indefinitely without extracting any actions of P; and
• a refusal by Q on a source channel set Bi, exceeding the bound set by refi, must

correspond to a refusal by P to interact at all on the target channel bi.
A direct comparison of an implementation process Q with the base process P is only

possible if there is no difference in the respective communication interfaces. This corresponds
to the situation that both In and Out are sets of identity extraction patterns with Bi = bi and extri
an identity mapping (ref may be left undefined). In such a case, we simply denote Q ⊴ P.

If Q ⊴ P then, in particular, all the refusals on input channels are preserved entirely, while
for output channels any refusal by Q to output anything on a given channel is also present in
P. The latter should indeed be considered as a very satisfactory state of affairs: Q will never
fail to provide an output consistent with the specification, unless the specification process
itself explicitly allows no output at all to be produced.

 One can therefore consider that Q ⊴ P embodies a fully adequate notion of realisability.
To further justify this, it is interesting to compare it with the standard refinement ordering of
CSP, denoted by ⊐, such that Q ⊐ P (i.e., Q “CSP implements or refines” P) basically
amounts to stating that φQ⊆φP.

To start with, it is not difficult to check that Q ⊐ P implies Q ⊴ P. Moreover, ⊴ collapses
to ⊐ for the rather wide class of output-determined IO base processes (for such a process, the
result produced on a given output channel is deterministic at any given point of its execution).
Another significant comparison can be made in terms of what can be established by
considering the way P and Q interact with a possible environment, as shown in Figure 3.

Figure 3. Relating base and implementation processes in the context of an environment

Here P is any base IO process, Q ⊴ P its implementation w.r.t. suitable identity extraction
patterns, and T an IO process representing the environment. It can then be shown that we have
Q⊗T ⊐ P⊗T. Thus Q⊗T is at least as deterministic a process as P⊗T in the sense of CSP (see
[8, 14]). This makes Q at least as good as P (and possibly much better) as a process to be used
in practice.

P T Q T

COMPOSITIONAL ABSTRACTIONS FOR PROCESS NETWORKS

 79

We finally recall a fundamental result, that the implementation relation is compositional.
Let K and L be two base IO processes whose composition is non-diverging, as in Figure 4, and
let Epc, Epd, Epe, Epf, Epg and Eph be sets of extraction patterns whose targets are
respectively the channel sets C, D, E, F, G and H. Then:

M ⊴Epc⋃Eph : Epd⋃Epe K and N ⊴Epd⋃Epf : Epg⋃Eph L imply M⊗N ⊴Epc⋃Epf:Epe⋃Epg K⊗L.
Hence the implementation relation is preserved through, or distributes over, network
composition, and the only restriction on combining base processes is that their network should
be designed in a divergence-free way.

Figure 4. Base processes used in the formulation of the compositionality result

4. EXTENDED MODEL OF PROCESS ABSTRACTION

In the proposed extension of the previous approach, we make a simplifying assumption that all
processes are divergence-free. This is aimed mainly at easing the presentation, without
effectively restricting the applicability of the resulting technique. As a consequence, a CSP
process P can be identified with the pair (αP, φP) (ignoring the δP attribute). Furthermore,
since hiding can introduce divergence, we assume in this section that it is a partial operation
defined only if divergence is not generated. In fact, hiding leading to a divergence indicates a
serious mistake in the construction of a process; this should be detected and eliminated before
the proposed abstraction approach is applied, in full agreement with the standard CSP
philosophy. It should be stressed that in this section we:

• do not make any assumptions about the channels a process can use, just work with
the generic alphabets; and

• no longer assume any special properties of the base processes.
To begin with, we introduce a general definition of an abstraction mapping, which

generalises the role played by the extraction patterns.
Definition 1. Let Src (sources) and Trg (targets) be finite non-empty sets of actions. An
abstraction from Src to Trg is a pair of mappings abs = (extr, ref), where:

• extr : dom → Trg*, where dom⊆Src*, is a mapping from traces over Src to the traces
over Trg. It is assumed that the domain dom is non-empty and prefix-closed, and that
extr is monotonic, strict and effective. The latter means that, for every infinite
sequence t1 < t2 < ... of traces in domain dom, the sequence extr(t1) ≤ extr(t2) ≤ ... is
unbounded.

• ref : dom x P(Src) → P(Trg) is a total mapping which is subset-monotonic and
terminable. The former means that R⊆R’ implies ref(t, R)⊆ref(t, R’), and the latter
that ref(t, Src) = Trg.

H

D

K L
G

F

C

E

IADIS International Journal on Computer Science and Information Systems

 80

Moreover, we denote abs(t, R) = (extr(t), ref(t, R)), for all t∈dom and R⊆Src, and call extr and
ref an extraction and refusal mappings, respectively. Note that ref denotes here a completely
different mapping from that used in the definition of an extraction pattern in the previous
section; indeed, it overcomes our previous difficulties to interpret refusals.

The intuition behind the above definition is that if (t, R) is a trace/refusal pair for a set of
actions Src in an implementation process, then these should be interpreted as the trace/refusal
pair abs(t, R) for a set of actions Trg in a base process. Since extr is effective, it is impossible
for an implementation to execute an infinite trace which is “invisible” as far as the base
process is concerned. In some sense this can be viewed as generalising a divergence freedom
requirement on the application of abstraction. Moreover, as ref is terminable, any termination
in an implementation process must correspond to termination in the specification process.

5. AN ALGEBRA OF ABSTRACTIONS

To develop a satisfactory treatment of (interface) abstraction for constructors other than
network composition, we now look at the problem of composing abstractions so as to match
the way CSP processes are constructed. Note that in [10] we already demonstrated that in
some cases it is possible to combine interface abstractions expressed through extraction
patterns; here, however, we aim at a general treatment.

In what follows, given dom⊆Src* and dom’⊆Src’*, we define dom∥dom’ to be the set of
all traces over (Src⋃Src’)* which, when projected on Src, give a trace in dom, and likewise
for Src’.

We first characterise pairs of abstractions which can be composed. Below, we assume that
abs = (extr, ref) and abs’ = (extr’, ref’) are two abstractions, respectively from Src to Trg, and
from Src’ to Trg’, and with domains dom and dom’.
Definition 2. Two abstractions, abs and abs’, are:

• disjoint if Src∩Src’ = Trg∩Trg’ = ∅.
• overlapping if Src = Src’ and Trg = Trg’.
• extr-compatible if extr(t) = extr’(t), for all t∈dom∩dom’.
• ref-compatible if ref(t, R) = ref’(t, R), for all t∈dom∩dom’ and R⊆Src∩Src’.

For a pair of disjoint abstractions, abs and abs’, we now construct an abstraction from
Src⋃Src’ to Trg⋃Trg’ with the domain dom∥dom’, denoted by abs⊕abs’. The extraction
mapping is defined by induction on the length of traces, by stipulating that it be strict and, for
all traces t◦<a> in the domain of abs⊕abs’, extrabs⊕abs’(t◦<a>) is equal to:

• extrabs⊕abs’(t)◦(extr(t⌠Src◦<a>)-extr(t⌠Src)) if a∈Src; and
• extrabs⊕abs’(t)◦(extr’(t⌠Src’◦<a>)-extr’(t⌠Src’)) otherwise.

The definition of the refusal mapping is more straightforward, as for all t∈domabs⊕abs’ and
R⊆Src⋃Src’, we have:

• refabs⊕abs’(t, R) = ref(t⌠Src, R∩Src)⋃ref’(t⌠Src’, R∩Src’).

COMPOSITIONAL ABSTRACTIONS FOR PROCESS NETWORKS

 81

Intuitively, abs⊕abs’ captures the situation when the two abstractions operate on disjoint parts
of the interface of a system, and the interpretations of behaviours executed at these interfaces
are independent of each other (though the behaviours may be related in the semantic or
operational sense).
Proposition 1. abs⊕abs’ is an abstraction in the sense of Definition 1.
Proof. The mapping extr’’ = extrabs⊕abs’ is strict by definition. To show that it is monotonic and
effective we proceed as follows.

• extr’’ is monotonic as extrabs⊕abs’(t◦<a>) has the from extrabs⊕abs’(t) ◦u.
• To see that extr’’ is effective we first observe that, for all t∈dom∥dom’, we have

extr’’(t)⌠Trg = extr(t⌠Src) and extr’’(t)⌠Trg’ = extr(t⌠Src’). Thus, since both extr
and extr’ are effective, an unboundedly growing sequence of traces in the domain of
extr’’ will result in an extracted unbounded sequence of traces.

To show that ref’’ = refabs⊕abs’ is subset-monotonic and terminable we proceed as follows.
• Let t∈dom∥dom’ and R⊆R’⊆Src⋃Src’. We then have:

ref’’(t, R) = ref(t⌠Src, R∩Src)⋃ref’(t⌠Src’, R∩Src’) ⊆
ref(t⌠Src, R’∩Src)⋃ref’(t⌠Src’, R’∩Src’) = ref’’(t, R’),

where the inclusion holds since both ref and ref’ are subset-monotonic.
• ref’’(t, Src⋃Src’) = ref(t⌠Src, Src)⋃ref’(t⌠Src’, Src’) = Trg⋃Trg’, where the second

equality holds since ref and ref’ are both terminable.
This completes the proof. □

For a pair of overlapping extr-compatible and ref-compatible abstractions, abs and abs’,
we construct an abstraction from Src = Src’ to Trg = Trg’ with the domain dom⋃dom’,
denoted by abs⊓abs’. It is assumed that, for all traces t in the domain of abs⊓abs’ and
R⊆Src, we have:

• abs⊓abs’(t, R) = abs(t, R) if t∈dom; and
• abs⊓abs’(t, R) = abs’(t, R) otherwise.

Intuitively, abs⊓abs’ captures the situation when the two abstractions characterise the
behaviour of two alternative versions of a subsystem.
Proposition 2. abs⊓abs’ is an abstraction in the sense of Definition 2.
Proof. The mapping extr’’ = extrabs⊓abs’ is strict by definition. To show that it is monotonic and
effective we proceed as follows.

• To see that extr’’ is monotonic we observe that if t≤u and u∈dom⋃dom’, then we
have t,u∈dom or t,u∈dom’. We can therefore apply the monotonicity of extr or extr’.

• To see that extr’’ is effective we first observe that if t1 < t2 < ... are traces in the
domain dom⋃dom’, then they are all in dom or in dom’ (or in dom∩dom’). We can
therefore apply the effectiveness of extr or extr’.

That ref’’ = ref abs⊓abs’ is subset-monotonic and terminable follows from its definition and the
fact that both ref and ref’ are subset-monotonic and terminable. □

IADIS International Journal on Computer Science and Information Systems

 82

From a pair of overlapping extr-compatible abstractions, abs and abs’, we construct an
abstraction from Src = Src’ to Trg = Trg’ with the domain dom∩dom’, denoted by abs∥abs’. It
is assumed that, for all traces t in the domain of abs⊓abs’ and R⊆Src,

• abs∥abs’(t, R) = (extr(t), ref(t, R)⋃ref’(t, R)).
Intuitively, abs∥abs’ captures the situation when the two abstractions characterise the
behaviour of two parallel subsystems at a shared interface.
Proposition 3. abs∥abs’ is an abstraction in the sense of Definition 1.
Proof. The mapping extr’’ = extrabs∥abs’ is strict, monotonic and effective since extr is. To show
that ref’’ = refabs∥abs’ is subset-monotonic and terminable we proceed as follows.

• Let t∈dom∩dom’ and R⊆R’. We then have: ref’’(t, R) = ref(t, R)⋃ref’(t, R) ⊆ ref(t,
R’)⋃ref’(t, R’) = ref’’(t, R’), where the inclusion holds since both ref and ref’ are
subset-monotonic.

• ref’’(t, Src) = ref(t, Src)⋃ref’(t, Src) = Trg, where the equality holds since both ref
and ref’ are terminable.

This completes the proof. □
As in the case of extraction patterns and the realisability results recalled in the previous

section, we also need some kind of abstraction allowing a direct comparison of interactions.
The identity abstraction for a set of actions A is an abstraction idabsA from Src = A to Trg = A
with the domain A*, and such that idabsA(t, R) = (t, R), for all t∈A* and R⊆A.
Proposition 4. If A∩A’ = ∅ then idabsA⋃A’ = idabsA⊕idabsA’.
Proof. We have the following, for all t∈(A⋃A’)* and R⊆A⋃A’:

idabsA⊕idabsA’(t, R) = (t, refidabsA (t⌠A, R∩A) ⋃ refidabsA’ (t⌠A’, R∩A’)) =
(t, R∩A ⋃ R∩A’) = (t, R) = idabsA⋃A’ (t, R).

This completes the proof. □

5.1 Implementation relation

We now introduce the central notion of this paper which, despite its simplicity, is all we need
in order to capture what it means for one process to correctly implement another, base, process
with a possibly different communication interface.

Suppose that we intend to implement a base process P using another implementation
process Q with possibly different alphabet. The correctness of the implementation will be
expressed in terms of an abstraction from the alphabet of Q to that of P.
Definition 3. Let P and Q be processes and abs be an abstraction from αQ to αP. Then Q is an
implementation of P w.r.t. abs if τQ⊆dom and abs(φQ)⊆φP. We denote this by Q ⊴abs P.

(Note that we have τQ = {t | (t, R)∈φQ} and so τQ⊆dom ensures that all failures of Q can
be interpreted by the abstraction abs.)

Hence it is possible to interpret the whole behaviour of an implementation process as (part
of) the behaviour of a base process. This is, clearly, very close to the idea of one process being
a refinement of another in the standard treatment of CSP processes.

COMPOSITIONAL ABSTRACTIONS FOR PROCESS NETWORKS

 83

A direct comparison of an implementation process Q with the corresponding base process
P is only possible if they have the same alphabet A. Then, if Q ⊴abs P, where abs = idabsA, we
simply denote Q ⊴ P and obtain the strongest possible realisability result.
Theorem 1. Q ⊴ P if and only if Q ⊐ P.
Proof. Follows immediately from the definitions. □

5.2 Compositionality results

We now establish compositionality properties linking the proposed algebra of abstractions
with the algebra of CSP processes.

We start by assuming that there are two base processes, P and P’, working in parallel, and
two implementation processes, Q and Q’, also working in parallel. In addition to that there are
four abstractions:

• abs from A = αQ-αQ’ to B = αP-αP’;
• abs’ from C = αQ’-αQ to D = αP’-αP; and
• abs’’ and abs’’’, both from E = αQ∩αQ’ to F = αP∩αP’, which are extr-compatible.

Theorem 2. Assuming the above, if Q ⊴abs⊕abs’’ P and Q’ ⊴abs’⊕abs’’’ P’, then:
Q∥Q’ ⊴abs⊕abs’⊕(abs’’∥abs’’’) P∥P’.

Proof. Let abso = abs⊕abs’⊕(abs’’∥abs’’’). From Q ⊴ abs⊕abs’’ P and Q’ ⊴ abs’⊕abs’’’ P’ it
follows that:

τQ⊆dom∥dom’’, abs⊕abs’’(φQ)⊆φP, τQ’⊆dom’∥dom’’’, abs’⊕abs’’’(φQ’)⊆φP’.
Hence we have:

τ(Q∥Q’) ⊆ τQ∥τQ’ ⊆ (dom∥dom’’)∥(dom’∥dom’’’) =
dom∥dom’∥(dom’’∩dom’’’) = domabso.

Suppose now that (t, R)∈φ(Q∥Q’). Then we have:
abso(t, R) = (extrabso(t), ref(t⌠A, R∩A)⋃ref’(t⌠C, R∩C)⋃refabs’’∥abs’’’(t⌠E, R∩E)) =
(extrabso(t), ref(t⌠A, R∩A)⋃ref’(t⌠C, R∩C)⋃ref’’(t⌠E, R∩E)⋃ref’’’(t⌠E, R∩E)) =
(extrabso(t), refabs⊕abs’’(t⌠A⋃E, R∩(A⋃E))⋃refabs’⊕abs’’’(t⌠C⋃E, R∩(C⋃E))).

We now observe that (t⌠A⋃E, R∩(A⋃E))∈φQ and so:
(extrabso(t)⌠B⋃F, refabs⊕abs’’(t⌠A⋃E, R∩(A⋃E))) =
(extrabs⊕abs’’(t⌠A⋃E), refabs⊕abs’’(t⌠A⋃E, R∩(A⋃E))) ∈ φP

And, similarly,
(extrabso(t)⌠D⋃F, refabs’⊕abs’’’(t⌠C⋃E, R∩(C⋃E))) ∈ φP’.

Hence abso(t, R)∈φ(P∥P’). □
The next compositionality result concerns non-deterministic choice.

Theorem 3. Let Q ⊴abs P and Q’ ⊴abs’ P’ where abs and abs’ are extr-compatible and ref-
compatible overlapping abstractions. Then

Q⊓Q’ ⊴abs⊓abs’ P⊓P’.

IADIS International Journal on Computer Science and Information Systems

 84

Proof. From Q ⊴abs P and Q’ ⊴abs’ P’ we have: τQ⊆dom, abs(φQ)⊆φP, τQ’⊆dom’ and
abs(φQ’)⊆φP’. Hence τ(Q⊓Q’) = τQ⋃τQ’ ⊆ dom⋃dom’ = domabs⊓abs’. Suppose now that
(t,R)∈φ(Q⊓Q’). Without loss of generality, we may assume that t∈τQ. Hence

absabs⊓abs’(t, R) = abs(t, R) ∈ φP ⊆ φ(P⊓P’)
where the abs(t, R)∈φP follows from Q ⊴absP. Hence the result holds. □

The last compositionality result deals with hiding.
Theorem 4. Let Q ⊴abs⊕abs’ P, and P\Trg be a well-defined process. Then Q\Src is also
defined and

Q\Src ⊴abs’ P\Trg.
Proof. The fact that abs is effective ensures that hiding the actions Src in Q does not create
divergence in view that hiding the actions Trg does not create divergence in P. Thus Q\Src is
defined. From Q ⊴abs⊕abs’ P we have τQ⊆dom∥dom’ and abs⊕abs’(φQ)⊆φP. Hence since
Q\Src does not create divergence, τ(Q\Src)⊆dom’. Suppose now that (t, R)∈φ(Q\Src). Then,
since Q\Src does not create divergence, there is (u, R⋃Src)∈φQ such that t = u⌠Src’.
Moreover, abs⊕abs’(u, R⋃Src)∈φP. We then observe that the following hold:
 abs⊕abs’(u, R⋃Src) = (extrabs⊕abs’(u), ref(u⌠Src, Src) ⋃ ref’(u⌠Src’, R)) =
 (extrabs⊕abs’(u), Trg ⋃ ref’(t, R)).
Hence (extrabs⊕abs’(u)⌠Trg’, ref’(t, R))∈φ(P\Trg). But extrabs⊕abs’(u)⌠Trg’ = extr’(t), which
implies that abs’(t, R)∈φ(P\Trg). □

We have thus demonstrated how one can deal with abstractions in the context of parallel
composition, hiding and non-deterministic choice. Other standard operators of CSP, such as
prefixing, can be treated in a similar way.

6. CONCLUSIONS

We have outlined a general compositional approach which allows one to deal with
abstractions in networks of communicating processes. There are several issues which are of an
immediate interest for further work, such as applying the proposed approach to significant
case studies and providing the treatment for other CSP operators. However, we feel that the
crucial one is a provision of algorithms and tools for checking whether an implementation
relation between two processes indeed holds. Such a problem can be attempted using
techniques similar to those introduced in [4] for the setup based on extraction patterns.

This research was supported by the EC IST grant 511599 and the NSFC project 60433010.

COMPOSITIONAL ABSTRACTIONS FOR PROCESS NETWORKS

 85

REFERENCES

[1] Abadi, M. and Lamport, L., 1991. The Existence of Refinement Mappings. In Theoretical Computer
Science, Vol. 82, pp 253-284.

[2] Brinksma, E. et al., 1991. Refining Interfaces of Communicating Systems. Proceedings of Coll. on
Combining Paradigms for Software Development. LNCS, Vol. 494, Springer, pp 297-312.

[3] Burstall, R.M. and Darlington, J., 1977. A Transformation System for Developing Recursive
Programs. In Journal of the ACM, Vol. 24, pp 44-67.

[4] Burton, J. et al., 2004. Relating Communicating Processes with Different Interfaces. In Fundamenta
Informaticae, Vol. 59, pp 1-37.

[5] Burton, J. et al., 2002. Compositional Development In the Event of Interface Difference. In
Concurrency in Dependable Computing, Kluwer Academic Publishers, pp 1-20.

[6] Jonsson, B., 1994. Compositional Specification and Verification of Distributed Systems. In ACM
TOPLAS, Vol. 16, pp 259-303.

[7] Gerth, R. et al., 1992. Interface Refinement in Reactive Systems. Proceedings of CONCUR’92.
LNCS, Vol. 630, Springer, pp 77-93.

[8] Hoare, C.A.R., 1985. Communicating Sequential Processes. Prentice Hall.
[9] Koutny, M and Pappalardo, G., 2001. Behaviour Abstraction for Communicating Sequential

Processes. In Fundamenta Informaticae, Vol. 48, pp 21-54.
[10] Koutny, M. et al., 2006. Towards an Algebra of Abstractions for Communicating Processes.

Proceedings of ACSD’06, IEEE Computer Society, pp 239-250.
[11] Lamport, L., 1978. The Implementation of Reliable Distributed Multiprocess Systems. In Computer

Networks, Vol. 2, pp 95-114.
[12] Milner, R., 1989. Communication and Concurrency. Prentice Hall.
[13] Rensink, A. and Gorrieri, R., 2001. Vertical Implementation. In Information and Computation, Vol.

170, pp 95-133.
[14] Roscoe, A.W., 1998. The Theory and Practice of Concurrency. Prentice-Hall.
[15] Schepers, H. and Hooman, J., 1993. Trace-based Compositional Reasoning About Fault-tolerant

Systems. Proceedings of PARLE’93. LNCS, Vol. 694, Springer, pp 197-208.

