
IADIS International Journal on Computer Science and Information Systems
Vol. 3, No. 1, pp. 59-70
ISSN: 1646-3692

 59

PERFORMANCE IMPROVEMENTS OF MR-TREE
OPERATIONS ON NAND FLASH MEMORY

Hyun Seung Lee, Ha Yoon Song, and Kyung-Chang Kim Department of Computer
Engineering, Hongik University, Republic of Korea

ABSTRACT
Flash memory can be a viable solution for the future embedded systems. Embedded systems usually
carry database as a part of embedded software. It is well known that Flash memory is far faster than
usual hard disk storages especially for read however it takes much time for Flash memory to delete than
to read or to write. For a database system, index trees on Flash memory have been widely studied for the
better performance. From our previous researches on indexing tree performance on Flash memory, we
suggest a delaying technique for index tree operations on Flash memory. Among B-tree, R-Tree and
MR-tree, we choose MR-tree as it is multimedia database index. Considering both of the flash memory
operation characteristics and MR-tree operation characteristics, we adjust MR-tree parameters for a just
fit for Flash memory and applied aggregated-delayed MR-tree operations on Flash memory. We believe
we find a reasonable parameter and efficient operation delaying technique for MR-tree on flash memory.
The benefit of our researches has been proven by the experimental results based on several database
access profiles.

KEYWORDS

Flash Memory, Index Tree, MR-Tree, Tree Block Size, Delayed Operation

1. INTRODUCTION

Nowadays ubiquitous computing environment with mobile devices, consumer electronics and
so on widely adopts Flash memory system with rapid development of memory technologies.
Mobile phones, PDA, smart card, digital cameras are rapidly consumed by peoples and almost
of them are using Flash memory with nice characteristics such as low power, non-volatility,
high performance, physical stability, portability, etc. Flash memory, as well as solid state

⎯“This work was supported by 2007 Hongik University Research Fund"

IADIS International Journal on Computer Science and Information Systems

 60

drives (SSD), has been discussed as a future replacement of hard disk storages. And the
memory characteristics of Flash memory are still under road to be developed. Usual Flash
Memory (FM) consisted in several blocks with 32 sectors, one sector of 512 byte data area and
16 byte spare area. Different from Hard Disk Drives (HDD), FM has read access time
comparable to Dynamic RAM (DRAM) however it has very slow write access and has no
ability of overwrite. Overwriting can be done by writing after block delete. In order to solve
these problems, there are FTL (Flash Translation Layer) between file systems and FM. Delete
operations can be translated into mappings from logical sector address to physical memory
address which has been already deleted. Such sort of FTL operations can help the use of FM
with usual file system. However, most of FTL are also under further development with huge
number of options.

In case of constructing database system with FM, index structures will be stored on FM
while actual records will be stored on HDD. With rapid increase of FM capacity, actual
records will be also ported on FM in the near future. The use of FM as index storage will
naturally increase DB access performance, but it totally depends on the type of index trees and
the DB access profile as well. We can discuss three types of index trees. B-tree is a data
structure with efficient DB indexing. R-tree is for spatial data access index with multimedia
DB. Also, we can consider MR-tree as an upgraded version of R-tree. These index trees must
be updated with Insert, Delete, or internally updated by Split operations. Once we implement
HDD based B-tree on FM, a direct porting may cause performance degradation. Most of past
researches concentrated on delete operations and improved with buffering such as BFTL [11]
or BOF [7].
But both of improvements lead in overhead of read operation and management overhead of
buffers with data.

In addition, the limitation of the number of write operations on FM will require index
update to be evenly distributed over blocks in order to fully utilize FM life cycle. Under these
situations, we will find the MR-tree parameters for FM and will consider aggregation of the
effect of MR-tree operations for FM characteristics. We believe this approach will inform
researchers a key to improve their database systems on FM.

Following sections are consisted as follows. In section 2 we will discuss FM, index trees
and related works in detail. The next section contains our key ideas regarding MR-tree
operations on FM in terms of performance. Then we will show several experimental results in
section 4. In the final section, we will conclude our work and discuss about the future
possibilities of MR-tree implementation on FM.

2. RELATED RESEARCH

2.1 Flash memory characteristics

We focus on the NAND FM since the NAND flash is one of the prominent FM currently
under commercial manufacturing. The access characteristics of NAND FM are as follows [3,
13]:

 1.2 microsecond for 2 Byte read
 35.9 microsecond for 512 Byte read
 201 microsecond for 2 Byte write

PERFORMANCE IMPROVEMENTS OF MR-TREE OPERATIONS ON NAND FLASH MEMORY

 61

 226 microsecond for 512 Byte write
 2 millisecond for 16 KB block delete

Table 1 also contains comparisons between various memory devices including NAND FM.

NAND FM has operations of read and write on the unit of sector, and write operation must be
done after deleting the corresponding block. Delete operations are done in the unit of block,
thus it takes far more time than read and write operations which can be done in the unit of
sector. Because of this difference between the unit of write and delete operations, write
operations cannot be done immediately. Write-pending pages should be copied on other blank
pages with modifications and this specific operation is called not-in-place update. Free page is
a clean page never has been written. Dead page is a page having out-of-date data after not-in -
place update. Live page is a page having up-to-date data after not-in-place update [2]. The
number of dead pages will increase with cumulated write operations and the number of free
pages will be degenerated. Therefore garbage collection will be required.

Table 1. Memory device access characteristics

We need block recycling policy to choose a specific dead page deleted and converted to

free page. Also we need wear leveling in order for uniform selection of dead page to be
deleted since there are limitations in the number of block delete. Thus it is clear that write
operation requires extra cost with wear leveling and garbage collection. Flash Translation
Layer (FTL) helps file system to recognize FM as a logical space such as that of HDD. FTL
mapping algorithms are classified as sector mapping, block mapping and hybrid mapping.
Also, the logical-physical address translation is classified as in place and out of place where
physical sector first for this while logical sector first for that. For example, FAST(Full
Associate Sector Translation) [5], which improved log block mechanism, logically partites FM
memory space into data block, log block, and sequential write block. It marks "in-place" on a
data block for a sector written with hybrid mapping. Once an overwritten takes place for this
sector, it choose a specific sector on log block and marks it as "out-of-place,” except the zero-
th sector be overwritten. Instead, a sequential write block is chosen and then marked as "in-
place". Once a zero-th sector be overwritten again, a merge operation happens or an exchange
operation happens in order to minimize delete operation. There exist several log blocks where
there could be FIFO merge operation if there are no free sector on a log block. FAST supports
mapping between file system and FM efficiently and file system can recognize FM as block
device such as hard disk drive.

Media Read Write Erase

DRAM 60ns(2B)
2.56us(512B)

60ns(2B)
2.56us(512B) -

NOR Flash 150us(2B)
14.4us(512B)

211us(2B)
3.53us(512B)

1.2s
(128KB)

NAND Flash 10.2us(2B)
35.9us(512B)

201us(2B)
226us(512B)

2ms
(16KB)

Disk 12.4ms(512B)
(average)

12.4ms(512B)
(average) -

IADIS International Journal on Computer Science and Information Systems

 62

2.2 Index Trees

B-tree [8] is an index most representatively used in database management system that is based
on disk and main memory. Operations of insert, delete, search of data are done easily and B-
tree supplies efficient balance algorithm.

R-tree [1] is guided hierarchic data structure from B-tree structure for spatial data access
such as multimedia data. Each node is composed of smallest d-dimension quadrilateral
including its own child node. Leaf node includes pointer for actually geometrical object
instead of including child nodes in database. Objects are expressed by minimum sorted
quadrilateral in which they are included. Because R-tree is height balanced tree, it announces
node split to parent node, so approximately average 70% of entries have filled in leaf node. R-
tree often does to increase height of tree for height balance of leaf nodes, and it causes
unnecessary cache miss finally. MR-tree [4] uses basic index structure of R-tree, but height
among sub trees can be unbalanced and the difference is restricted at most one. If height
between sub trees is restricted more than one, it runs height balance algorithm. And, it has
special feature that splits are delivered to parent node when split is produced. In case of a node
exists which has empty entry on insert operation and it judges re-insertion possibility
electively in occasion of delete. MR-tree structure is shown in figure 2.

Index nodes of MR-tree are classified to internal node, leaf node and half-leaf node. Half-
leaf node means a node that have all entries for leaf nodes and data object. If new object is
inserted in the half-leaf node continually, this node is changed to an internal node that has
height of two. Node structure of MR-tree other than R-tree shows two distinguished additional
field. Height field has a one-increased value of the biggest heights of child nodes to field that
display height of node, and is used to search the imbalance state of MR-tree height.

Figure 1. R-tree on FM

PERFORMANCE IMPROVEMENTS OF MR-TREE OPERATIONS ON NAND FLASH MEMORY

 63

Data entry number field is used by half-leaf node and stores number of data entry stored in
the node. Split of leaf node is delivered to parent node only if there is empty entry in internal
node on insert operation. Therefore, it can certainly reduce whole number of node splits. MR-
tree shortens tree height and indicates good performance in search by decreasing the size of
MBR of internal nodes. It improves entry space utilization for internal node by delivering a
node split to parent nodes by use of more than one empty entry among internal nodes on insert
operation, controls increase of tree height maximum, and reduces the count of cache miss.

2.3 Flash Memory Index

The major reason of FM performance decaying in the indexing of huge multimedia database is
a set of random accesses rather than a set of sequential accesses in case of index
modifications. For example of tree index, even a modification of one tree node will cause the
modification of data of that entry, address and key values pointing to data, and pointer values
to parent and child nodes. Those modifications of index lead in modifications of related FM
pages. It eventually increases dead pages and decreases free pages, cause large number of
delete operations and degenerates the life of FM. Thus we must consider FM characteristics in
order to operate index trees efficiently on the FM.

Figure 2. Structure of MR-tree

There are related researches regarding FM usage for index trees. B-tree is for BFTL[11]

and R-tree is for [12], respectively for FM index trees. These two similar approaches contain a
scheme of reservation buffer and index unit. Every modification of index trees creates index

IADIS International Journal on Computer Science and Information Systems

 64

unit and reserved in reservation buffer. A fully contained reservation buffer ultimately
transferred to FM pages.

Node translation table manages information of sectors where node data are contained,
since one node can be distributed over several sectors of FM. Compressions are executed in
case node translation table became large. Here, the frequent compression can be overhead as
well as intermediate search of node translation table in case of node search. BOF[7]
overcomes this situation by storing index of one node per one sector. Without the use of node
translation table, it eliminates compression overhead and enhances search performance.

Even though the presence of previous research, researches on spatial index for multimedia
or biomedical databases which usually contains huge data are still required in order to fully
utilize the characteristics of FM, a.k.a., fast access time, portability, lifetime limitation and so
on. Especially, researches are required for index structures, node sizes, and the combination of
those two with the characteristics of FM access unit for the efficient operation of index trees.

Thus, with the introduction of MR-tree structures and operations combined with FM
characteristics will be an idea for the performance purpose. We introduced “delaying of MR-
tree index operations” and “consideration of node size for MR-tree nodes.” Next section
shows the details on this issue.

3. MR-TREE ON FLASH MEMORY

3.1 Considerations on Node Size

The structure of MR-tree reduces MBR (Minimum Bounding Rectangle) of intermediate
nodes as well as tree height with the full usage of intermediate nodes rather than leaf nodes.

It is notable that with different node sizes of MR-tree for the same number of index, the
structures of MR-trees are totally different. Thus MR-trees with different structures shows
different performance as the timings of search, insertion, and deletion operations are varied.

With the 16byte size of MBR for R-tree and MR-tree, the search time rapidly decreases as
the size of nodes increase while it increases when it passes the minimum [4]. With node size
between 256byte and 512byte, the search performance shows optimum results. It is because
the balance between tree height and node size. The smaller node size results in high tree and
large search depth, and the bigger node size also results in high cache miss without reducing
the number of nodes to access for search.

Table 2 shows the tree characteristics for varying typical node size. The larger node results
in smaller number of nodes and small tree height, larger size of total tree, and smaller number
of tree split.

Table 2. Tree characteristics with different node size over 1,000,000 insertions

Node Size in byte 128 256 512 1024

Number of Nodes 21153 3615 664 52

Total size of Tree in Mbyte 212.5 399.8 812.9 1532.7
Tree height 11 8 5 4

Number of tree Split 241020 118494 57195 28092

PERFORMANCE IMPROVEMENTS OF MR-TREE OPERATIONS ON NAND FLASH MEMORY

 65

We used one million number of spatial data insertion. Rectangle data information is
created with the insertion of MR-tree, and one tree node contains from 6 rectangles to 51
rectangles. The larger node results in high search performance due to the larger number of data
per one node and reduces the number of split and tree height. However the larger nodes results
in lower spatial utilization and thus shows the bigger size of total tree. Of course, tree height
and width affects the search performance. We must consider optimal height of tree.

From the considerations of search performance and node size above, and considerations of
FM access characteristics, we can choose the node size of 512byte in order to balance between
tree characteristics and FM access unit. We expect that MR-tree shows better search
performance as well as insertion and deletion with the node size of 512byte. FM also adopts
512byte as a default unit of read and write.

3.2 Delaying MR-tree operations on Flash Memory

We decide 512byte as a node size of MR-tree and it fits the access unit of FM. From this
approach we can reduce write cost of FM for MR-tree operation which is a major cause of
performance degradation. However, there are still multiple factors for write operation on FM
from the view of MR-tree.

Once we apply node modifications of index, insertions and deletions of tree nodes will be
operated. These relatively small operations which may not fill the whole sector of FM
especially for write access and they will increase dead page and decrease free page for FM.
From the considerations of MR-tree index, nodes have pointers to parents and child as well as
keys and data information. Even one of the modifications in a tree node will cause a whole
sector write to FM. If we have to change the pointers to parents or child, this modification will
effect consequently to the adjacent nodes. Such a large number of modifications eventually
degrade MR-tree performance on FM. Therefore, we suggest a delaying technique of MR-tree
operations, especially modifications, on FM.

We must gather small operations till the whole size of small operations will fill the sector
size of FM. This aggregation of small size operations will leads in delaying of operations of
MR-tree. From this approach, we can decrease the number of dead pages, and increase the
number of free pages and lifetime of FM as well. In addition, the coincidence of tree node size
of FM sector size will leads in low overhead in node information management.

Figure 3 depicts a structure of MR-tree for delaying operations. Especially index
modifications will be delayed if the modifications require smaller memory amount than the
size of a FM sector.

In our approach, not every result of modifications will be applied to FM directly. Instead, it
will be gathered together till the required memory size will be met as the size of a FM sector.

Intermediate buffers which have the exact size of FM size, called sector buffer, will be
applied in the middle of modification operations. Tree index do not access FM sectors
directly, however, they access sector buffers. Once a sector buffer is full with modifications,
the modifications to the sector will be applied to a FM sector. This delaying will effectively
help high utilization of FM.

Another benefit of this approach is that it does not requires node translation table such as
BTFL approach, since one tree node can be a exact match in size of FM sector. Information
for one node can be managed in a unit of FM sector. This elimination of BFTL layer will
cause better performance of MR-tree access.

IADIS International Journal on Computer Science and Information Systems

 66

Figure 3. MR-tree structure for delaying operation on FM

4. PERFORMANCE RESULTS

We do various set of experiments for MR-tree operations on FM. First we design DB access
profiles in order to simulate MR-tree operations. Second, we compare B-tree, R-tree, MR-tree
operations by measuring performance on the same FM specifications. Measurements are also
conducted for Hard disk drivers in order to prove the merits of FM for tree index over hard
disk drivers. These results can be found [6]. Finally the effects of delayed operations are
experimented. The effect will be shown in combination with the effect of node size.

4.1 Database Access Profile Design and Node Parameters

We designed database access profiles in three aspects. First, we assume usual operations of
database usage, where most of operations are search access and smaller number of insertions
and deletions are made. This profile is called Read Oriented Profile and composed of 8000
searches, 1000 insertions and 1000 deletions respectively. We assume another situation of
initial construction stage of database where insert operations are mostly executed. This profile
is called Write Oriented Profile and composed of 1000 searches, 8000 insertions and 1000
deletions respectively. Finally we assume a total shrinking situation of database. Even though
it is a rare case, it is worth looking to demonstrate the effect of delete operations on tree index.
This profile is called Delete Oriented Profile and composed of 1000 searches, 1000 insertions
and 8000 deletions respectively.

With these DB access profiles, we can calculate and simulate the number of FM access
according to the dedicated profiles. Table 3 shows the result. For each DB access profile, we

PERFORMANCE IMPROVEMENTS OF MR-TREE OPERATIONS ON NAND FLASH MEMORY

 67

can compare the number of FM access with and without delayed operations, including the
number of read, write and delete operations to FM. In case of Read oriented profile, which is a
common case of database access, we reduced 46% in number of access to FM and will results
it enhanced performance of MR-tree on FM. Other profiles also show considerable reduction
in FM access.

4.2 Experimental Results

We conducted another experiment in order to prove the effect of MR-tree node size as well as
the effect of aggregated and delayed operations. We implemented actual MR-tree and a set of
related operations. Every experiment is executed with 60,000 operations with two dimensional
rectangular data. Thus we can get performance results of MR-tree operation timings in a unit
of milliseconds.

We focused on read oriented and write oriented profiles which are usual usage of database
index. For every graph follows, x-axis stands for the number of operations and y-axis stands
for accumulated time of operations. In order to demonstrate the effect of node size, we choose
128byte, 256byte, and 512byte for a node size respectively. And we combine the effect of
node size with the effect of delayed operations. For example, 512-delay stands for 512byte
node size with delayed operations. Each rectangle has a size of 40byte including data pointer
and node pointer. Thus these 40byte rectangles must be gathered to fill the whole size of node,
and this gathering requires an actual access to FM must be delayed for a while.

Table 3. Number of FM access for each profile

Profile Operation Types R W D Benefit(%)

Number of Access without delay 17252 3012 72325 Read

Oriented Number of Access with Delay 7956 878 30215
46

Number of Access without delay 3426 23589 73695 Write

Oriented Number of Access with Delay 854 6678 30215
25

Number of Access without delay 6251 5697 422325 Delete

Oriented Number of Access with Delay 1852 1678 172215
30

Figure 4 shows the effect of 60,000 insertions to MR-tree index on FM. Without delayed

operations, the effects of node size are minute while 512byte nodes show a little better
performance in actual numbers. However, the effects of delayed operations are clear and then
512byte node size with delayed operations is a winner in this case.

Figure 5 shows the effect of 60,000 searches to MR-tree index on FM. Here, the effect of
node size and delayed operations are distinct. With the bigger node size, the search
performance increases with smaller tree height as expected. Once the effect of node size is
combined with delayed operations, we can earn the best performance of database index search
as well as successful management of FM.

IADIS International Journal on Computer Science and Information Systems

 68

5. CONCLUSIONS AND FUTURE RESEARCHES

In this paper, we proposed an efficient delaying technique of MR-tree operations on NAND
Flash memory. MR-tree, as a spatial index data structure for cache awareness, is treated in
order to improve its performance on NAND Flash memory. We investigated natures of MR-
tree operations over various sizes of nodes. Considering Flash memory read, write and delete
operation characteristics, we proposed a delay technique of MR-tree operations. The unit of
read and write, a sector of Flash memory, is 512byte and as expected we experienced the best
performance of MR-tree operations with 512byte node size. Insertion, deletion and search
operations can be applied to Flash memory can be delayed after the aggregation of related data
in a size of Flash memory sectors, and the cost of write operations can be reduced
considerably.

Figure 4. Effect of insertions on different size of nodes

The optimized MR-tree for flash memory with node size of 512 byte shows better
performance in search operation which is related in read operations, and the write and delete
operation in a unit of 512 byte shows high efficiency in performance and node management.
As a result, we minimized write and delete operations to Flash memory which leads in nice
performance of MR-tree operations and it extends the lifetime of Flash memory which has
lifetime limitation because of delete operations. Thus we also delayed the degeneration of
Flash memory lifetime.

PERFORMANCE IMPROVEMENTS OF MR-TREE OPERATIONS ON NAND FLASH MEMORY

 69

For the following research, wear-leveling of Flash memory can be a candidate. We can set
the sector size of Flash memory to the node size of MR-tree and identify the optimal page size
of wear-leveling. It would improve the performance of wear-leveling for MR-tree.

Figure 5. Effect of searches on different size of nodes

REFERENCES

1. Antomn Guttman, 1984. R-trees - a dynamic index structure for spatial searching. In International
conference on management of data proceedings of the 1984 ACM SIGMOD , pages 47–57.

2. Eran Gal . et al, 2005. Algorithms and data structures for flash memories. In ACM Computing
Surveys(CSUR), pages 138–163.

3. Jesung Kim. et al, 2002. A space efficient flash translation layer for compact flash systems. In IEEE
Transactions on Consumer Electronics, pages 366–375.

4. Kyung-Chang Kim. et al, 2004. MR-Tree : a cache-conscious main memory spatial index structure for
mobile GIS. In Web and wireless geographic information systems, 4th international workshop
(W2GIS 2004), pages 167–180.

5. Sang-won Lee. et al, 2005. A log buffer based Flash Translation Layer using fully associative sector
Translation. ACM transactions on Embedded Computing systems.

6. Hyun Seung Lee. et al, 2007. Performance of Index trees on Flash memory. International Conference
in Principles of Information Technology and Applications(PITA’07).

7. Jung-hyeon Nam . et al, 2005. The efficient design and implementation of the B-tree on flash memory.
In Korea information science society.

IADIS International Journal on Computer Science and Information Systems

 70

8. Beng chin Ooi . et al, 2002. B-trees : bearing fruits of all kinds. In Australian Computer Science
Communications, Proceedings of the 13th Australasian database conference (ADC02).

9. Chanik Park. et al, 2004. Energy aware demand paging on Nand Flash-based embedded storages. In
Proceedings of IEEE/ACM international symposium on Low Power Electronics and Design(ISLPED
2004).

10. Michael Wu. et al, 1993. eNVy : a nonvolatile main memory storage system. In proceedings, Fourth
workshop on workstation operating systems(WWOSIII).

11. Chin-Hsien Wu. et al, 2003. An efficient B-tree layer for flash memory storage systems. The 9th,
International conference on Real-Time and Embedded Computing systems and
Applications.(RTCSA).

12. Chin-Hsien Wu. et al, 2003. An efficient R-tree implementation over flash-memory storage systems.
In Proceeding of the 11th ACM international symposium on Advances in geographic information
systems, pages 17–24.

13. SAMSUNG NAND flash SLC-small block, 2007. In
”http://www.samsung.com/global/business/semiconductor/productInfo.do

?fmly id=158&partnum=K9F1208R0C&&ppmi=1157”.

